/*
* MPIC timer driver
*
* Copyright 2013 Freescale Semiconductor, Inc.
* Author: Dongsheng Wang <Dongsheng.Wang@freescale.com>
* Li Yang <leoli@freescale.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/syscore_ops.h>
#include <sysdev/fsl_soc.h>
#include <asm/io.h>
#include <asm/mpic_timer.h>
#define FSL_GLOBAL_TIMER 0x1
/* Clock Ratio
* Divide by 64 0x00000300
* Divide by 32 0x00000200
* Divide by 16 0x00000100
* Divide by 8 0x00000000 (Hardware default div)
*/
#define MPIC_TIMER_TCR_CLKDIV 0x00000300
#define MPIC_TIMER_TCR_ROVR_OFFSET 24
#define TIMER_STOP 0x80000000
#define GTCCR_TOG 0x80000000
#define TIMERS_PER_GROUP 4
#define MAX_TICKS (~0U >> 1)
#define MAX_TICKS_CASCADE (~0U)
#define TIMER_OFFSET(num) (1 << (TIMERS_PER_GROUP - 1 - num))
/* tv_usec should be less than ONE_SECOND, otherwise use tv_sec */
#define ONE_SECOND 1000000
struct timer_regs {
u32 gtccr;
u32 res0[3];
u32 gtbcr;
u32 res1[3];
u32 gtvpr;
u32 res2[3];
u32 gtdr;
u32 res3[3];
};
struct cascade_priv {
u32 tcr_value; /* TCR register: CASC & ROVR value */
unsigned int cascade_map; /* cascade map */
unsigned int timer_num; /* cascade control timer */
};
struct timer_group_priv {
struct timer_regs __iomem *regs;
struct mpic_timer timer[TIMERS_PER_GROUP];
struct list_head node;
unsigned int timerfreq;
unsigned int idle;
unsigned int flags;
spinlock_t lock;
void __iomem *group_tcr;
};
static struct cascade_priv cascade_timer[] = {
/* cascade timer 0 and 1 */
{0x1, 0xc, 0x1},
/* cascade timer 1 and 2 */
{0x2, 0x6, 0x2},
/* cascade timer 2 and 3 */
{0x4, 0x3, 0x3}
};
static LIST_HEAD(timer_group_list);
static void convert_ticks_to_time(struct timer_group_priv *priv,
const u64 ticks, struct timeval *time)
{
u64 tmp_sec;
time->tv_sec = (__kernel_time_t)div_u64(ticks, priv->timerfreq);
tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
time->tv_usec = 0;
if (tmp_sec <= ticks)
time->tv_usec = (__kernel_suseconds_t)
div_u64((ticks - tmp_sec) * 1000000, priv->timerfreq);
return;
}
/* the time set by the user is converted to "ticks" */
static int convert_time_to_ticks(struct timer_group_priv *priv,
const struct timeval *time, u64 *ticks)
{
u64 max_value; /* prevent u64 overflow */
u64 tmp = 0;
u64 tmp_sec;
u64 tmp_ms;
u64 tmp_us;
max_value = div_u64(ULLONG_MAX, priv->timerfreq);
if (time->tv_sec > max_value ||
(time->tv_sec == max_value && time->tv_usec > 0))
return -EINVAL;
tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
tmp += tmp_sec;
tmp_ms = time->tv_usec / 1000;
tmp_ms = div_u64((u64)tmp_ms * (u64)priv->timerfreq, 1000);
tmp += tmp_ms;
tmp_us = time->tv_usec % 1000;
tmp_us = div_u64((u64)tmp_us * (u64)priv->timerfreq, 1000000);
tmp += tmp_us;
*ticks = tmp;
return 0;
}
/* detect whether there is a cascade timer available */
static struct mpic_timer *detect_idle_cascade_timer(
struct timer_group_priv *priv)
{
struct cascade_priv *casc_priv;
unsigned int map;
unsigned int array_size = ARRAY_SIZE(cascade_timer);
unsigned int num;
unsigned int i;
unsigned long flags;
casc_priv = cascade_timer;
for (i = 0; i < array_size; i++) {
spin_lock_irqsave(&priv->lock, flags);
map = casc_priv->cascade_map & priv->idle;
if (map == casc_priv->cascade_map) {
num = casc_priv->timer_num;
priv->timer[num].cascade_handle = casc_priv;
/* set timer busy */
priv->idle &= ~casc_priv->cascade_map;
spin_unlock_irqrestore(&priv->lock, flags);
return &priv->timer[num];
}
spin_unlock_irqrestore(&priv->lock, flags);
casc_priv++;
}
return NULL;
}
static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
unsigned int num)
{
struct cascade_priv *casc_priv;
u32 tcr;
u32 tmp_ticks;
u32 rem_ticks;
/* set group tcr reg for cascade */
casc_priv = priv->timer[num].cascade_handle;
if (!casc_priv)
return -EINVAL;
tcr = casc_priv->tcr_value |
(casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
setbits32(priv->group_tcr, tcr);
tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
out_be32(&priv->regs[num].gtccr, 0);
out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
out_be32(&priv->regs[num - 1].gtccr, 0);
out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
return 0;
}
static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
u64 ticks)
{
struct mpic_timer *allocated_timer;
/* Two cascade timers: Support the maximum time */
