/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_ialloc.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_log.h"
#include "xfs_rmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_refcount_btree.h"
/*
* Physical superblock buffer manipulations. Shared with libxfs in userspace.
*/
/*
* Reference counting access wrappers to the perag structures.
* Because we never free per-ag structures, the only thing we
* have to protect against changes is the tree structure itself.
*/
struct xfs_perag *
xfs_perag_get(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
struct xfs_perag *pag;
int ref = 0;
rcu_read_lock();
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
if (pag) {
ASSERT(atomic_read(&pag->pag_ref) >= 0);
ref = atomic_inc_return(&pag->pag_ref);
}
rcu_read_unlock();
trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
return pag;
}
/*
* search from @first to find the next perag with the given tag set.
*/
struct xfs_perag *
xfs_perag_get_tag(
struct xfs_mount *mp,
xfs_agnumber_t first,
int tag)
{
struct xfs_perag *pag;
int found;
int ref;
rcu_read_lock();
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
(void **)&pag, first, 1, tag);
if (found <= 0) {
rcu_read_unlock();
return NULL;
}
ref = atomic_inc_return(&pag->pag_ref);
rcu_read_unlock();
trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
return pag;
}
void
xfs_perag_put(
struct xfs_perag *pag)
{
int ref;
ASSERT(atomic_read(&pag->pag_ref) > 0);
ref = atomic_dec_return(&pag->pag_ref);
trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
}
/*
* Check the validity of the SB found.
*/
STATIC int
xfs_mount_validate_sb(
xfs_mount_t *mp,
xfs_sb_t *sbp,
bool check_inprogress,
bool check_version)
{
if (sbp->sb_magicnum != XFS_SB_MAGIC) {
xfs_warn(mp, "bad magic number");
return -EWRONGFS;
}
if (!xfs_sb_good_version(sbp)) {
xfs_warn(mp, "bad version");
return -EWRONGFS;
}
/*
* Version 5 superblock feature mask validation. Reject combinations the
* kernel cannot support up front before checking anything else. For
* write validation, we don't need to check feature masks.
*/
if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
if (xfs_sb_has_compat_feature(sbp,
XFS_SB_FEAT_COMPAT_UNKNOWN)) {
xfs_warn(mp,
"Superblock has unknown compatible features (0x%x) enabled.",
(sbp->sb_features_compat &
XFS_SB_FEAT_COMPAT_UNKNOWN));
xfs_warn(mp,
"Using a more recent kernel is recommended.");
}
if (xfs_sb_has_ro_compat_feature(sbp,
XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
xfs_alert(mp,
"Superblock has unknown read-only compatible features (0x%x) enabled.",
(sbp->sb_features_ro_compat &
XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
xfs_warn(mp,
"Attempted to mount read-only compatible filesystem read-write.");
xfs_warn(mp,
"Filesystem can only be safely mounted read only.");
return -EINVAL;
}
}
if (xfs_sb_has_incompat_feature(sbp,
XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
xfs_warn(mp,
"Superblock has unknown incompatible features (0x%x) enabled.",
(sbp->sb_features_incompat &
XFS_SB_FEAT_INCOMPAT_UNKNOWN));
xfs_warn(mp,
"Filesystem can not be safely mounted by this kernel.");
return -EINVAL;
}
} else if (xfs_sb_version_hascrc(sbp)) {
/*
* We can't read verify the sb LSN because the read verifier is
* called before the log is allocated and processed. We know the
* log is set up before write verifier (!check_version) calls,
* so just check it here.
*/
if (!xfs_log_check_lsn(mp, sbp->sb_lsn))
return -EFSCORRUPTED;
}
if (xfs_sb_version_has_pquotino(sbp)) {
if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) {
xfs_notice(mp,
"Version 5 of Super block has XFS_OQUOTA bits.");
return -EFSCORRUPTED;
}
} else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD |
XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) {
xfs_notice(mp,
"Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits.");
return -EFSCORRUPTED;
}
/*
* Full inode chunks must be aligned to inode chunk size when
* sparse inodes are enabled to support the sparse chunk
* allocation algorithm and prevent overlapping inode records.
*/
if (xfs_sb_version_hassparseinodes(sbp)) {
uint32_t align;
align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize
>> sbp->sb_blocklog;
if (sbp->sb_inoalignmt != align) {
xfs_warn(mp,
"Inode block alignment (%u) must match chunk size (%u) for sparse inodes.",
sbp->sb_inoalignmt, align);
return -EINVAL;
}
}
if (unlikely(
sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
xfs_warn(mp,
"filesystem is marked as having an external log; "
"specify logdev on the mount command line.");
return -EINVAL;
}
if (unlikely(
sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
xfs_warn(mp,
"filesystem is marked as having an internal log; "
"do not specify logdev on the mount command line.");
return -EINVAL;
}
/*
* More sanity checking. Most of these were stolen directly from
* xfs_repair.
