/*
* Copyright Altera Corporation (C) 2014-2016. All rights reserved.
* Copyright 2011-2012 Calxeda, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Adapted from the highbank_mc_edac driver.
*/
#include <asm/cacheflush.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include "altera_edac.h"
#include "edac_module.h"
#define EDAC_MOD_STR "altera_edac"
#define EDAC_VERSION "1"
#define EDAC_DEVICE "Altera"
static const struct altr_sdram_prv_data c5_data = {
.ecc_ctrl_offset = CV_CTLCFG_OFST,
.ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
.ecc_stat_offset = CV_DRAMSTS_OFST,
.ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
.ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
.ecc_saddr_offset = CV_ERRADDR_OFST,
.ecc_daddr_offset = CV_ERRADDR_OFST,
.ecc_cecnt_offset = CV_SBECOUNT_OFST,
.ecc_uecnt_offset = CV_DBECOUNT_OFST,
.ecc_irq_en_offset = CV_DRAMINTR_OFST,
.ecc_irq_en_mask = CV_DRAMINTR_INTREN,
.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
.ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
.ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
.ce_ue_trgr_offset = CV_CTLCFG_OFST,
.ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
.ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
};
static const struct altr_sdram_prv_data a10_data = {
.ecc_ctrl_offset = A10_ECCCTRL1_OFST,
.ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
.ecc_stat_offset = A10_INTSTAT_OFST,
.ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
.ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
.ecc_saddr_offset = A10_SERRADDR_OFST,
.ecc_daddr_offset = A10_DERRADDR_OFST,
.ecc_irq_en_offset = A10_ERRINTEN_OFST,
.ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
.ecc_irq_clr_offset = A10_INTSTAT_OFST,
.ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
.ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
.ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
.ce_set_mask = A10_DIAGINT_TSERRA_MASK,
.ue_set_mask = A10_DIAGINT_TDERRA_MASK,
};
/*********************** EDAC Memory Controller Functions ****************/
/* The SDRAM controller uses the EDAC Memory Controller framework. */
static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
const struct altr_sdram_prv_data *priv = drvdata->data;
u32 status, err_count = 1, err_addr;
regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
if (status & priv->ecc_stat_ue_mask) {
regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
&err_addr);
if (priv->ecc_uecnt_offset)
regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
&err_count);
panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
err_count, err_addr);
}
if (status & priv->ecc_stat_ce_mask) {
regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
&err_addr);
if (priv->ecc_uecnt_offset)
regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
&err_count);
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
err_addr >> PAGE_SHIFT,
err_addr & ~PAGE_MASK, 0,
0, 0, -1, mci->ctl_name, "");
/* Clear IRQ to resume */
regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
priv->ecc_irq_clr_mask);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
const char __user *data,
size_t count, loff_t *ppos)
{
struct mem_ctl_info *mci = file->private_data;
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
const struct altr_sdram_prv_data *priv = drvdata->data;
u32 *ptemp;
dma_addr_t dma_handle;
u32 reg, read_reg;
ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
if (!ptemp) {
dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
edac_printk(KERN_ERR, EDAC_MC,
"Inject: Buffer Allocation error\n");
return -ENOMEM;
}
regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
&read_reg);
read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
/* Error are injected by writing a word while the SBE or DBE
* bit in the CTLCFG register is set. Reading the word will
* trigger the SBE or DBE error and the corresponding IRQ.
*/
if (count == 3) {
edac_printk(KERN_ALERT, EDAC_MC,
"Inject Double bit error\n");
local_irq_disable();
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
(read_reg | priv->ue_set_mask));
local_irq_enable();
} else {
edac_printk(KERN_ALERT, EDAC_MC,
"Inject Single bit error\n");
local_irq_disable();
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
(read_reg | priv->ce_set_mask));
local_irq_enable();
}
ptemp[0] = 0x5A5A5A5A;
ptemp[1] = 0xA5A5A5A5;
/* Clear the error injection bits */
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
/* Ensure it has been written out */
wmb();
/*
* To trigger the error, we need to read the data back
* (the data was written with errors above).
* The ACCESS_ONCE macros and printk are used to prevent the
* the compiler optimizing these reads out.
