/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/err.h>
#include <linux/vmalloc.h>
#include <linux/hash.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <rdma/rdma_vt.h>
#include <rdma/rdmavt_qp.h>
#include <rdma/ib_verbs.h>
#include "hfi.h"
#include "qp.h"
#include "trace.h"
#include "verbs_txreq.h"
unsigned int hfi1_qp_table_size = 256;
module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
MODULE_PARM_DESC(qp_table_size, "QP table size");
static void flush_tx_list(struct rvt_qp *qp);
static int iowait_sleep(
struct sdma_engine *sde,
struct iowait *wait,
struct sdma_txreq *stx,
unsigned seq);
static void iowait_wakeup(struct iowait *wait, int reason);
static void iowait_sdma_drained(struct iowait *wait);
static void qp_pio_drain(struct rvt_qp *qp);
static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
struct rvt_qpn_map *map, unsigned off)
{
return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
}
/*
* Convert the AETH credit code into the number of credits.
*/
static const u16 credit_table[31] = {
0, /* 0 */
1, /* 1 */
2, /* 2 */
3, /* 3 */
4, /* 4 */
6, /* 5 */
8, /* 6 */
12, /* 7 */
16, /* 8 */
24, /* 9 */
32, /* A */
48, /* B */
64, /* C */
96, /* D */
128, /* E */
192, /* F */
256, /* 10 */
384, /* 11 */
512, /* 12 */
768, /* 13 */
1024, /* 14 */
1536, /* 15 */
2048, /* 16 */
3072, /* 17 */
4096, /* 18 */
6144, /* 19 */
8192, /* 1A */
12288, /* 1B */
16384, /* 1C */
24576, /* 1D */
32768 /* 1E */
};
const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
[IB_WR_RDMA_WRITE] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_RDMA_READ] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_ATOMIC,
},
[IB_WR_ATOMIC_CMP_AND_SWP] = {
.length = sizeof(struct ib_atomic_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
},
[IB_WR_ATOMIC_FETCH_AND_ADD] = {
.length = sizeof(struct ib_atomic_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
},
[IB_WR_RDMA_WRITE_WITH_IMM] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_SEND] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_SEND_WITH_IMM] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_REG_MR] = {
.length = sizeof(struct ib_reg_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
.flags = RVT_OPERATION_LOCAL,
},
[IB_WR_LOCAL_INV] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
.flags = RVT_OPERATION_LOCAL,
},
[IB_WR_SEND_WITH_INV] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_RC),
},
};
static void flush_tx_list(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
while (!list_empty(&priv->s_iowait.tx_head)) {
struct sdma_txreq *tx;
tx = list_first_entry(
&priv->s_iowait.tx_head,
struct sdma_txreq,
list);
list_del_init(&tx->list);
hfi1_put_txreq(
container_of(tx, struct verbs_txreq, txreq));
}
}
static void flush_iowait(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
unsigned long flags;
seqlock_t *lock = priv->s_iowait.lock;
if (!lock)
return;
write_seqlock_irqsave(lock, flags);
if (!list_empty(&priv->s_iowait.list)) {
list_del_init(&priv->s_iowait.list);
priv->s_iowait.lock = NULL;
rvt_put_qp(qp);
}
write_sequnlock_irqrestore(lock, flags);
}
static inline int opa_mtu_enum_to_int(int mtu)
{
switch (mtu) {
case OPA_MTU_8192: return 8192;
case OPA_MTU_10240: return 10240;
default: return -1;
}
}
/**
* This function is what we would push to the core layer if we wanted to be a
* "first class citizen". Instead we hide this here and rely on Verbs ULPs
* to blindly pass the MTU enum value from the PathRecord to us.