*/
if (unlikely(
sbp->sb_agcount <= 0 ||
sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE ||
sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) ||
(sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
(sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
(sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
(sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
sbp->sb_dblocks == 0 ||
sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) ||
sbp->sb_shared_vn != 0)) {
xfs_notice(mp, "SB sanity check failed");
return -EFSCORRUPTED;
}
if (xfs_sb_version_hascrc(&mp->m_sb) &&
sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) {
xfs_notice(mp, "v5 SB sanity check failed");
return -EFSCORRUPTED;
}
/*
* Until this is fixed only page-sized or smaller data blocks work.
*/
if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
xfs_warn(mp,
"File system with blocksize %d bytes. "
"Only pagesize (%ld) or less will currently work.",
sbp->sb_blocksize, PAGE_SIZE);
return -ENOSYS;
}
/*
* Currently only very few inode sizes are supported.
*/
switch (sbp->sb_inodesize) {
case 256:
case 512:
case 1024:
case 2048:
break;
default:
xfs_warn(mp, "inode size of %d bytes not supported",
sbp->sb_inodesize);
return -ENOSYS;
}
if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
xfs_warn(mp,
"file system too large to be mounted on this system.");
return -EFBIG;
}
if (check_inprogress && sbp->sb_inprogress) {
xfs_warn(mp, "Offline file system operation in progress!");
return -EFSCORRUPTED;
}
return 0;
}
void
xfs_sb_quota_from_disk(struct xfs_sb *sbp)
{
/*
* older mkfs doesn't initialize quota inodes to NULLFSINO. This
* leads to in-core values having two different values for a quota
* inode to be invalid: 0 and NULLFSINO. Change it to a single value
* NULLFSINO.
*
* Note that this change affect only the in-core values. These
* values are not written back to disk unless any quota information
* is written to the disk. Even in that case, sb_pquotino field is
* not written to disk unless the superblock supports pquotino.
*/
if (sbp->sb_uquotino == 0)
sbp->sb_uquotino = NULLFSINO;
if (sbp->sb_gquotino == 0)
sbp->sb_gquotino = NULLFSINO;
if (sbp->sb_pquotino == 0)
sbp->sb_pquotino = NULLFSINO;
/*
* We need to do these manipilations only if we are working
* with an older version of on-disk superblock.
*/
if (xfs_sb_version_has_pquotino(sbp))
return;
if (sbp->sb_qflags & XFS_OQUOTA_ENFD)
sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ?
XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD;
if (sbp->sb_qflags & XFS_OQUOTA_CHKD)
sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ?
XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD;
sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD);
if (sbp->sb_qflags & XFS_PQUOTA_ACCT &&
sbp->sb_gquotino != NULLFSINO) {
/*
* In older version of superblock, on-disk superblock only
* has sb_gquotino, and in-core superblock has both sb_gquotino
* and sb_pquotino. But, only one of them is supported at any
* point of time. So, if PQUOTA is set in disk superblock,
* copy over sb_gquotino to sb_pquotino. The NULLFSINO test
* above is to make sure we don't do this twice and wipe them
* both out!
*/
sbp->sb_pquotino = sbp->sb_gquotino;
sbp->sb_gquotino = NULLFSINO;
}
}
static void
__xfs_sb_from_disk(
struct xfs_sb *to,
xfs_dsb_t *from,
bool convert_xquota)
{
to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
to->sb_rextents = be64_to_cpu(from->sb_rextents);
memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
to->sb_logstart = be64_to_cpu(from->sb_logstart);
to->sb_rootino = be64_to_cpu(from->sb_rootino);
to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
to->sb_agcount = be32_to_cpu(from->sb_agcount);
to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
to->sb_blocklog = from->sb_blocklog;
to->sb_sectlog = from->sb_sectlog;
to->sb_inodelog = from->sb_inodelog;
to->sb_inopblog = from->sb_inopblog;
to->sb_agblklog = from->sb_agblklog;
to->sb_rextslog = from->sb_rextslog;
to->sb_inprogress = from->sb_inprogress;
to->sb_imax_pct = from->sb_imax_pct;
to->sb_icount = be64_to_cpu(from->sb_icount);
to->sb_ifree = be64_to_cpu(from->sb_ifree);
to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
to->sb_frextents = be64_to_cpu(from->sb_frextents);
to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
to->sb_qflags = be16_to_cpu(from->sb_qflags);
to->sb_flags = from->sb_flags;
to->sb_shared_vn = from->sb_shared_vn;
to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
to->sb_unit = be32_to_cpu(from->sb_unit);
to->sb_width = be32_to_cpu(from->sb_width);
to->sb_dirblklog = from->sb_dirblklog;
to->sb_logsectlog = from->sb_logsectlog;
to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
to->sb_features2 = be32_to_cpu(from->sb_features2);
to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
to->sb_features_log_incompat =
be32_to_cpu(from->sb_features_log_incompat);
/* crc is only used on disk, not in memory; just init to 0 here. */
to->sb_crc = 0;
to->sb_spino_align = be32_to_cpu(from->sb_spino_align);
to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
to->sb_lsn = be64_to_cpu(from->sb_lsn);
/*
* sb_meta_uuid is only on disk if it differs from sb_uuid and the
* feature flag is set; if not set we keep it only in memory.