*/
reg = ACCESS_ONCE(ptemp[0]);
read_reg = ACCESS_ONCE(ptemp[1]);
/* Force Read */
rmb();
edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
reg, read_reg);
dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
return count;
}
static const struct file_operations altr_sdr_mc_debug_inject_fops = {
.open = simple_open,
.write = altr_sdr_mc_err_inject_write,
.llseek = generic_file_llseek,
};
static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
{
if (!IS_ENABLED([31mCONFIG_EDAC_DEBUG[0m))
return;
if (!mci->debugfs)
return;
edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
&altr_sdr_mc_debug_inject_fops);
}
/* Get total memory size from Open Firmware DTB */
static unsigned long get_total_mem(void)
{
struct device_node *np = NULL;
const unsigned int *reg, *reg_end;
int len, sw, aw;
unsigned long start, size, total_mem = 0;
for_each_node_by_type(np, "memory") {
aw = of_n_addr_cells(np);
sw = of_n_size_cells(np);
reg = (const unsigned int *)of_get_property(np, "reg", &len);
reg_end = reg + (len / sizeof(u32));
total_mem = 0;
do {
start = of_read_number(reg, aw);
reg += aw;
size = of_read_number(reg, sw);
reg += sw;
total_mem += size;
} while (reg < reg_end);
}
edac_dbg(0, "total_mem 0x%lx\n", total_mem);
return total_mem;
}
static const struct of_device_id altr_sdram_ctrl_of_match[] = {
{ .compatible = "altr,sdram-edac", .data = &c5_data},
{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
{},
};
MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
static int a10_init(struct regmap *mc_vbase)
{
if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error setting SB IRQ mode\n");
return -ENODEV;
}
if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error setting trigger count\n");
return -ENODEV;
}
return 0;
}
static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
{
void __iomem *sm_base;
int ret = 0;
if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
dev_name(&pdev->dev))) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to request mem region\n");
return -EBUSY;
}
sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
if (!sm_base) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to ioremap device\n");
ret = -ENOMEM;
goto release;
}
iowrite32(mask, sm_base);
iounmap(sm_base);
release:
release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
return ret;
}
static int altr_sdram_probe(struct platform_device *pdev)
{
const struct of_device_id *id;
struct edac_mc_layer layers[2];
struct mem_ctl_info *mci;
struct altr_sdram_mc_data *drvdata;
const struct altr_sdram_prv_data *priv;
struct regmap *mc_vbase;
struct dimm_info *dimm;
u32 read_reg;
int irq, irq2, res = 0;
unsigned long mem_size, irqflags = 0;
id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
if (!id)
return -ENODEV;
/* Grab the register range from the sdr controller in device tree */
mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"altr,sdr-syscon");
if (IS_ERR(mc_vbase)) {
edac_printk(KERN_ERR, EDAC_MC,
"regmap for altr,sdr-syscon lookup failed.\n");
return -ENODEV;
}
/* Check specific dependencies for the module */
priv = of_match_node(altr_sdram_ctrl_of_match,
pdev->dev.of_node)->data;
/* Validate the SDRAM controller has ECC enabled */
if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
edac_printk(KERN_ERR, EDAC_MC,
"No ECC/ECC disabled [0x%08X]\n", read_reg);
return -ENODEV;
}
/* Grab memory size from device tree. */
mem_size = get_total_mem();
if (!mem_size) {
edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
return -ENODEV;
}
/* Ensure the SDRAM Interrupt is disabled */
if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
priv->ecc_irq_en_mask, 0)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error disabling SDRAM ECC IRQ\n");
return -ENODEV;
}
/* Toggle to clear the SDRAM Error count */
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
priv->ecc_cnt_rst_mask,
priv->ecc_cnt_rst_mask)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error clearing SDRAM ECC count\n");
return -ENODEV;
}
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
priv->ecc_cnt_rst_mask, 0)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error clearing SDRAM ECC count\n");
return -ENODEV;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
edac_printk(KERN_ERR, EDAC_MC,
"No irq %d in DT\n", irq);
return -ENODEV;
}
/* Arria10 has a 2nd IRQ */
irq2 = platform_get_irq(pdev, 1);
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = 1;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = 1;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
sizeof(struct altr_sdram_mc_data));
if (!mci)
return -ENOMEM;
mci->pdev = &pdev->dev;
drvdata = mci->pvt_info;
drvdata->mc_vbase = mc_vbase;
drvdata->data = priv;
platform_set_drvdata(pdev, mci);
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to get managed device resource\n");
res = -ENOMEM;
goto free;
}
mci->mtype_cap = MEM_FLAG_DDR3;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = EDAC_VERSION;
mci->ctl_name = dev_name(&pdev->dev);
mci->scrub_mode = SCRUB_SW_SRC;
mci->dev_name = dev_name(&pdev->dev);
dimm = *mci->dimms;
dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
dimm->grain = 8;
dimm->dtype = DEV_X8;
dimm->mtype = MEM_DDR3;
dimm->edac_mode = EDAC_SECDED;
res = edac_mc_add_mc(mci);
if (res < 0)
goto err;
/* Only the Arria10 has separate IRQs */
if (irq2 > 0) {
/* Arria10 specific initialization */
res = a10_init(mc_vbase);
if (res < 0)
goto err2;
res = devm_request_irq(&pdev->dev, irq2,
altr_sdram_mc_err_handler,
IRQF_SHARED, dev_name(&pdev->dev), mci);
if (res < 0) {
edac_mc_printk(mci, KERN_ERR,
"Unable to request irq %d\n", irq2);
res = -ENODEV;
goto err2;
}
res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
if (res < 0)
goto err2;
irqflags = IRQF_SHARED;
}
res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
irqflags, dev_name(&pdev->dev), mci);
if (res < 0) {
edac_mc_printk(mci, KERN_ERR,
"Unable to request irq %d\n", irq);
res = -ENODEV;
goto err2;
}
/* Infrastructure ready - enable the IRQ */
if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
edac_mc_printk(mci, KERN_ERR,
"Error enabling SDRAM ECC IRQ\n");
res = -ENODEV;
goto err2;
}
altr_sdr_mc_create_debugfs_nodes(mci);
devres_close_group(&pdev->dev, NULL);
return 0;
err2:
edac_mc_del_mc(&pdev->dev);
err:
devres_release_group(&pdev->dev, NULL);
free:
edac_mc_free(mci);
edac_printk(KERN_ERR, EDAC_MC,
"EDAC Probe Failed; Error %d\n", res);
return res;
}
static int altr_sdram_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
platform_set_drvdata(pdev, NULL);
return 0;
}
/*
* If you want to suspend, need to disable EDAC by removing it
* from the device tree or defconfig.
