/*
* This file is part of wl12xx
*
* Copyright (C) 2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include "wl1251.h"
#include "reg.h"
#include "io.h"
/* FIXME: this is static data nowadays and the table can be removed */
static enum wl12xx_acx_int_reg wl1251_io_reg_table[ACX_REG_TABLE_LEN] = {
[ACX_REG_INTERRUPT_TRIG] = (REGISTERS_BASE + 0x0474),
[ACX_REG_INTERRUPT_TRIG_H] = (REGISTERS_BASE + 0x0478),
[ACX_REG_INTERRUPT_MASK] = (REGISTERS_BASE + 0x0494),
[ACX_REG_HINT_MASK_SET] = (REGISTERS_BASE + 0x0498),
[ACX_REG_HINT_MASK_CLR] = (REGISTERS_BASE + 0x049C),
[ACX_REG_INTERRUPT_NO_CLEAR] = (REGISTERS_BASE + 0x04B0),
[ACX_REG_INTERRUPT_CLEAR] = (REGISTERS_BASE + 0x04A4),
[ACX_REG_INTERRUPT_ACK] = (REGISTERS_BASE + 0x04A8),
[ACX_REG_SLV_SOFT_RESET] = (REGISTERS_BASE + 0x0000),
[ACX_REG_EE_START] = (REGISTERS_BASE + 0x080C),
[ACX_REG_ECPU_CONTROL] = (REGISTERS_BASE + 0x0804)
};
static int wl1251_translate_reg_addr(struct wl1251 *wl, int addr)
{
/* If the address is lower than REGISTERS_BASE, it means that this is
* a chip-specific register address, so look it up in the registers
* table */
if (addr < REGISTERS_BASE) {
/* Make sure we don't go over the table */
if (addr >= ACX_REG_TABLE_LEN) {
wl1251_error("address out of range (%d)", addr);
return -EINVAL;
}
addr = wl1251_io_reg_table[addr];
}
return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
}
static int wl1251_translate_mem_addr(struct wl1251 *wl, int addr)
{
return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
}
void wl1251_mem_read(struct wl1251 *wl, int addr, void *buf, size_t len)
{
int physical;
physical = wl1251_translate_mem_addr(wl, addr);
wl->if_ops->read(wl, physical, buf, len);
}
void wl1251_mem_write(struct wl1251 *wl, int addr, void *buf, size_t len)
{
int physical;
physical = wl1251_translate_mem_addr(wl, addr);
wl->if_ops->write(wl, physical, buf, len);
}
u32 wl1251_mem_read32(struct wl1251 *wl, int addr)
{
return wl1251_read32(wl, wl1251_translate_mem_addr(wl, addr));
}
void wl1251_mem_write32(struct wl1251 *wl, int addr, u32 val)
{
wl1251_write32(wl, wl1251_translate_mem_addr(wl, addr), val);
}
u32 wl1251_reg_read32(struct wl1251 *wl, int addr)
{
return wl1251_read32(wl, wl1251_translate_reg_addr(wl, addr));
}
void wl1251_reg_write32(struct wl1251 *wl, int addr, u32 val)
{
wl1251_write32(wl, wl1251_translate_reg_addr(wl, addr), val);
}
/* Set the partitions to access the chip addresses.
*
* There are two VIRTUAL partitions (the memory partition and the
* registers partition), which are mapped to two different areas of the
* PHYSICAL (hardware) memory. This function also makes other checks to
* ensure that the partitions are not overlapping. In the diagram below, the
* memory partition comes before the register partition, but the opposite is
* also supported.
*
* PHYSICAL address
* space
*
* | |
* ...+----+--> mem_start
* VIRTUAL address ... | |
* space ... | | [PART_0]
* ... | |
* 0x00000000 <--+----+... ...+----+--> mem_start + mem_size
* | | ... | |
* |MEM | ... | |
* | | ... | |
* part_size <--+----+... | | {unused area)
* | | ... | |
* |REG | ... | |
* part_size | | ... | |
* + <--+----+... ...+----+--> reg_start
* reg_size ... | |
* ... | | [PART_1]
* ... | |
* ...+----+--> reg_start + reg_size
* | |
*
*/
void wl1251_set_partition(struct wl1251 *wl,
u32 mem_start, u32 mem_size,
u32 reg_start, u32 reg_size)
{
struct wl1251_partition partition[2];
wl1251_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
mem_start, mem_size);
wl1251_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
reg_start, reg_size);
/* Make sure that the two partitions together don't exceed the
* address range */
if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
wl1251_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
" address range. Truncating partition[0].");
mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
wl1251_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
mem_start, mem_size);
wl1251_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
reg_start, reg_size);
}
if ((mem_start < reg_start) &&
((mem_start + mem_size) > reg_start)) {
/* Guarantee that the memory partition doesn't overlap the
* registers partition */
wl1251_debug(DEBUG_SPI, "End of partition[0] is "
"overlapping partition[1]. Adjusted.");
mem_size = reg_start - mem_start;
wl1251_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
mem_start, mem_size);
wl1251_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
reg_start, reg_size);
} else if ((reg_start < mem_start) &&
((reg_start + reg_size) > mem_start)) {
/* Guarantee that the register partition doesn't overlap the
* memory partition */
wl1251_debug(DEBUG_SPI, "End of partition[1] is"
" overlapping partition[0]. Adjusted.");
reg_size = mem_start - reg_start;
wl1251_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
mem_start, mem_size);
wl1251_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
reg_start, reg_size);
}
partition[0].start = mem_start;
partition[0].size = mem_size;
partition[1].start = reg_start;
partition[1].size = reg_size;
wl->physical_mem_addr = mem_start;
wl->physical_reg_addr = reg_start;
wl->virtual_mem_addr = 0;
wl->virtual_reg_addr = mem_size;
wl->if_ops->write(wl, HW_ACCESS_PART0_SIZE_ADDR, partition,
sizeof(partition));
}