*/
if (xfs_sb_version_hasmetauuid(to))
uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid);
else
uuid_copy(&to->sb_meta_uuid, &from->sb_uuid);
/* Convert on-disk flags to in-memory flags? */
if (convert_xquota)
xfs_sb_quota_from_disk(to);
}
void
xfs_sb_from_disk(
struct xfs_sb *to,
xfs_dsb_t *from)
{
__xfs_sb_from_disk(to, from, true);
}
static void
xfs_sb_quota_to_disk(
struct xfs_dsb *to,
struct xfs_sb *from)
{
__uint16_t qflags = from->sb_qflags;
to->sb_uquotino = cpu_to_be64(from->sb_uquotino);
if (xfs_sb_version_has_pquotino(from)) {
to->sb_qflags = cpu_to_be16(from->sb_qflags);
to->sb_gquotino = cpu_to_be64(from->sb_gquotino);
to->sb_pquotino = cpu_to_be64(from->sb_pquotino);
return;
}
/*
* The in-core version of sb_qflags do not have XFS_OQUOTA_*
* flags, whereas the on-disk version does. So, convert incore
* XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags.
*/
qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD |
XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD);
if (from->sb_qflags &
(XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD))
qflags |= XFS_OQUOTA_ENFD;
if (from->sb_qflags &
(XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD))
qflags |= XFS_OQUOTA_CHKD;
to->sb_qflags = cpu_to_be16(qflags);
/*
* GQUOTINO and PQUOTINO cannot be used together in versions
* of superblock that do not have pquotino. from->sb_flags
* tells us which quota is active and should be copied to
* disk. If neither are active, we should NULL the inode.
*
* In all cases, the separate pquotino must remain 0 because it
* it beyond the "end" of the valid non-pquotino superblock.
*/
if (from->sb_qflags & XFS_GQUOTA_ACCT)
to->sb_gquotino = cpu_to_be64(from->sb_gquotino);
else if (from->sb_qflags & XFS_PQUOTA_ACCT)
to->sb_gquotino = cpu_to_be64(from->sb_pquotino);
else {
/*
* We can't rely on just the fields being logged to tell us
* that it is safe to write NULLFSINO - we should only do that
* if quotas are not actually enabled. Hence only write
* NULLFSINO if both in-core quota inodes are NULL.