*/
#ifdef [31mCONFIG_PM[0m
static int altr_sdram_prepare(struct device *dev)
{
pr_err("Suspend not allowed when EDAC is enabled.\n");
return -EPERM;
}
static const struct dev_pm_ops altr_sdram_pm_ops = {
.prepare = altr_sdram_prepare,
};
#endif
static struct platform_driver altr_sdram_edac_driver = {
.probe = altr_sdram_probe,
.remove = altr_sdram_remove,
.driver = {
.name = "altr_sdram_edac",
#ifdef [31mCONFIG_PM[0m
.pm = &altr_sdram_pm_ops,
#endif
.of_match_table = altr_sdram_ctrl_of_match,
},
};
module_platform_driver(altr_sdram_edac_driver);
/************************* EDAC Parent Probe *************************/
static const struct of_device_id altr_edac_device_of_match[];
static const struct of_device_id altr_edac_of_match[] = {
{ .compatible = "altr,socfpga-ecc-manager" },
{},
};
MODULE_DEVICE_TABLE(of, altr_edac_of_match);
static int altr_edac_probe(struct platform_device *pdev)
{
of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
NULL, &pdev->dev);
return 0;
}
static struct platform_driver altr_edac_driver = {
.probe = altr_edac_probe,
.driver = {
.name = "socfpga_ecc_manager",
.of_match_table = altr_edac_of_match,
},
};
module_platform_driver(altr_edac_driver);
/************************* EDAC Device Functions *************************/
/*
* EDAC Device Functions (shared between various IPs).
* The discrete memories use the EDAC Device framework. The probe
* and error handling functions are very similar between memories
* so they are shared. The memory allocation and freeing for EDAC
* trigger testing are different for each memory.
*/
static const struct edac_device_prv_data ocramecc_data;
static const struct edac_device_prv_data l2ecc_data;
static const struct edac_device_prv_data a10_ocramecc_data;
static const struct edac_device_prv_data a10_l2ecc_data;
static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
{
irqreturn_t ret_value = IRQ_NONE;
struct edac_device_ctl_info *dci = dev_id;
struct altr_edac_device_dev *drvdata = dci->pvt_info;
const struct edac_device_prv_data *priv = drvdata->data;
if (irq == drvdata->sb_irq) {
if (priv->ce_clear_mask)
writel(priv->ce_clear_mask, drvdata->base);
edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
ret_value = IRQ_HANDLED;
} else if (irq == drvdata->db_irq) {
if (priv->ue_clear_mask)
writel(priv->ue_clear_mask, drvdata->base);
edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
ret_value = IRQ_HANDLED;
} else {
WARN_ON(1);
}
return ret_value;
}
static ssize_t altr_edac_device_trig(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
u32 *ptemp, i, error_mask;
int result = 0;
u8 trig_type;
unsigned long flags;
struct edac_device_ctl_info *edac_dci = file->private_data;
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
const struct edac_device_prv_data *priv = drvdata->data;
void *generic_ptr = edac_dci->dev;
if (!user_buf || get_user(trig_type, user_buf))
return -EFAULT;
if (!priv->alloc_mem)
return -ENOMEM;
/*
* Note that generic_ptr is initialized to the device * but in
* some alloc_functions, this is overridden and returns data.
*/
ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
if (!ptemp) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"Inject: Buffer Allocation error\n");
return -ENOMEM;
}
if (trig_type == ALTR_UE_TRIGGER_CHAR)
error_mask = priv->ue_set_mask;
else
error_mask = priv->ce_set_mask;
edac_printk(KERN_ALERT, EDAC_DEVICE,
"Trigger Error Mask (0x%X)\n", error_mask);
local_irq_save(flags);
/* write ECC corrupted data out. */
for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
/* Read data so we're in the correct state */
rmb();
if (ACCESS_ONCE(ptemp[i]))
result = -1;
/* Toggle Error bit (it is latched), leave ECC enabled */
writel(error_mask, (drvdata->base + priv->set_err_ofst));
writel(priv->ecc_enable_mask, (drvdata->base +
priv->set_err_ofst));
ptemp[i] = i;
}
/* Ensure it has been written out */
wmb();
local_irq_restore(flags);
if (result)
edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
/* Read out written data. ECC error caused here */
for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
if (ACCESS_ONCE(ptemp[i]) != i)
edac_printk(KERN_ERR, EDAC_DEVICE,
"Read doesn't match written data\n");
if (priv->free_mem)
priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
return count;
}
static const struct file_operations altr_edac_device_inject_fops = {
.open = simple_open,
.write = altr_edac_device_trig,
.llseek = generic_file_llseek,
};
static ssize_t altr_edac_a10_device_trig(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos);
static const struct file_operations altr_edac_a10_device_inject_fops = {
.open = simple_open,
.write = altr_edac_a10_device_trig,
.llseek = generic_file_llseek,
};
static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
const struct edac_device_prv_data *priv)
{
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
if (!IS_ENABLED([31mCONFIG_EDAC_DEBUG[0m))
return;
drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
if (!drvdata->debugfs_dir)
return;
if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
drvdata->debugfs_dir, edac_dci,
priv->inject_fops))
debugfs_remove_recursive(drvdata->debugfs_dir);
}
static const struct of_device_id altr_edac_device_of_match[] = {
#ifdef [31mCONFIG_EDAC_ALTERA_L2C[0m
{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_OCRAM[0m
{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
#endif
{},
};
MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
/*
* altr_edac_device_probe()
* This is a generic EDAC device driver that will support
* various Altera memory devices such as the L2 cache ECC and
* OCRAM ECC as well as the memories for other peripherals.
