Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*
 * Copyright 2013 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */
#define gf100_ram(p) container_of((p), struct gf100_ram, base)
#include "ram.h"
#include "ramfuc.h"

#include <core/option.h>
#include <subdev/bios.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/clk.h>
#include <subdev/clk/pll.h>
#include <subdev/ltc.h>

struct gf100_ramfuc {
	struct ramfuc base;

	struct ramfuc_reg r_0x10fe20;
	struct ramfuc_reg r_0x10fe24;
	struct ramfuc_reg r_0x137320;
	struct ramfuc_reg r_0x137330;

	struct ramfuc_reg r_0x132000;
	struct ramfuc_reg r_0x132004;
	struct ramfuc_reg r_0x132100;

	struct ramfuc_reg r_0x137390;

	struct ramfuc_reg r_0x10f290;
	struct ramfuc_reg r_0x10f294;
	struct ramfuc_reg r_0x10f298;
	struct ramfuc_reg r_0x10f29c;
	struct ramfuc_reg r_0x10f2a0;

	struct ramfuc_reg r_0x10f300;
	struct ramfuc_reg r_0x10f338;
	struct ramfuc_reg r_0x10f340;
	struct ramfuc_reg r_0x10f344;
	struct ramfuc_reg r_0x10f348;

	struct ramfuc_reg r_0x10f910;
	struct ramfuc_reg r_0x10f914;

	struct ramfuc_reg r_0x100b0c;
	struct ramfuc_reg r_0x10f050;
	struct ramfuc_reg r_0x10f090;
	struct ramfuc_reg r_0x10f200;
	struct ramfuc_reg r_0x10f210;
	struct ramfuc_reg r_0x10f310;
	struct ramfuc_reg r_0x10f314;
	struct ramfuc_reg r_0x10f610;
	struct ramfuc_reg r_0x10f614;
	struct ramfuc_reg r_0x10f800;
	struct ramfuc_reg r_0x10f808;
	struct ramfuc_reg r_0x10f824;
	struct ramfuc_reg r_0x10f830;
	struct ramfuc_reg r_0x10f988;
	struct ramfuc_reg r_0x10f98c;
	struct ramfuc_reg r_0x10f990;
	struct ramfuc_reg r_0x10f998;
	struct ramfuc_reg r_0x10f9b0;
	struct ramfuc_reg r_0x10f9b4;
	struct ramfuc_reg r_0x10fb04;
	struct ramfuc_reg r_0x10fb08;
	struct ramfuc_reg r_0x137300;
	struct ramfuc_reg r_0x137310;
	struct ramfuc_reg r_0x137360;
	struct ramfuc_reg r_0x1373ec;
	struct ramfuc_reg r_0x1373f0;
	struct ramfuc_reg r_0x1373f8;

	struct ramfuc_reg r_0x61c140;
	struct ramfuc_reg r_0x611200;

	struct ramfuc_reg r_0x13d8f4;
};

struct gf100_ram {
	struct nvkm_ram base;
	struct gf100_ramfuc fuc;
	struct nvbios_pll refpll;
	struct nvbios_pll mempll;
};

static void
gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
{
	struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
	struct nvkm_fb *fb = ram->base.fb;
	struct nvkm_device *device = fb->subdev.device;
	u32 part = nvkm_rd32(device, 0x022438), i;
	u32 mask = nvkm_rd32(device, 0x022554);
	u32 addr = 0x110974;

	ram_wr32(fuc, 0x10f910, magic);
	ram_wr32(fuc, 0x10f914, magic);

	for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
		if (mask & (1 << i))
			continue;
		ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
	}
}

static int
gf100_ram_calc(struct nvkm_ram *base, u32 freq)
{
	struct gf100_ram *ram = gf100_ram(base);
	struct gf100_ramfuc *fuc = &ram->fuc;
	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_clk *clk = device->clk;
	struct nvkm_bios *bios = device->bios;
	struct nvbios_ramcfg cfg;
	u8  ver, cnt, len, strap;
	struct {
		u32 data;
		u8  size;
	} rammap, ramcfg, timing;
	int ref, div, out;
	int from, mode;
	int N1, M1, P;
	int ret;

	/* lookup memory config data relevant to the target frequency */
	rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
				      &cnt, &ramcfg.size, &cfg);
	if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
		nvkm_error(subdev, "invalid/missing rammap entry\n");
		return -EINVAL;
	}