*/
static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
{
int val;
/* Constraining 10KB packets to 8KB packets */
if (mtu == (enum ib_mtu)OPA_MTU_10240)
mtu = OPA_MTU_8192;
val = opa_mtu_enum_to_int((int)mtu);
if (val > 0)
return val;
return ib_mtu_enum_to_int(mtu);
}
int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct ib_qp *ibqp = &qp->ibqp;
struct hfi1_ibdev *dev = to_idev(ibqp->device);
struct hfi1_devdata *dd = dd_from_dev(dev);
u8 sc;
if (attr_mask & IB_QP_AV) {
sc = ah_to_sc(ibqp->device, &attr->ah_attr);
if (sc == 0xf)
return -EINVAL;
if (!qp_to_sdma_engine(qp, sc) &&
dd->flags & HFI1_HAS_SEND_DMA)
return -EINVAL;
if (!qp_to_send_context(qp, sc))
return -EINVAL;
}
if (attr_mask & IB_QP_ALT_PATH) {
sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
if (sc == 0xf)
return -EINVAL;
if (!qp_to_sdma_engine(qp, sc) &&
dd->flags & HFI1_HAS_SEND_DMA)
return -EINVAL;
if (!qp_to_send_context(qp, sc))
return -EINVAL;
}
return 0;
}
void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct ib_qp *ibqp = &qp->ibqp;
struct hfi1_qp_priv *priv = qp->priv;
if (attr_mask & IB_QP_AV) {
priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
}
if (attr_mask & IB_QP_PATH_MIG_STATE &&
attr->path_mig_state == IB_MIG_MIGRATED &&
qp->s_mig_state == IB_MIG_ARMED) {
qp->s_flags |= RVT_S_AHG_CLEAR;
priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
}
}
/**
* hfi1_check_send_wqe - validate wqe
* @qp - The qp
* @wqe - The built wqe
*
* validate wqe. This is called
* prior to inserting the wqe into
* the ring but after the wqe has been
* setup.
*
* Returns 0 on success, -EINVAL on failure
*
*/
int hfi1_check_send_wqe(struct rvt_qp *qp,
struct rvt_swqe *wqe)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct rvt_ah *ah;
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
case IB_QPT_UC:
if (wqe->length > 0x80000000U)
return -EINVAL;
break;
case IB_QPT_SMI:
ah = ibah_to_rvtah(wqe->ud_wr.ah);
if (wqe->length > (1 << ah->log_pmtu))
return -EINVAL;
break;
case IB_QPT_GSI:
case IB_QPT_UD:
ah = ibah_to_rvtah(wqe->ud_wr.ah);
if (wqe->length > (1 << ah->log_pmtu))
return -EINVAL;
if (ibp->sl_to_sc[ah->attr.sl] == 0xf)
return -EINVAL;
default:
break;
}
return wqe->length <= piothreshold;
}
/**
* hfi1_compute_aeth - compute the AETH (syndrome + MSN)
* @qp: the queue pair to compute the AETH for
*
* Returns the AETH.
*/
__be32 hfi1_compute_aeth(struct rvt_qp *qp)
{
u32 aeth = qp->r_msn & HFI1_MSN_MASK;
if (qp->ibqp.srq) {
/*
* Shared receive queues don't generate credits.
* Set the credit field to the invalid value.
*/
aeth |= HFI1_AETH_CREDIT_INVAL << HFI1_AETH_CREDIT_SHIFT;
} else {
u32 min, max, x;
u32 credits;
struct rvt_rwq *wq = qp->r_rq.wq;
u32 head;
u32 tail;
/* sanity check pointers before trusting them */
head = wq->head;
if (head >= qp->r_rq.size)
head = 0;
tail = wq->tail;
if (tail >= qp->r_rq.size)
tail = 0;
/*
* Compute the number of credits available (RWQEs).
* There is a small chance that the pair of reads are
* not atomic, which is OK, since the fuzziness is
* resolved as further ACKs go out.
*/
credits = head - tail;
if ((int)credits < 0)
credits += qp->r_rq.size;
/*
* Binary search the credit table to find the code to
* use.