*/
if (from->sb_gquotino == NULLFSINO &&
from->sb_pquotino == NULLFSINO)
to->sb_gquotino = cpu_to_be64(NULLFSINO);
}
to->sb_pquotino = 0;
}
void
xfs_sb_to_disk(
struct xfs_dsb *to,
struct xfs_sb *from)
{
xfs_sb_quota_to_disk(to, from);
to->sb_magicnum = cpu_to_be32(from->sb_magicnum);
to->sb_blocksize = cpu_to_be32(from->sb_blocksize);
to->sb_dblocks = cpu_to_be64(from->sb_dblocks);
to->sb_rblocks = cpu_to_be64(from->sb_rblocks);
to->sb_rextents = cpu_to_be64(from->sb_rextents);
memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
to->sb_logstart = cpu_to_be64(from->sb_logstart);
to->sb_rootino = cpu_to_be64(from->sb_rootino);
to->sb_rbmino = cpu_to_be64(from->sb_rbmino);
to->sb_rsumino = cpu_to_be64(from->sb_rsumino);
to->sb_rextsize = cpu_to_be32(from->sb_rextsize);
to->sb_agblocks = cpu_to_be32(from->sb_agblocks);
to->sb_agcount = cpu_to_be32(from->sb_agcount);
to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks);
to->sb_logblocks = cpu_to_be32(from->sb_logblocks);
to->sb_versionnum = cpu_to_be16(from->sb_versionnum);
to->sb_sectsize = cpu_to_be16(from->sb_sectsize);
to->sb_inodesize = cpu_to_be16(from->sb_inodesize);
to->sb_inopblock = cpu_to_be16(from->sb_inopblock);
memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
to->sb_blocklog = from->sb_blocklog;
to->sb_sectlog = from->sb_sectlog;
to->sb_inodelog = from->sb_inodelog;
to->sb_inopblog = from->sb_inopblog;
to->sb_agblklog = from->sb_agblklog;
to->sb_rextslog = from->sb_rextslog;
to->sb_inprogress = from->sb_inprogress;
to->sb_imax_pct = from->sb_imax_pct;
to->sb_icount = cpu_to_be64(from->sb_icount);
to->sb_ifree = cpu_to_be64(from->sb_ifree);
to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks);
to->sb_frextents = cpu_to_be64(from->sb_frextents);
to->sb_flags = from->sb_flags;
to->sb_shared_vn = from->sb_shared_vn;
to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt);
to->sb_unit = cpu_to_be32(from->sb_unit);
to->sb_width = cpu_to_be32(from->sb_width);
to->sb_dirblklog = from->sb_dirblklog;
to->sb_logsectlog = from->sb_logsectlog;
to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize);
to->sb_logsunit = cpu_to_be32(from->sb_logsunit);
/*
* We need to ensure that bad_features2 always matches features2.
* Hence we enforce that here rather than having to remember to do it
* everywhere else that updates features2.
*/
from->sb_bad_features2 = from->sb_features2;
to->sb_features2 = cpu_to_be32(from->sb_features2);
to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2);
if (xfs_sb_version_hascrc(from)) {
to->sb_features_compat = cpu_to_be32(from->sb_features_compat);
to->sb_features_ro_compat =
cpu_to_be32(from->sb_features_ro_compat);
to->sb_features_incompat =
cpu_to_be32(from->sb_features_incompat);
to->sb_features_log_incompat =
cpu_to_be32(from->sb_features_log_incompat);
to->sb_spino_align = cpu_to_be32(from->sb_spino_align);
to->sb_lsn = cpu_to_be64(from->sb_lsn);
if (xfs_sb_version_hasmetauuid(from))
uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid);
}
}
static int
xfs_sb_verify(
struct xfs_buf *bp,
bool check_version)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_sb sb;
/*
* Use call variant which doesn't convert quota flags from disk
* format, because xfs_mount_validate_sb checks the on-disk flags.
*/
__xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false);
/*
* Only check the in progress field for the primary superblock as
* mkfs.xfs doesn't clear it from secondary superblocks.
*/
return xfs_mount_validate_sb(mp, &sb,
bp->b_maps[0].bm_bn == XFS_SB_DADDR,
check_version);
}
/*
* If the superblock has the CRC feature bit set or the CRC field is non-null,
* check that the CRC is valid. We check the CRC field is non-null because a
* single bit error could clear the feature bit and unused parts of the
* superblock are supposed to be zero. Hence a non-null crc field indicates that
* we've potentially lost a feature bit and we should check it anyway.
*
* However, past bugs (i.e. in growfs) left non-zeroed regions beyond the
* last field in V4 secondary superblocks. So for secondary superblocks,
* we are more forgiving, and ignore CRC failures if the primary doesn't
* indicate that the fs version is V5.
*/
static void
xfs_sb_read_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
int error;
/*
* open code the version check to avoid needing to convert the entire
* superblock from disk order just to check the version number
*/
if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
(((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
XFS_SB_VERSION_5) ||
dsb->sb_crc != 0)) {
if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) {
/* Only fail bad secondaries on a known V5 filesystem */
if (bp->b_bn == XFS_SB_DADDR ||
xfs_sb_version_hascrc(&mp->m_sb)) {
error = -EFSBADCRC;
goto out_error;
}
}
}
error = xfs_sb_verify(bp, true);
out_error:
if (error) {
xfs_buf_ioerror(bp, error);
if (error == -EFSCORRUPTED || error == -EFSBADCRC)
xfs_verifier_error(bp);
}
}
/*
* We may be probed for a filesystem match, so we may not want to emit
* messages when the superblock buffer is not actually an XFS superblock.
* If we find an XFS superblock, then run a normal, noisy mount because we are
* really going to mount it and want to know about errors.