	/* locate specific data set for the attached memory */
	strap = nvbios_ramcfg_index(subdev);
	if (strap >= cnt) {
		nvkm_error(subdev, "invalid ramcfg strap\n");
		return -EINVAL;
	}

	ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
	if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
		nvkm_error(subdev, "invalid/missing ramcfg entry\n");
		return -EINVAL;
	}

	/* lookup memory timings, if bios says they're present */
	strap = nvbios_rd08(bios, ramcfg.data + 0x01);
	if (strap != 0xff) {
		timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
					      &cnt, &len);
		if (!timing.data || ver != 0x10 || timing.size < 0x19) {
			nvkm_error(subdev, "invalid/missing timing entry\n");
			return -EINVAL;
		}
	} else {
		timing.data = 0;
	}

	ret = ram_init(fuc, ram->base.fb);
	if (ret)
		return ret;

	/* determine current mclk configuration */
	from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */

	/* determine target mclk configuration */
	if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
		ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
	else
		ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
	div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
	out = (ref * 2) / (div + 2);
	mode = freq != out;

	ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);

	if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
		ram_nuke(fuc, 0x132000);
		ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
		ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
	}

	if (mode == 1) {
		ram_nuke(fuc, 0x10fe20);
		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
	}

// 0x00020034 // 0x0000000a
	ram_wr32(fuc, 0x132100, 0x00000001);

	if (mode == 1 && from == 0) {
		/* calculate refpll */
		ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
				     &N1, NULL, &M1, &P);
		if (ret <= 0) {
			nvkm_error(subdev, "unable to calc refpll\n");
			return ret ? ret : -ERANGE;
		}

		ram_wr32(fuc, 0x10fe20, 0x20010000);
		ram_wr32(fuc, 0x137320, 0x00000003);
		ram_wr32(fuc, 0x137330, 0x81200006);
		ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
		ram_wr32(fuc, 0x10fe20, 0x20010001);
		ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);

		/* calculate mempll */
		ret = gt215_pll_calc(subdev, &ram->mempll, freq,
				     &N1, NULL, &M1, &P);
		if (ret <= 0) {
			nvkm_error(subdev, "unable to calc refpll\n");
			return ret ? ret : -ERANGE;
		}

		ram_wr32(fuc, 0x10fe20, 0x20010005);
		ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
		ram_wr32(fuc, 0x132000, 0x18010101);
		ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
	} else
	if (mode == 0) {
		ram_wr32(fuc, 0x137300, 0x00000003);
	}

	if (from == 0) {
		ram_nuke(fuc, 0x10fb04);
		ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
		ram_nuke(fuc, 0x10fb08);
		ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
		ram_wr32(fuc, 0x10f988, 0x2004ff00);
		ram_wr32(fuc, 0x10f98c, 0x003fc040);
		ram_wr32(fuc, 0x10f990, 0x20012001);
		ram_wr32(fuc, 0x10f998, 0x00011a00);
		ram_wr32(fuc, 0x13d8f4, 0x00000000);
	} else {
		ram_wr32(fuc, 0x10f988, 0x20010000);
		ram_wr32(fuc, 0x10f98c, 0x00000000);
		ram_wr32(fuc, 0x10f990, 0x20012001);
		ram_wr32(fuc, 0x10f998, 0x00010a00);
	}

	if (from == 0) {
// 0x00020039 // 0x000000ba
	}

// 0x0002003a // 0x00000002
	ram_wr32(fuc, 0x100b0c, 0x00080012);
// 0x00030014 // 0x00000000 // 0x02b5f070
// 0x00030014 // 0x00010000 // 0x02b5f070
	ram_wr32(fuc, 0x611200, 0x00003300);
// 0x00020034 // 0x0000000a
// 0x00030020 // 0x00000001 // 0x00000000