*/
min = 0;
max = 31;
for (;;) {
x = (min + max) / 2;
if (credit_table[x] == credits)
break;
if (credit_table[x] > credits) {
max = x;
} else {
if (min == x)
break;
min = x;
}
}
aeth |= x << HFI1_AETH_CREDIT_SHIFT;
}
return cpu_to_be32(aeth);
}
/**
* _hfi1_schedule_send - schedule progress
* @qp: the QP
*
* This schedules qp progress w/o regard to the s_flags.
*
* It is only used in the post send, which doesn't hold
* the s_lock.
*/
void _hfi1_schedule_send(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
priv->s_sde ?
priv->s_sde->cpu :
cpumask_first(cpumask_of_node(dd->node)));
}
static void qp_pio_drain(struct rvt_qp *qp)
{
struct hfi1_ibdev *dev;
struct hfi1_qp_priv *priv = qp->priv;
if (!priv->s_sendcontext)
return;
dev = to_idev(qp->ibqp.device);
while (iowait_pio_pending(&priv->s_iowait)) {
write_seqlock_irq(&dev->iowait_lock);
hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
write_sequnlock_irq(&dev->iowait_lock);
iowait_pio_drain(&priv->s_iowait);
write_seqlock_irq(&dev->iowait_lock);
hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
write_sequnlock_irq(&dev->iowait_lock);
}
}
/**
* hfi1_schedule_send - schedule progress
* @qp: the QP
*
* This schedules qp progress and caller should hold
* the s_lock.
*/
void hfi1_schedule_send(struct rvt_qp *qp)
{
lockdep_assert_held(&qp->s_lock);
if (hfi1_send_ok(qp))
_hfi1_schedule_send(qp);
}
/**
* hfi1_get_credit - handle credit in aeth
* @qp: the qp
* @aeth: the Acknowledge Extended Transport Header
*
* The QP s_lock should be held.
*/
void hfi1_get_credit(struct rvt_qp *qp, u32 aeth)
{
u32 credit = (aeth >> HFI1_AETH_CREDIT_SHIFT) & HFI1_AETH_CREDIT_MASK;
lockdep_assert_held(&qp->s_lock);
/*
* If the credit is invalid, we can send
* as many packets as we like. Otherwise, we have to
* honor the credit field.
*/
if (credit == HFI1_AETH_CREDIT_INVAL) {
if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) {
qp->s_flags |= RVT_S_UNLIMITED_CREDIT;
if (qp->s_flags & RVT_S_WAIT_SSN_CREDIT) {
qp->s_flags &= ~RVT_S_WAIT_SSN_CREDIT;
hfi1_schedule_send(qp);
}
}
} else if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) {
/* Compute new LSN (i.e., MSN + credit) */
credit = (aeth + credit_table[credit]) & HFI1_MSN_MASK;
if (cmp_msn(credit, qp->s_lsn) > 0) {
qp->s_lsn = credit;
if (qp->s_flags & RVT_S_WAIT_SSN_CREDIT) {
qp->s_flags &= ~RVT_S_WAIT_SSN_CREDIT;
hfi1_schedule_send(qp);
}
}
}
}
void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
{
unsigned long flags;
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->s_flags & flag) {
qp->s_flags &= ~flag;
trace_hfi1_qpwakeup(qp, flag);
hfi1_schedule_send(qp);
}
spin_unlock_irqrestore(&qp->s_lock, flags);
/* Notify hfi1_destroy_qp() if it is waiting. */
rvt_put_qp(qp);
}
static int iowait_sleep(
struct sdma_engine *sde,
struct iowait *wait,
struct sdma_txreq *stx,
unsigned seq)
{
struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
struct rvt_qp *qp;
struct hfi1_qp_priv *priv;
unsigned long flags;
int ret = 0;
struct hfi1_ibdev *dev;
qp = tx->qp;
priv = qp->priv;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
/*
* If we couldn't queue the DMA request, save the info
* and try again later rather than destroying the
* buffer and undoing the side effects of the copy.