const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
int ret;
if (ticks > max_ticks)
return NULL;
/* detect idle timer */
allocated_timer = detect_idle_cascade_timer(priv);
if (!allocated_timer)
return NULL;
/* set ticks to timer */
ret = set_cascade_timer(priv, ticks, allocated_timer->num);
if (ret < 0)
return NULL;
return allocated_timer;
}
static struct mpic_timer *get_timer(const struct timeval *time)
{
struct timer_group_priv *priv;
struct mpic_timer *timer;
u64 ticks;
unsigned int num;
unsigned int i;
unsigned long flags;
int ret;
list_for_each_entry(priv, &timer_group_list, node) {
ret = convert_time_to_ticks(priv, time, &ticks);
if (ret < 0)
return NULL;
if (ticks > MAX_TICKS) {
if (!(priv->flags & FSL_GLOBAL_TIMER))
return NULL;
timer = get_cascade_timer(priv, ticks);
if (!timer)
continue;
return timer;
}
for (i = 0; i < TIMERS_PER_GROUP; i++) {
/* one timer: Reverse allocation */
num = TIMERS_PER_GROUP - 1 - i;
spin_lock_irqsave(&priv->lock, flags);
if (priv->idle & (1 << i)) {
/* set timer busy */
priv->idle &= ~(1 << i);
/* set ticks & stop timer */
out_be32(&priv->regs[num].gtbcr,
ticks | TIMER_STOP);
out_be32(&priv->regs[num].gtccr, 0);
priv->timer[num].cascade_handle = NULL;
spin_unlock_irqrestore(&priv->lock, flags);
return &priv->timer[num];
}
spin_unlock_irqrestore(&priv->lock, flags);
}
}
return NULL;
}
/**
* mpic_start_timer - start hardware timer
* @handle: the timer to be started.
*
* It will do ->fn(->dev) callback from the hardware interrupt at
* the ->timeval point in the future.
*/
void mpic_start_timer(struct mpic_timer *handle)
{
struct timer_group_priv *priv = container_of(handle,
struct timer_group_priv, timer[handle->num]);
clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
}
EXPORT_SYMBOL(mpic_start_timer);
/**
* mpic_stop_timer - stop hardware timer
* @handle: the timer to be stoped
*
* The timer periodically generates an interrupt. Unless user stops the timer.
*/
void mpic_stop_timer(struct mpic_timer *handle)
{
struct timer_group_priv *priv = container_of(handle,
struct timer_group_priv, timer[handle->num]);
struct cascade_priv *casc_priv;
setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
casc_priv = priv->timer[handle->num].cascade_handle;
if (casc_priv) {
out_be32(&priv->regs[handle->num].gtccr, 0);
out_be32(&priv->regs[handle->num - 1].gtccr, 0);
} else {
out_be32(&priv->regs[handle->num].gtccr, 0);
}
}
EXPORT_SYMBOL(mpic_stop_timer);
/**
* mpic_get_remain_time - get timer time
* @handle: the timer to be selected.
* @time: time for timer
*
* Query timer remaining time.
*/
void mpic_get_remain_time(struct mpic_timer *handle, struct timeval *time)
{
struct timer_group_priv *priv = container_of(handle,
struct timer_group_priv, timer[handle->num]);
struct cascade_priv *casc_priv;
u64 ticks;
u32 tmp_ticks;
casc_priv = priv->timer[handle->num].cascade_handle;
if (casc_priv) {
tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
tmp_ticks &= ~GTCCR_TOG;
ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
ticks += tmp_ticks;
} else {
ticks = in_be32(&priv->regs[handle->num].gtccr);
ticks &= ~GTCCR_TOG;
}
convert_ticks_to_time(priv, ticks, time);
}
EXPORT_SYMBOL(mpic_get_remain_time);
/**
* mpic_free_timer - free hardware timer
* @handle: the timer to be removed.
*
* Free the timer.
*
* Note: can not be used in interrupt context.
*/
void mpic_free_timer(struct mpic_timer *handle)
{
struct timer_group_priv *priv = container_of(handle,
struct timer_group_priv, timer[handle->num]);
struct cascade_priv *casc_priv;
unsigned long flags;
mpic_stop_timer(handle);
casc_priv = priv->timer[handle->num].cascade_handle;
free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
spin_lock_irqsave(&priv->lock, flags);
if (casc_priv) {
u32 tcr;
tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
MPIC_TIMER_TCR_ROVR_OFFSET);
clrbits32(priv->group_tcr, tcr);
priv->idle |= casc_priv->cascade_map;
priv->timer[handle->num].cascade_handle = NULL;
} else {
priv->idle |= TIMER_OFFSET(handle->num);
}
spin_unlock_irqrestore(&priv->lock, flags);
}
EXPORT_SYMBOL(mpic_free_timer);
/**
* mpic_request_timer - get a hardware timer
* @fn: interrupt handler function
* @dev: callback function of the data
* @time: time for timer
*
* This executes the "request_irq", returning NULL
* else "handle" on success.