* Module specific initialization is done by passing the
* function index in the device tree.
*/
static int altr_edac_device_probe(struct platform_device *pdev)
{
struct edac_device_ctl_info *dci;
struct altr_edac_device_dev *drvdata;
struct resource *r;
int res = 0;
struct device_node *np = pdev->dev.of_node;
char *ecc_name = (char *)np->name;
static int dev_instance;
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"Unable to open devm\n");
return -ENOMEM;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"Unable to get mem resource\n");
res = -ENODEV;
goto fail;
}
if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
dev_name(&pdev->dev))) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s:Error requesting mem region\n", ecc_name);
res = -EBUSY;
goto fail;
}
dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
1, ecc_name, 1, 0, NULL, 0,
dev_instance++);
if (!dci) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s: Unable to allocate EDAC device\n", ecc_name);
res = -ENOMEM;
goto fail;
}
drvdata = dci->pvt_info;
dci->dev = &pdev->dev;
platform_set_drvdata(pdev, dci);
drvdata->edac_dev_name = ecc_name;
drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
if (!drvdata->base)
goto fail1;
/* Get driver specific data for this EDAC device */
drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
/* Check specific dependencies for the module */
if (drvdata->data->setup) {
res = drvdata->data->setup(drvdata);
if (res)
goto fail1;
}
drvdata->sb_irq = platform_get_irq(pdev, 0);
res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
altr_edac_device_handler,
0, dev_name(&pdev->dev), dci);
if (res)
goto fail1;
drvdata->db_irq = platform_get_irq(pdev, 1);
res = devm_request_irq(&pdev->dev, drvdata->db_irq,
altr_edac_device_handler,
0, dev_name(&pdev->dev), dci);
if (res)
goto fail1;
dci->mod_name = "Altera ECC Manager";
dci->dev_name = drvdata->edac_dev_name;
res = edac_device_add_device(dci);
if (res)
goto fail1;
altr_create_edacdev_dbgfs(dci, drvdata->data);
devres_close_group(&pdev->dev, NULL);
return 0;
fail1:
edac_device_free_ctl_info(dci);
fail:
devres_release_group(&pdev->dev, NULL);
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s:Error setting up EDAC device: %d\n", ecc_name, res);
return res;
}
static int altr_edac_device_remove(struct platform_device *pdev)
{
struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
struct altr_edac_device_dev *drvdata = dci->pvt_info;
debugfs_remove_recursive(drvdata->debugfs_dir);
edac_device_del_device(&pdev->dev);
edac_device_free_ctl_info(dci);
return 0;
}
static struct platform_driver altr_edac_device_driver = {
.probe = altr_edac_device_probe,
.remove = altr_edac_device_remove,
.driver = {
.name = "altr_edac_device",
.of_match_table = altr_edac_device_of_match,
},
};
module_platform_driver(altr_edac_device_driver);
/******************* Arria10 Device ECC Shared Functions *****************/
/*
* Test for memory's ECC dependencies upon entry because platform specific
* startup should have initialized the memory and enabled the ECC.
* Can't turn on ECC here because accessing un-initialized memory will
* cause CE/UE errors possibly causing an ABORT.
*/
static int __maybe_unused
altr_check_ecc_deps(struct altr_edac_device_dev *device)
{
void __iomem *base = device->base;
const struct edac_device_prv_data *prv = device->data;
if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
return 0;
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s: No ECC present or ECC disabled.\n",
device->edac_dev_name);
return -ENODEV;
}
static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
{
struct altr_edac_device_dev *dci = dev_id;
void __iomem *base = dci->base;
if (irq == dci->sb_irq) {
writel(ALTR_A10_ECC_SERRPENA,
base + ALTR_A10_ECC_INTSTAT_OFST);
edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
return IRQ_HANDLED;
} else if (irq == dci->db_irq) {
writel(ALTR_A10_ECC_DERRPENA,
base + ALTR_A10_ECC_INTSTAT_OFST);
edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
if (dci->data->panic)
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
return IRQ_HANDLED;
}
WARN_ON(1);
return IRQ_NONE;
}
/******************* Arria10 Memory Buffer Functions *********************/
static inline int a10_get_irq_mask(struct device_node *np)
{
int irq;
const u32 *handle = of_get_property(np, "interrupts", NULL);
if (!handle)
return -ENODEV;
irq = be32_to_cpup(handle);
return irq;
}
static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
{
u32 value = readl(ioaddr);
value |= bit_mask;
writel(value, ioaddr);
}
static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
{
u32 value = readl(ioaddr);
value &= ~bit_mask;
writel(value, ioaddr);
}
static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
{
u32 value = readl(ioaddr);
return (value & bit_mask) ? 1 : 0;
}
/*
* This function uses the memory initialization block in the Arria10 ECC
* controller to initialize/clear the entire memory data and ECC data.