*/
/* Make a common routine? */
dev = &sde->dd->verbs_dev;
list_add_tail(&stx->list, &wait->tx_head);
write_seqlock(&dev->iowait_lock);
if (sdma_progress(sde, seq, stx))
goto eagain;
if (list_empty(&priv->s_iowait.list)) {
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
ibp->rvp.n_dmawait++;
qp->s_flags |= RVT_S_WAIT_DMA_DESC;
list_add_tail(&priv->s_iowait.list, &sde->dmawait);
priv->s_iowait.lock = &dev->iowait_lock;
trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
rvt_get_qp(qp);
}
write_sequnlock(&dev->iowait_lock);
qp->s_flags &= ~RVT_S_BUSY;
spin_unlock_irqrestore(&qp->s_lock, flags);
ret = -EBUSY;
} else {
spin_unlock_irqrestore(&qp->s_lock, flags);
hfi1_put_txreq(tx);
}
return ret;
eagain:
write_sequnlock(&dev->iowait_lock);
spin_unlock_irqrestore(&qp->s_lock, flags);
list_del_init(&stx->list);
return -EAGAIN;
}
static void iowait_wakeup(struct iowait *wait, int reason)
{
struct rvt_qp *qp = iowait_to_qp(wait);
WARN_ON(reason != SDMA_AVAIL_REASON);
hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
}
static void iowait_sdma_drained(struct iowait *wait)
{
struct rvt_qp *qp = iowait_to_qp(wait);
unsigned long flags;
/*
* This happens when the send engine notes
* a QP in the error state and cannot
* do the flush work until that QP's
* sdma work has finished.
*/
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->s_flags & RVT_S_WAIT_DMA) {
qp->s_flags &= ~RVT_S_WAIT_DMA;
hfi1_schedule_send(qp);
}
spin_unlock_irqrestore(&qp->s_lock, flags);
}
/**
*
* qp_to_sdma_engine - map a qp to a send engine
* @qp: the QP
* @sc5: the 5 bit sc
*
* Return:
* A send engine for the qp or NULL for SMI type qp.
*/
struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct sdma_engine *sde;
if (!(dd->flags & HFI1_HAS_SEND_DMA))
return NULL;
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
return NULL;
default:
break;
}
sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
return sde;
}
/*
* qp_to_send_context - map a qp to a send context
* @qp: the QP
* @sc5: the 5 bit sc
*
* Return:
* A send context for the qp
*/
struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
/* SMA packets to VL15 */
return dd->vld[15].sc;
default:
break;
}
return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
sc5);
}
struct qp_iter {
struct hfi1_ibdev *dev;
struct rvt_qp *qp;
int specials;
int n;
};
struct qp_iter *qp_iter_init(struct hfi1_ibdev *dev)
{
struct qp_iter *iter;
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return NULL;
iter->dev = dev;
iter->specials = dev->rdi.ibdev.phys_port_cnt * 2;
return iter;
}
int qp_iter_next(struct qp_iter *iter)
{
struct hfi1_ibdev *dev = iter->dev;
int n = iter->n;
int ret = 1;
struct rvt_qp *pqp = iter->qp;
struct rvt_qp *qp;
/*
* The approach is to consider the special qps
* as an additional table entries before the
* real hash table. Since the qp code sets
* the qp->next hash link to NULL, this works just fine.