	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
	ram_wr32(fuc, 0x10f210, 0x00000000);
	ram_nsec(fuc, 1000);
	if (mode == 0)
		gf100_ram_train(fuc, 0x000c1001);
	ram_wr32(fuc, 0x10f310, 0x00000001);
	ram_nsec(fuc, 1000);
	ram_wr32(fuc, 0x10f090, 0x00000061);
	ram_wr32(fuc, 0x10f090, 0xc000007f);
	ram_nsec(fuc, 1000);

	if (from == 0) {
		ram_wr32(fuc, 0x10f824, 0x00007fd4);
	} else {
		ram_wr32(fuc, 0x1373ec, 0x00020404);
	}

	if (mode == 0) {
		ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
		ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
		ram_wr32(fuc, 0x10f830, 0x41500010);
		ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
		ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
		ram_wr32(fuc, 0x10f050, 0xff000090);
		ram_wr32(fuc, 0x1373ec, 0x00020f0f);
		ram_wr32(fuc, 0x1373f0, 0x00000003);
		ram_wr32(fuc, 0x137310, 0x81201616);
		ram_wr32(fuc, 0x132100, 0x00000001);
// 0x00020039 // 0x000000ba
		ram_wr32(fuc, 0x10f830, 0x00300017);
		ram_wr32(fuc, 0x1373f0, 0x00000001);
		ram_wr32(fuc, 0x10f824, 0x00007e77);
		ram_wr32(fuc, 0x132000, 0x18030001);
		ram_wr32(fuc, 0x10f090, 0x4000007e);
		ram_nsec(fuc, 2000);
		ram_wr32(fuc, 0x10f314, 0x00000001);
		ram_wr32(fuc, 0x10f210, 0x80000000);
		ram_wr32(fuc, 0x10f338, 0x00300220);
		ram_wr32(fuc, 0x10f300, 0x0000011d);
		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f290, 0x02060505);
		ram_wr32(fuc, 0x10f294, 0x34208288);
		ram_wr32(fuc, 0x10f298, 0x44050411);
		ram_wr32(fuc, 0x10f29c, 0x0000114c);
		ram_wr32(fuc, 0x10f2a0, 0x42e10069);
		ram_wr32(fuc, 0x10f614, 0x40044f77);
		ram_wr32(fuc, 0x10f610, 0x40044f77);
		ram_wr32(fuc, 0x10f344, 0x00600009);
		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f348, 0x00700008);
		ram_wr32(fuc, 0x61c140, 0x19240000);
		ram_wr32(fuc, 0x10f830, 0x00300017);
		gf100_ram_train(fuc, 0x80021001);
		gf100_ram_train(fuc, 0x80081001);
		ram_wr32(fuc, 0x10f340, 0x00500004);
		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f830, 0x01300017);
		ram_wr32(fuc, 0x10f830, 0x00300017);
// 0x00030020 // 0x00000000 // 0x00000000
// 0x00020034 // 0x0000000b
		ram_wr32(fuc, 0x100b0c, 0x00080028);
		ram_wr32(fuc, 0x611200, 0x00003330);
	} else {
		ram_wr32(fuc, 0x10f800, 0x00001800);
		ram_wr32(fuc, 0x13d8f4, 0x00000000);
		ram_wr32(fuc, 0x1373ec, 0x00020404);
		ram_wr32(fuc, 0x1373f0, 0x00000003);
		ram_wr32(fuc, 0x10f830, 0x40700010);
		ram_wr32(fuc, 0x10f830, 0x40500010);
		ram_wr32(fuc, 0x13d8f4, 0x00000000);
		ram_wr32(fuc, 0x1373f8, 0x00000000);
		ram_wr32(fuc, 0x132100, 0x00000101);
		ram_wr32(fuc, 0x137310, 0x89201616);
		ram_wr32(fuc, 0x10f050, 0xff000090);
		ram_wr32(fuc, 0x1373ec, 0x00030404);
		ram_wr32(fuc, 0x1373f0, 0x00000002);
	// 0x00020039 // 0x00000011
		ram_wr32(fuc, 0x132100, 0x00000001);
		ram_wr32(fuc, 0x1373f8, 0x00002000);
		ram_nsec(fuc, 2000);
		ram_wr32(fuc, 0x10f808, 0x7aaa0050);
		ram_wr32(fuc, 0x10f830, 0x00500010);
		ram_wr32(fuc, 0x10f200, 0x00ce1000);
		ram_wr32(fuc, 0x10f090, 0x4000007e);
		ram_nsec(fuc, 2000);
		ram_wr32(fuc, 0x10f314, 0x00000001);
		ram_wr32(fuc, 0x10f210, 0x80000000);
		ram_wr32(fuc, 0x10f338, 0x00300200);
		ram_wr32(fuc, 0x10f300, 0x0000084d);
		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f290, 0x0b343825);
		ram_wr32(fuc, 0x10f294, 0x3483028e);
		ram_wr32(fuc, 0x10f298, 0x440c0600);
		ram_wr32(fuc, 0x10f29c, 0x0000214c);
		ram_wr32(fuc, 0x10f2a0, 0x42e20069);
		ram_wr32(fuc, 0x10f200, 0x00ce0000);
		ram_wr32(fuc, 0x10f614, 0x60044e77);
		ram_wr32(fuc, 0x10f610, 0x60044e77);
		ram_wr32(fuc, 0x10f340, 0x00500000);
		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f344, 0x00600228);
		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f348, 0x00700000);
		ram_wr32(fuc, 0x13d8f4, 0x00000000);
		ram_wr32(fuc, 0x61c140, 0x09a40000);