*/
static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
{
int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
u32 init_mask, stat_mask, clear_mask;
int ret = 0;
if (port) {
init_mask = ALTR_A10_ECC_INITB;
stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
} else {
init_mask = ALTR_A10_ECC_INITA;
stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
}
ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
while (limit--) {
if (ecc_test_bits(stat_mask,
(ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
break;
udelay(1);
}
if (limit < 0)
ret = -EBUSY;
/* Clear any pending ECC interrupts */
writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
return ret;
}
static __init int __maybe_unused
altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
u32 ecc_ctrl_en_mask, bool dual_port)
{
int ret = 0;
void __iomem *ecc_block_base;
struct regmap *ecc_mgr_map;
char *ecc_name;
struct device_node *np_eccmgr;
ecc_name = (char *)np->name;
/* Get the ECC Manager - parent of the device EDACs */
np_eccmgr = of_get_parent(np);
ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
"altr,sysmgr-syscon");
of_node_put(np_eccmgr);
if (IS_ERR(ecc_mgr_map)) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"Unable to get syscon altr,sysmgr-syscon\n");
return -ENODEV;
}
/* Map the ECC Block */
ecc_block_base = of_iomap(np, 0);
if (!ecc_block_base) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"Unable to map %s ECC block\n", ecc_name);
return -ENODEV;
}
/* Disable ECC */
regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
writel(ALTR_A10_ECC_SERRINTEN,
(ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
ecc_clear_bits(ecc_ctrl_en_mask,
(ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
/* Ensure all writes complete */
wmb();
/* Use HW initialization block to initialize memory for ECC */
ret = altr_init_memory_port(ecc_block_base, 0);
if (ret) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"ECC: cannot init %s PORTA memory\n", ecc_name);
goto out;
}
if (dual_port) {
ret = altr_init_memory_port(ecc_block_base, 1);
if (ret) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"ECC: cannot init %s PORTB memory\n",
ecc_name);
goto out;
}
}
/* Interrupt mode set to every SBERR */
regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
ALTR_A10_ECC_INTMODE);
/* Enable ECC */
ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
ALTR_A10_ECC_CTRL_OFST));
writel(ALTR_A10_ECC_SERRINTEN,
(ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
/* Ensure all writes complete */
wmb();
out:
iounmap(ecc_block_base);
return ret;
}
static int validate_parent_available(struct device_node *np);
static const struct of_device_id altr_edac_a10_device_of_match[];
static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
{
int irq;
struct device_node *child, *np = of_find_compatible_node(NULL, NULL,
"altr,socfpga-a10-ecc-manager");
if (!np) {
edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
return -ENODEV;
}
for_each_child_of_node(np, child) {
const struct of_device_id *pdev_id;
const struct edac_device_prv_data *prv;
if (!of_device_is_available(child))
continue;
if (!of_device_is_compatible(child, compat))
continue;
if (validate_parent_available(child))
continue;
irq = a10_get_irq_mask(child);
if (irq < 0)
continue;
/* Get matching node and check for valid result */
pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
if (IS_ERR_OR_NULL(pdev_id))
continue;
/* Validate private data pointer before dereferencing */
prv = pdev_id->data;
if (!prv)
continue;
altr_init_a10_ecc_block(child, BIT(irq),
prv->ecc_enable_mask, 0);
}
of_node_put(np);
return 0;
}
/*********************** OCRAM EDAC Device Functions *********************/
#ifdef [31mCONFIG_EDAC_ALTERA_OCRAM[0m
static void *ocram_alloc_mem(size_t size, void **other)
{
struct device_node *np;
struct gen_pool *gp;
void *sram_addr;
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
if (!np)
return NULL;
gp = of_gen_pool_get(np, "iram", 0);
of_node_put(np);
if (!gp)
return NULL;
sram_addr = (void *)gen_pool_alloc(gp, size);
if (!sram_addr)
return NULL;
memset(sram_addr, 0, size);
/* Ensure data is written out */
wmb();
/* Remember this handle for freeing later */
*other = gp;
return sram_addr;
}
static void ocram_free_mem(void *p, size_t size, void *other)
{
gen_pool_free((struct gen_pool *)other, (u32)p, size);
}
static const struct edac_device_prv_data ocramecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
.alloc_mem = ocram_alloc_mem,
.free_mem = ocram_free_mem,
.ecc_enable_mask = ALTR_OCR_ECC_EN,
.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
.inject_fops = &altr_edac_device_inject_fops,
};
static const struct edac_device_prv_data a10_ocramecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
/*
* OCRAM panic on uncorrectable error because sleep/resume
* functions and FPGA contents are stored in OCRAM. Prefer
* a kernel panic over executing/loading corrupted data.
*/
.panic = true,
};
#endif /* CONFIG_EDAC_ALTERA_OCRAM */
/********************* L2 Cache EDAC Device Functions ********************/
#ifdef [31mCONFIG_EDAC_ALTERA_L2C[0m
static void *l2_alloc_mem(size_t size, void **other)
{
struct device *dev = *other;
void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
if (!ptemp)
return NULL;
/* Make sure everything is written out */
wmb();
/*
* Clean all cache levels up to LoC (includes L2)
* This ensures the corrupted data is written into
* L2 cache for readback test (which causes ECC error).