*
* iter->specials is 2 * # ports
*
* n = 0..iter->specials is the special qp indices
*
* n = iter->specials..dev->rdi.qp_dev->qp_table_size+iter->specials are
* the potential hash bucket entries
*
*/
for (; n < dev->rdi.qp_dev->qp_table_size + iter->specials; n++) {
if (pqp) {
qp = rcu_dereference(pqp->next);
} else {
if (n < iter->specials) {
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
int pidx;
pidx = n % dev->rdi.ibdev.phys_port_cnt;
ppd = &dd_from_dev(dev)->pport[pidx];
ibp = &ppd->ibport_data;
if (!(n & 1))
qp = rcu_dereference(ibp->rvp.qp[0]);
else
qp = rcu_dereference(ibp->rvp.qp[1]);
} else {
qp = rcu_dereference(
dev->rdi.qp_dev->qp_table[
(n - iter->specials)]);
}
}
pqp = qp;
if (qp) {
iter->qp = qp;
iter->n = n;
return 0;
}
}
return ret;
}
static const char * const qp_type_str[] = {
"SMI", "GSI", "RC", "UC", "UD",
};
static int qp_idle(struct rvt_qp *qp)
{
return
qp->s_last == qp->s_acked &&
qp->s_acked == qp->s_cur &&
qp->s_cur == qp->s_tail &&
qp->s_tail == qp->s_head;
}
void qp_iter_print(struct seq_file *s, struct qp_iter *iter)
{
struct rvt_swqe *wqe;
struct rvt_qp *qp = iter->qp;
struct hfi1_qp_priv *priv = qp->priv;
struct sdma_engine *sde;
struct send_context *send_context;
sde = qp_to_sdma_engine(qp, priv->s_sc);
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
send_context = qp_to_send_context(qp, priv->s_sc);
seq_printf(s,
"N %d %s QP %x R %u %s %u %u %u f=%x %u %u %u %u %u %u PSN %x %x %x %x %x (%u %u %u %u %u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d\n",
iter->n,
qp_idle(qp) ? "I" : "B",
qp->ibqp.qp_num,
atomic_read(&qp->refcount),
qp_type_str[qp->ibqp.qp_type],
qp->state,
wqe ? wqe->wr.opcode : 0,
qp->s_hdrwords,
qp->s_flags,
iowait_sdma_pending(&priv->s_iowait),
iowait_pio_pending(&priv->s_iowait),
!list_empty(&priv->s_iowait.list),
qp->timeout,
wqe ? wqe->ssn : 0,
qp->s_lsn,
qp->s_last_psn,
qp->s_psn, qp->s_next_psn,
qp->s_sending_psn, qp->s_sending_hpsn,
qp->s_last, qp->s_acked, qp->s_cur,
qp->s_tail, qp->s_head, qp->s_size,
qp->s_avail,
qp->remote_qpn,
qp->remote_ah_attr.dlid,
qp->remote_ah_attr.sl,
qp->pmtu,
qp->s_retry,
qp->s_retry_cnt,
qp->s_rnr_retry_cnt,
sde,
sde ? sde->this_idx : 0,
send_context,
send_context ? send_context->sw_index : 0,
ibcq_to_rvtcq(qp->ibqp.send_cq)->queue->head,
ibcq_to_rvtcq(qp->ibqp.send_cq)->queue->tail,
qp->pid);
}
void qp_comm_est(struct rvt_qp *qp)
{
qp->r_flags |= RVT_R_COMM_EST;
if (qp->ibqp.event_handler) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_COMM_EST;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}
void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp,
gfp_t gfp)
{
struct hfi1_qp_priv *priv;
priv = kzalloc_node(sizeof(*priv), gfp, rdi->dparms.node);
if (!priv)
return ERR_PTR(-ENOMEM);
priv->owner = qp;
priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), gfp,
rdi->dparms.node);
if (!priv->s_ahg) {
kfree(priv);
return ERR_PTR(-ENOMEM);
}
iowait_init(
&priv->s_iowait,
1,
_hfi1_do_send,
iowait_sleep,
iowait_wakeup,
iowait_sdma_drained);
setup_timer(&priv->s_rnr_timer, hfi1_rc_rnr_retry, (unsigned long)qp);
qp->s_timer.function = hfi1_rc_timeout;
return priv;
}
void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
kfree(priv->s_ahg);
kfree(priv);
}
unsigned free_all_qps(struct rvt_dev_info *rdi)
{
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
int n;
unsigned qp_inuse = 0;
for (n = 0; n < dd->num_pports; n++) {
struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
rcu_read_lock();
if (rcu_dereference(ibp->rvp.qp[0]))
qp_inuse++;
if (rcu_dereference(ibp->rvp.qp[1]))
qp_inuse++;
rcu_read_unlock();
}
return qp_inuse;
}
void flush_qp_waiters(struct rvt_qp *qp)
{
lockdep_assert_held(&qp->s_lock);
flush_iowait(qp);
hfi1_stop_rc_timers(qp);
}
void stop_send_queue(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
cancel_work_sync(&priv->s_iowait.iowork);
hfi1_del_timers_sync(qp);
}
void quiesce_qp(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
iowait_sdma_drain(&priv->s_iowait);
qp_pio_drain(qp);
flush_tx_list(qp);
}
void notify_qp_reset(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
priv->r_adefered = 0;
clear_ahg(qp);
}
/*
* Switch to alternate path.