		gf100_ram_train(fuc, 0x800e1008);

		ram_nsec(fuc, 1000);
		ram_wr32(fuc, 0x10f800, 0x00001804);
	// 0x00030020 // 0x00000000 // 0x00000000
	// 0x00020034 // 0x0000000b
		ram_wr32(fuc, 0x13d8f4, 0x00000000);
		ram_wr32(fuc, 0x100b0c, 0x00080028);
		ram_wr32(fuc, 0x611200, 0x00003330);
		ram_nsec(fuc, 100000);
		ram_wr32(fuc, 0x10f9b0, 0x05313f41);
		ram_wr32(fuc, 0x10f9b4, 0x00002f50);

		gf100_ram_train(fuc, 0x010c1001);
	}

	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
// 0x00020016 // 0x00000000

	if (mode == 0)
		ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);

	return 0;
}

static int
gf100_ram_prog(struct nvkm_ram *base)
{
	struct gf100_ram *ram = gf100_ram(base);
	struct nvkm_device *device = ram->base.fb->subdev.device;
	ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
	return 0;
}

static void
gf100_ram_tidy(struct nvkm_ram *base)
{
	struct gf100_ram *ram = gf100_ram(base);
	ram_exec(&ram->fuc, false);
}

void
gf100_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
{
	struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
	struct nvkm_mem *mem = *pmem;

	*pmem = NULL;
	if (unlikely(mem == NULL))
		return;

	mutex_lock(&ram->fb->subdev.mutex);
	if (mem->tag)
		nvkm_ltc_tags_free(ltc, &mem->tag);
	__nv50_ram_put(ram, mem);
	mutex_unlock(&ram->fb->subdev.mutex);

	kfree(mem);
}

int
gf100_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
	      u32 memtype, struct nvkm_mem **pmem)
{
	struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
	struct nvkm_mm *mm = &ram->vram;
	struct nvkm_mm_node *r;
	struct nvkm_mem *mem;
	int type = (memtype & 0x0ff);
	int back = (memtype & 0x800);
	const bool comp = gf100_pte_storage_type_map[type] != type;
	int ret;

	size  >>= NVKM_RAM_MM_SHIFT;
	align >>= NVKM_RAM_MM_SHIFT;
	ncmin >>= NVKM_RAM_MM_SHIFT;
	if (!ncmin)
		ncmin = size;

	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
	if (!mem)
		return -ENOMEM;

	INIT_LIST_HEAD(&mem->regions);
	mem->size = size;

	mutex_lock(&ram->fb->subdev.mutex);
	if (comp) {
		/* compression only works with lpages */
		if (align == (1 << (17 - NVKM_RAM_MM_SHIFT))) {
			int n = size >> 5;
			nvkm_ltc_tags_alloc(ltc, n, &mem->tag);
		}

		if (unlikely(!mem->tag))
			type = gf100_pte_storage_type_map[type];
	}
	mem->memtype = type;

	do {
		if (back)
			ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
		else
			ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
		if (ret) {
			mutex_unlock(&ram->fb->subdev.mutex);
			ram->func->put(ram, &mem);
			return ret;
		}

		list_add_tail(&r->rl_entry, &mem->regions);
		size -= r->length;
	} while (size);
	mutex_unlock(&ram->fb->subdev.mutex);

	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
	mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
	*pmem = mem;
	return 0;
}

static int
gf100_ram_init(struct nvkm_ram *base)
{
	static const u8  train0[] = {
		0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
		0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
	};
	static const u32 train1[] = {
		0x00000000, 0xffffffff,
		0x55555555, 0xaaaaaaaa,
		0x33333333, 0xcccccccc,
		0xf0f0f0f0, 0x0f0f0f0f,
		0x00ff00ff, 0xff00ff00,
		0x0000ffff, 0xffff0000,
	};
	struct gf100_ram *ram = gf100_ram(base);
	struct nvkm_device *device = ram->base.fb->subdev.device;
	int i;

	switch (ram->base.type) {
	case NVKM_RAM_TYPE_GDDR5:
		break;
	default:
		return 0;
	}