*/
flush_cache_all();
return ptemp;
}
static void l2_free_mem(void *p, size_t size, void *other)
{
struct device *dev = other;
if (dev && p)
devm_kfree(dev, p);
}
/*
* altr_l2_check_deps()
* Test for L2 cache ECC dependencies upon entry because
* platform specific startup should have initialized the L2
* memory and enabled the ECC.
* Bail if ECC is not enabled.
* Note that L2 Cache Enable is forced at build time.
*/
static int altr_l2_check_deps(struct altr_edac_device_dev *device)
{
void __iomem *base = device->base;
const struct edac_device_prv_data *prv = device->data;
if ((readl(base) & prv->ecc_enable_mask) ==
prv->ecc_enable_mask)
return 0;
edac_printk(KERN_ERR, EDAC_DEVICE,
"L2: No ECC present, or ECC disabled\n");
return -ENODEV;
}
static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
{
struct altr_edac_device_dev *dci = dev_id;
if (irq == dci->sb_irq) {
regmap_write(dci->edac->ecc_mgr_map,
A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
return IRQ_HANDLED;
} else if (irq == dci->db_irq) {
regmap_write(dci->edac->ecc_mgr_map,
A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
return IRQ_HANDLED;
}
WARN_ON(1);
return IRQ_NONE;
}
static const struct edac_device_prv_data l2ecc_data = {
.setup = altr_l2_check_deps,
.ce_clear_mask = 0,
.ue_clear_mask = 0,
.alloc_mem = l2_alloc_mem,
.free_mem = l2_free_mem,
.ecc_enable_mask = ALTR_L2_ECC_EN,
.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
.inject_fops = &altr_edac_device_inject_fops,
};
static const struct edac_device_prv_data a10_l2ecc_data = {
.setup = altr_l2_check_deps,
.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
.alloc_mem = l2_alloc_mem,
.free_mem = l2_free_mem,
.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
.ecc_irq_handler = altr_edac_a10_l2_irq,
.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
.inject_fops = &altr_edac_device_inject_fops,
};
#endif /* CONFIG_EDAC_ALTERA_L2C */
/********************* Ethernet Device Functions ********************/
#ifdef [31mCONFIG_EDAC_ALTERA_ETHERNET[0m
static const struct edac_device_prv_data a10_enetecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_ethernet_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
}
early_initcall(socfpga_init_ethernet_ecc);
#endif /* CONFIG_EDAC_ALTERA_ETHERNET */
/********************** NAND Device Functions **********************/
#ifdef [31mCONFIG_EDAC_ALTERA_NAND[0m
static const struct edac_device_prv_data a10_nandecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_nand_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
}
early_initcall(socfpga_init_nand_ecc);
#endif /* CONFIG_EDAC_ALTERA_NAND */
/********************** DMA Device Functions **********************/
#ifdef [31mCONFIG_EDAC_ALTERA_DMA[0m
static const struct edac_device_prv_data a10_dmaecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_dma_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
}
early_initcall(socfpga_init_dma_ecc);
#endif /* CONFIG_EDAC_ALTERA_DMA */
/********************** USB Device Functions **********************/
#ifdef [31mCONFIG_EDAC_ALTERA_USB[0m
static const struct edac_device_prv_data a10_usbecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_usb_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
}
early_initcall(socfpga_init_usb_ecc);
#endif /* CONFIG_EDAC_ALTERA_USB */
/********************** QSPI Device Functions **********************/
#ifdef [31mCONFIG_EDAC_ALTERA_QSPI[0m
static const struct edac_device_prv_data a10_qspiecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_qspi_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
}
early_initcall(socfpga_init_qspi_ecc);
#endif /* CONFIG_EDAC_ALTERA_QSPI */
/********************* SDMMC Device Functions **********************/
#ifdef [31mCONFIG_EDAC_ALTERA_SDMMC[0m
static const struct edac_device_prv_data a10_sdmmceccb_data;
static int altr_portb_setup(struct altr_edac_device_dev *device)
{
struct edac_device_ctl_info *dci;
struct altr_edac_device_dev *altdev;
char *ecc_name = "sdmmcb-ecc";
int edac_idx, rc;
struct device_node *np;
const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
rc = altr_check_ecc_deps(device);
if (rc)
return rc;
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
if (!np) {
edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
return -ENODEV;
}
/* Create the PortB EDAC device */
edac_idx = edac_device_alloc_index();
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
ecc_name, 1, 0, NULL, 0, edac_idx);
if (!dci) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s: Unable to allocate PortB EDAC device\n",
ecc_name);
return -ENOMEM;
}
/* Initialize the PortB EDAC device structure from PortA structure */
altdev = dci->pvt_info;
*altdev = *device;
if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
return -ENOMEM;
/* Update PortB specific values */
altdev->edac_dev_name = ecc_name;
altdev->edac_idx = edac_idx;
altdev->edac_dev = dci;
altdev->data = prv;
dci->dev = &altdev->ddev;
dci->ctl_name = "Altera ECC Manager";
dci->mod_name = ecc_name;
dci->dev_name = ecc_name;
/* Update the IRQs for PortB */
altdev->sb_irq = irq_of_parse_and_map(np, 2);
if (!altdev->sb_irq) {
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