*/
static void
xfs_sb_quiet_read_verify(
struct xfs_buf *bp)
{
struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
/* XFS filesystem, verify noisily! */
xfs_sb_read_verify(bp);
return;
}
/* quietly fail */
xfs_buf_ioerror(bp, -EWRONGFS);
}
static void
xfs_sb_write_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_buf_log_item *bip = bp->b_fspriv;
int error;
error = xfs_sb_verify(bp, false);
if (error) {
xfs_buf_ioerror(bp, error);
xfs_verifier_error(bp);
return;
}
if (!xfs_sb_version_hascrc(&mp->m_sb))
return;
if (bip)
XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF);
}
const struct xfs_buf_ops xfs_sb_buf_ops = {
.name = "xfs_sb",
.verify_read = xfs_sb_read_verify,
.verify_write = xfs_sb_write_verify,
};
const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
.name = "xfs_sb_quiet",
.verify_read = xfs_sb_quiet_read_verify,
.verify_write = xfs_sb_write_verify,
};
/*
* xfs_mount_common
*
* Mount initialization code establishing various mount
* fields from the superblock associated with the given
* mount structure
*/
void
xfs_sb_mount_common(
struct xfs_mount *mp,
struct xfs_sb *sbp)
{
mp->m_agfrotor = mp->m_agirotor = 0;
spin_lock_init(&mp->m_agirotor_lock);
mp->m_maxagi = mp->m_sb.sb_agcount;
mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
mp->m_blockmask = sbp->sb_blocksize - 1;
mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
mp->m_blockwmask = mp->m_blockwsize - 1;
mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2;
mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2;
mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(mp, sbp->sb_blocksize,
true);
mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(mp, sbp->sb_blocksize,
false);
mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2;
mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2;
mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
sbp->sb_inopblock);
mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
if (sbp->sb_spino_align)
mp->m_ialloc_min_blks = sbp->sb_spino_align;
else
mp->m_ialloc_min_blks = mp->m_ialloc_blks;
mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp);
}
/*
* xfs_initialize_perag_data
*
* Read in each per-ag structure so we can count up the number of
* allocated inodes, free inodes and used filesystem blocks as this
* information is no longer persistent in the superblock. Once we have
* this information, write it into the in-core superblock structure.
*/
int
xfs_initialize_perag_data(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
xfs_perag_t *pag;
xfs_sb_t *sbp = &mp->m_sb;
uint64_t ifree = 0;
uint64_t ialloc = 0;
uint64_t bfree = 0;
uint64_t bfreelst = 0;
uint64_t btree = 0;
int error;
for (index = 0; index < agcount; index++) {
/*
* read the agf, then the agi. This gets us
* all the information we need and populates the
* per-ag structures for us.
*/
error = xfs_alloc_pagf_init(mp, NULL, index, 0);
if (error)
return error;
error = xfs_ialloc_pagi_init(mp, NULL, index);
if (error)
return error;
pag = xfs_perag_get(mp, index);
ifree += pag->pagi_freecount;
ialloc += pag->pagi_count;
bfree += pag->pagf_freeblks;
bfreelst += pag->pagf_flcount;
btree += pag->pagf_btreeblks;
xfs_perag_put(pag);
}
/* Overwrite incore superblock counters with just-read data */
spin_lock(&mp->m_sb_lock);
sbp->sb_ifree = ifree;
sbp->sb_icount = ialloc;
sbp->sb_fdblocks = bfree + bfreelst + btree;
spin_unlock(&mp->m_sb_lock);
xfs_reinit_percpu_counters(mp);
return 0;
}
/*
* xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock
* into the superblock buffer to be logged. It does not provide the higher
* level of locking that is needed to protect the in-core superblock from
* concurrent access.
*/
void
xfs_log_sb(
struct xfs_trans *tp)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_buf *bp = xfs_trans_getsb(tp, mp, 0);
mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount);
mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree);
mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks);
xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb);
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb));
}
/*
* xfs_sync_sb
*
* Sync the superblock to disk.
*
* Note that the caller is responsible for checking the frozen state of the
* filesystem. This procedure uses the non-blocking transaction allocator and
* thus will allow modifications to a frozen fs. This is required because this
* code can be called during the process of freezing where use of the high-level
* allocator would deadlock.
*/
int
xfs_sync_sb(
struct xfs_mount *mp,
bool wait)
{
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0,
XFS_TRANS_NO_WRITECOUNT, &tp);
if (error)
return error;
xfs_log_sb(tp);
if (wait)
xfs_trans_set_sync(tp);
return xfs_trans_commit(tp);
}