	/* prepare for ddr link training, and load training patterns */
	for (i = 0; i < 0x30; i++) {
		nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
		nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
		nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
		nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
		nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
		nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
	}

	return 0;
}

static const struct nvkm_ram_func
gf100_ram_func = {
	.init = gf100_ram_init,
	.get = gf100_ram_get,
	.put = gf100_ram_put,
	.calc = gf100_ram_calc,
	.prog = gf100_ram_prog,
	.tidy = gf100_ram_tidy,
};

int
gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
	       u32 maskaddr, struct nvkm_ram *ram)
{
	struct nvkm_subdev *subdev = &fb->subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_bios *bios = device->bios;
	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
	u32 parts = nvkm_rd32(device, 0x022438);
	u32 pmask = nvkm_rd32(device, maskaddr);
	u64 bsize = (u64)nvkm_rd32(device, 0x10f20c) << 20;
	u64 psize, size = 0;
	enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
	bool uniform = true;
	int ret, i;

	nvkm_debug(subdev, "100800: %08x\n", nvkm_rd32(device, 0x100800));
	nvkm_debug(subdev, "parts %08x mask %08x\n", parts, pmask);

	/* read amount of vram attached to each memory controller */
	for (i = 0; i < parts; i++) {
		if (pmask & (1 << i))
			continue;

		psize = (u64)nvkm_rd32(device, 0x11020c + (i * 0x1000)) << 20;
		if (psize != bsize) {
			if (psize < bsize)
				bsize = psize;
			uniform = false;
		}

		nvkm_debug(subdev, "%d: %d MiB\n", i, (u32)(psize >> 20));
		size += psize;
	}

	ret = nvkm_ram_ctor(func, fb, type, size, 0, ram);
	if (ret)
		return ret;

	nvkm_mm_fini(&ram->vram);

	/* if all controllers have the same amount attached, there's no holes */
	if (uniform) {
		ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
				   (size - rsvd_head - rsvd_tail) >>
				   NVKM_RAM_MM_SHIFT, 1);
		if (ret)
			return ret;
	} else {
		/* otherwise, address lowest common amount from 0GiB */
		ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
				   ((bsize * parts) - rsvd_head) >>
				   NVKM_RAM_MM_SHIFT, 1);
		if (ret)
			return ret;

		/* and the rest starting from (8GiB + common_size) */
		ret = nvkm_mm_init(&ram->vram, (0x0200000000ULL + bsize) >>
				   NVKM_RAM_MM_SHIFT,
				   (size - (bsize * parts) - rsvd_tail) >>
				   NVKM_RAM_MM_SHIFT, 1);
		if (ret)
			return ret;
	}

	ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
	return 0;
}

int
gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
{
	struct nvkm_subdev *subdev = &fb->subdev;
	struct nvkm_bios *bios = subdev->device->bios;
	struct gf100_ram *ram;
	int ret;

	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
		return -ENOMEM;
	*pram = &ram->base;

	ret = gf100_ram_ctor(&gf100_ram_func, fb, 0x022554, &ram->base);
	if (ret)
		return ret;

	ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
	if (ret) {
		nvkm_error(subdev, "mclk refpll data not found\n");
		return ret;
	}

	ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
	if (ret) {
		nvkm_error(subdev, "mclk pll data not found\n");
		return ret;
	}

	ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
	ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
	ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
	ram->fuc.r_0x137330 = ramfuc_reg(0x137330);

	ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
	ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
	ram->fuc.r_0x132100 = ramfuc_reg(0x132100);

	ram->fuc.r_0x137390 = ramfuc_reg(0x137390);

	ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
	ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
	ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
	ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
	ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);

	ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
	ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
	ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
	ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
	ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);

	ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
	ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);

	ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
	ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
	ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
	ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
	ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
	ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
	ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
	ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
	ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
	ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
	ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
	ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
	ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
	ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
	ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
	ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
	ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
	ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
	ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
	ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
	ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
	ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
	ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
	ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
	ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
	ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
	ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);

	ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
	ram->fuc.r_0x611200 = ramfuc_reg(0x611200);

	ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
	return 0;
}