rc = -ENODEV;
goto err_release_group_1;
}
rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
goto err_release_group_1;
}
altdev->db_irq = irq_of_parse_and_map(np, 3);
if (!altdev->db_irq) {
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
rc = -ENODEV;
goto err_release_group_1;
}
rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
goto err_release_group_1;
}
rc = edac_device_add_device(dci);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"edac_device_add_device portB failed\n");
rc = -ENOMEM;
goto err_release_group_1;
}
altr_create_edacdev_dbgfs(dci, prv);
list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
devres_remove_group(&altdev->ddev, altr_portb_setup);
return 0;
err_release_group_1:
edac_device_free_ctl_info(dci);
devres_release_group(&altdev->ddev, altr_portb_setup);
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
return rc;
}
static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
{
struct altr_edac_device_dev *ad = dev_id;
void __iomem *base = ad->base;
const struct edac_device_prv_data *priv = ad->data;
if (irq == ad->sb_irq) {
writel(priv->ce_clear_mask,
base + ALTR_A10_ECC_INTSTAT_OFST);
edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
return IRQ_HANDLED;
} else if (irq == ad->db_irq) {
writel(priv->ue_clear_mask,
base + ALTR_A10_ECC_INTSTAT_OFST);
edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
return IRQ_HANDLED;
}
WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
return IRQ_NONE;
}
static const struct edac_device_prv_data a10_sdmmcecca_data = {
.setup = altr_portb_setup,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_SERRPENA,
.ue_set_mask = ALTR_A10_ECC_DERRPENA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static const struct edac_device_prv_data a10_sdmmceccb_data = {
.setup = altr_portb_setup,
.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRB,
.ue_set_mask = ALTR_A10_ECC_TDERRB,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_sdmmc_ecc(void)
{
int rc = -ENODEV;
struct device_node *child = of_find_compatible_node(NULL, NULL,
"altr,socfpga-sdmmc-ecc");
if (!child) {
edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
return -ENODEV;
}
if (!of_device_is_available(child))
goto exit;
if (validate_parent_available(child))
goto exit;
rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
a10_sdmmcecca_data.ecc_enable_mask, 1);
exit:
of_node_put(child);
return rc;
}
early_initcall(socfpga_init_sdmmc_ecc);
#endif /* CONFIG_EDAC_ALTERA_SDMMC */
/********************* Arria10 EDAC Device Functions *************************/
static const struct of_device_id altr_edac_a10_device_of_match[] = {
#ifdef [31mCONFIG_EDAC_ALTERA_L2C[0m
{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_OCRAM[0m
{ .compatible = "altr,socfpga-a10-ocram-ecc",
.data = &a10_ocramecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_ETHERNET[0m
{ .compatible = "altr,socfpga-eth-mac-ecc",
.data = &a10_enetecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_NAND[0m
{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_DMA[0m
{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_USB[0m
{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_QSPI[0m
{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
#endif
#ifdef [31mCONFIG_EDAC_ALTERA_SDMMC[0m
{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
#endif
{},
};
MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
/*
* The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
* because 2 IRQs are shared among the all ECC peripherals. The ECC
* manager manages the IRQs and the children.
* Based on xgene_edac.c peripheral code.
*/
static ssize_t altr_edac_a10_device_trig(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct edac_device_ctl_info *edac_dci = file->private_data;
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
const struct edac_device_prv_data *priv = drvdata->data;
void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
unsigned long flags;
u8 trig_type;
if (!user_buf || get_user(trig_type, user_buf))
return -EFAULT;
local_irq_save(flags);
if (trig_type == ALTR_UE_TRIGGER_CHAR)
writel(priv->ue_set_mask, set_addr);
else
writel(priv->ce_set_mask, set_addr);
/* Ensure the interrupt test bits are set */
wmb();
local_irq_restore(flags);
return count;
}
static void altr_edac_a10_irq_handler(struct irq_desc *desc)
{
int dberr, bit, sm_offset, irq_status;
struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
int irq = irq_desc_get_irq(desc);
dberr = (irq == edac->db_irq) ? 1 : 0;
sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
chained_irq_enter(chip, desc);
regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
if (irq)
generic_handle_irq(irq);
}
chained_irq_exit(chip, desc);
}
static int validate_parent_available(struct device_node *np)
{
struct device_node *parent;
int ret = 0;
/* Ensure parent device is enabled if parent node exists */
parent = of_parse_phandle(np, "altr,ecc-parent", 0);
if (parent && !of_device_is_available(parent))
ret = -ENODEV;
of_node_put(parent);
return ret;
}
static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
struct device_node *np)
{
struct edac_device_ctl_info *dci;
struct altr_edac_device_dev *altdev;
char *ecc_name = (char *)np->name;