*/
struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
const struct timeval *time)
{
struct mpic_timer *allocated_timer;
int ret;
if (list_empty(&timer_group_list))
return NULL;
if (!(time->tv_sec + time->tv_usec) ||
time->tv_sec < 0 || time->tv_usec < 0)
return NULL;
if (time->tv_usec > ONE_SECOND)
return NULL;
allocated_timer = get_timer(time);
if (!allocated_timer)
return NULL;
ret = request_irq(allocated_timer->irq, fn,
IRQF_TRIGGER_LOW, "global-timer", dev);
if (ret) {
mpic_free_timer(allocated_timer);
return NULL;
}
allocated_timer->dev = dev;
return allocated_timer;
}
EXPORT_SYMBOL(mpic_request_timer);
static int timer_group_get_freq(struct device_node *np,
struct timer_group_priv *priv)
{
u32 div;
if (priv->flags & FSL_GLOBAL_TIMER) {
struct device_node *dn;
dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
if (dn) {
of_property_read_u32(dn, "clock-frequency",
&priv->timerfreq);
of_node_put(dn);
}
}
if (priv->timerfreq <= 0)
return -EINVAL;
if (priv->flags & FSL_GLOBAL_TIMER) {
div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
priv->timerfreq /= div;
}
return 0;
}
static int timer_group_get_irq(struct device_node *np,
struct timer_group_priv *priv)
{
const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
const u32 *p;
u32 offset;
u32 count;
unsigned int i;
unsigned int j;
unsigned int irq_index = 0;
unsigned int irq;
int len;
p = of_get_property(np, "fsl,available-ranges", &len);
if (p && len % (2 * sizeof(u32)) != 0) {
pr_err("%s: malformed available-ranges property.\n",
np->full_name);
return -EINVAL;
}
if (!p) {
p = all_timer;
len = sizeof(all_timer);
}
len /= 2 * sizeof(u32);
for (i = 0; i < len; i++) {
offset = p[i * 2];
count = p[i * 2 + 1];
for (j = 0; j < count; j++) {
irq = irq_of_parse_and_map(np, irq_index);
if (!irq) {
pr_err("%s: irq parse and map failed.\n",
np->full_name);
return -EINVAL;
}
/* Set timer idle */
priv->idle |= TIMER_OFFSET((offset + j));
priv->timer[offset + j].irq = irq;
priv->timer[offset + j].num = offset + j;
irq_index++;
}
}
return 0;
}
static void timer_group_init(struct device_node *np)
{
struct timer_group_priv *priv;
unsigned int i = 0;
int ret;
priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
if (!priv) {
pr_err("%s: cannot allocate memory for group.\n",
np->full_name);
return;
}
if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
priv->flags |= FSL_GLOBAL_TIMER;
priv->regs = of_iomap(np, i++);
if (!priv->regs) {
pr_err("%s: cannot ioremap timer register address.\n",
np->full_name);
goto out;
}
if (priv->flags & FSL_GLOBAL_TIMER) {
priv->group_tcr = of_iomap(np, i++);
if (!priv->group_tcr) {
pr_err("%s: cannot ioremap tcr address.\n",
np->full_name);
goto out;
}
}
ret = timer_group_get_freq(np, priv);
if (ret < 0) {
pr_err("%s: cannot get timer frequency.\n", np->full_name);
goto out;
}
ret = timer_group_get_irq(np, priv);
if (ret < 0) {
pr_err("%s: cannot get timer irqs.\n", np->full_name);
goto out;
}
spin_lock_init(&priv->lock);
/* Init FSL timer hardware */
if (priv->flags & FSL_GLOBAL_TIMER)
setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
list_add_tail(&priv->node, &timer_group_list);
return;
out:
if (priv->regs)
iounmap(priv->regs);
if (priv->group_tcr)
iounmap(priv->group_tcr);
kfree(priv);
}
static void mpic_timer_resume(void)
{
struct timer_group_priv *priv;
list_for_each_entry(priv, &timer_group_list, node) {
/* Init FSL timer hardware */
if (priv->flags & FSL_GLOBAL_TIMER)
setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
}
}
static const struct of_device_id mpic_timer_ids[] = {
{ .compatible = "fsl,mpic-global-timer", },
{},
};
static struct syscore_ops mpic_timer_syscore_ops = {
.resume = mpic_timer_resume,
};
static int __init mpic_timer_init(void)
{
struct device_node *np = NULL;
for_each_matching_node(np, mpic_timer_ids)
timer_group_init(np);
register_syscore_ops(&mpic_timer_syscore_ops);
if (list_empty(&timer_group_list))
return -ENODEV;
return 0;
}
subsys_initcall(mpic_timer_init);