* The QP s_lock should be held and interrupts disabled.
*/
void hfi1_migrate_qp(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
struct ib_event ev;
qp->s_mig_state = IB_MIG_MIGRATED;
qp->remote_ah_attr = qp->alt_ah_attr;
qp->port_num = qp->alt_ah_attr.port_num;
qp->s_pkey_index = qp->s_alt_pkey_index;
qp->s_flags |= RVT_S_AHG_CLEAR;
priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_PATH_MIG;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
int mtu_to_path_mtu(u32 mtu)
{
return mtu_to_enum(mtu, OPA_MTU_8192);
}
u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
{
u32 mtu;
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
struct hfi1_ibport *ibp;
u8 sc, vl;
ibp = &dd->pport[qp->port_num - 1].ibport_data;
sc = ibp->sl_to_sc[qp->remote_ah_attr.sl];
vl = sc_to_vlt(dd, sc);
mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
if (vl < PER_VL_SEND_CONTEXTS)
mtu = min_t(u32, mtu, dd->vld[vl].mtu);
return mtu;
}
int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
struct ib_qp_attr *attr)
{
int mtu, pidx = qp->port_num - 1;
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
if (mtu == -1)
return -1; /* values less than 0 are error */
if (mtu > dd->pport[pidx].ibmtu)
return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
else
return attr->path_mtu;
}
void notify_error_qp(struct rvt_qp *qp)
{
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
struct hfi1_qp_priv *priv = qp->priv;
write_seqlock(&dev->iowait_lock);
if (!list_empty(&priv->s_iowait.list) && !(qp->s_flags & RVT_S_BUSY)) {
qp->s_flags &= ~RVT_S_ANY_WAIT_IO;
list_del_init(&priv->s_iowait.list);
priv->s_iowait.lock = NULL;
rvt_put_qp(qp);
}
write_sequnlock(&dev->iowait_lock);
if (!(qp->s_flags & RVT_S_BUSY)) {
qp->s_hdrwords = 0;
if (qp->s_rdma_mr) {
rvt_put_mr(qp->s_rdma_mr);
qp->s_rdma_mr = NULL;
}
flush_tx_list(qp);
}
}
/**
* hfi1_error_port_qps - put a port's RC/UC qps into error state
* @ibp: the ibport.
* @sl: the service level.
*
* This function places all RC/UC qps with a given service level into error
* state. It is generally called to force upper lay apps to abandon stale qps
* after an sl->sc mapping change.
*/
void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
{
struct rvt_qp *qp = NULL;
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
int n;
int lastwqe;
struct ib_event ev;
rcu_read_lock();
/* Deal only with RC/UC qps that use the given SL. */
for (n = 0; n < dev->rdi.qp_dev->qp_table_size; n++) {
for (qp = rcu_dereference(dev->rdi.qp_dev->qp_table[n]); qp;
qp = rcu_dereference(qp->next)) {
if (qp->port_num == ppd->port &&
(qp->ibqp.qp_type == IB_QPT_UC ||
qp->ibqp.qp_type == IB_QPT_RC) &&
qp->remote_ah_attr.sl == sl &&
(ib_rvt_state_ops[qp->state] &
RVT_POST_SEND_OK)) {
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_hlock);
spin_lock(&qp->s_lock);
lastwqe = rvt_error_qp(qp,
IB_WC_WR_FLUSH_ERR);
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
if (lastwqe) {
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event =
IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev,
qp->ibqp.qp_context);
}
}
}
}
rcu_read_unlock();
}