struct resource res;
int edac_idx;
int rc = 0;
const struct edac_device_prv_data *prv;
/* Get matching node and check for valid result */
const struct of_device_id *pdev_id =
of_match_node(altr_edac_a10_device_of_match, np);
if (IS_ERR_OR_NULL(pdev_id))
return -ENODEV;
/* Get driver specific data for this EDAC device */
prv = pdev_id->data;
if (IS_ERR_OR_NULL(prv))
return -ENODEV;
if (validate_parent_available(np))
return -ENODEV;
if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
return -ENOMEM;
rc = of_address_to_resource(np, 0, &res);
if (rc < 0) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s: no resource address\n", ecc_name);
goto err_release_group;
}
edac_idx = edac_device_alloc_index();
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1, ecc_name, 1, 0, NULL, 0,
edac_idx);
if (!dci) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s: Unable to allocate EDAC device\n", ecc_name);
rc = -ENOMEM;
goto err_release_group;
}
altdev = dci->pvt_info;
dci->dev = edac->dev;
altdev->edac_dev_name = ecc_name;
altdev->edac_idx = edac_idx;
altdev->edac = edac;
altdev->edac_dev = dci;
altdev->data = prv;
altdev->ddev = *edac->dev;
dci->dev = &altdev->ddev;
dci->ctl_name = "Altera ECC Manager";
dci->mod_name = ecc_name;
dci->dev_name = ecc_name;
altdev->base = devm_ioremap_resource(edac->dev, &res);
if (IS_ERR(altdev->base)) {
rc = PTR_ERR(altdev->base);
goto err_release_group1;
}
/* Check specific dependencies for the module */
if (altdev->data->setup) {
rc = altdev->data->setup(altdev);
if (rc)
goto err_release_group1;
}
altdev->sb_irq = irq_of_parse_and_map(np, 0);
if (!altdev->sb_irq) {
edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
rc = -ENODEV;
goto err_release_group1;
}
rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
goto err_release_group1;
}
altdev->db_irq = irq_of_parse_and_map(np, 1);
if (!altdev->db_irq) {
edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
rc = -ENODEV;
goto err_release_group1;
}
rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
goto err_release_group1;
}
rc = edac_device_add_device(dci);
if (rc) {
dev_err(edac->dev, "edac_device_add_device failed\n");
rc = -ENOMEM;
goto err_release_group1;
}
altr_create_edacdev_dbgfs(dci, prv);
list_add(&altdev->next, &edac->a10_ecc_devices);
devres_remove_group(edac->dev, altr_edac_a10_device_add);
return 0;
err_release_group1:
edac_device_free_ctl_info(dci);
err_release_group:
devres_release_group(edac->dev, NULL);
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
return rc;
}
static void a10_eccmgr_irq_mask(struct irq_data *d)
{
struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
BIT(d->hwirq));
}
static void a10_eccmgr_irq_unmask(struct irq_data *d)
{
struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
BIT(d->hwirq));
}
static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
struct altr_arria10_edac *edac = d->host_data;
irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
irq_set_chip_data(irq, edac);
irq_set_noprobe(irq);
return 0;
}
static struct irq_domain_ops a10_eccmgr_ic_ops = {
.map = a10_eccmgr_irqdomain_map,
.xlate = irq_domain_xlate_twocell,
};
static int altr_edac_a10_probe(struct platform_device *pdev)
{
struct altr_arria10_edac *edac;
struct device_node *child;
edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
if (!edac)
return -ENOMEM;
edac->dev = &pdev->dev;
platform_set_drvdata(pdev, edac);
INIT_LIST_HEAD(&edac->a10_ecc_devices);
edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"altr,sysmgr-syscon");
if (IS_ERR(edac->ecc_mgr_map)) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"Unable to get syscon altr,sysmgr-syscon\n");
return PTR_ERR(edac->ecc_mgr_map);
}
edac->irq_chip.name = pdev->dev.of_node->name;
edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
&a10_eccmgr_ic_ops, edac);
if (!edac->domain) {
dev_err(&pdev->dev, "Error adding IRQ domain\n");
return -ENOMEM;
}
edac->sb_irq = platform_get_irq(pdev, 0);
if (edac->sb_irq < 0) {
dev_err(&pdev->dev, "No SBERR IRQ resource\n");
return edac->sb_irq;
}
irq_set_chained_handler_and_data(edac->sb_irq,
altr_edac_a10_irq_handler,
edac);
edac->db_irq = platform_get_irq(pdev, 1);
if (edac->db_irq < 0) {
dev_err(&pdev->dev, "No DBERR IRQ resource\n");
return edac->db_irq;
}
irq_set_chained_handler_and_data(edac->db_irq,
altr_edac_a10_irq_handler,
edac);
for_each_child_of_node(pdev->dev.of_node, child) {
if (!of_device_is_available(child))
continue;
if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
altr_edac_a10_device_add(edac, child);
else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
of_platform_populate(pdev->dev.of_node,
altr_sdram_ctrl_of_match,
NULL, &pdev->dev);
}
return 0;
}
static const struct of_device_id altr_edac_a10_of_match[] = {
{ .compatible = "altr,socfpga-a10-ecc-manager" },
{},
};
MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
static struct platform_driver altr_edac_a10_driver = {
.probe = altr_edac_a10_probe,
.driver = {
.name = "socfpga_a10_ecc_manager",
.of_match_table = altr_edac_a10_of_match,
},
};
module_platform_driver(altr_edac_a10_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Thor Thayer");
MODULE_DESCRIPTION("EDAC Driver for Altera Memories");