Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
.. SPDX-License-Identifier: GPL-2.0
.. _ultravisor:

============================
Protected Execution Facility
============================

.. contents::
    :depth: 3

Protected Execution Facility
############################

    Protected Execution Facility (PEF) is an architectural change for
    POWER 9 that enables Secure Virtual Machines (SVMs). DD2.3 chips
    (PVR=0x004e1203) or greater will be PEF-capable. A new ISA release
    will include the PEF RFC02487 changes.

    When enabled, PEF adds a new higher privileged mode, called Ultravisor
    mode, to POWER architecture. Along with the new mode there is new
    firmware called the Protected Execution Ultravisor (or Ultravisor
    for short). Ultravisor mode is the highest privileged mode in POWER
    architecture.

	+------------------+
	| Privilege States |
	+==================+
	|  Problem         |
	+------------------+
	|  Supervisor      |
	+------------------+
	|  Hypervisor      |
	+------------------+
	|  Ultravisor      |
	+------------------+

    PEF protects SVMs from the hypervisor, privileged users, and other
    VMs in the system. SVMs are protected while at rest and can only be
    executed by an authorized machine. All virtual machines utilize
    hypervisor services. The Ultravisor filters calls between the SVMs
    and the hypervisor to assure that information does not accidentally
    leak. All hypercalls except H_RANDOM are reflected to the hypervisor.
    H_RANDOM is not reflected to prevent the hypervisor from influencing
    random values in the SVM.

    To support this there is a refactoring of the ownership of resources
    in the CPU. Some of the resources which were previously hypervisor
    privileged are now ultravisor privileged.

Hardware
========

    The hardware changes include the following:

    * There is a new bit in the MSR that determines whether the current
      process is running in secure mode, MSR(S) bit 41. MSR(S)=1, process
      is in secure mode, MSR(s)=0 process is in normal mode.

    * The MSR(S) bit can only be set by the Ultravisor.

    * HRFID cannot be used to set the MSR(S) bit. If the hypervisor needs
      to return to a SVM it must use an ultracall. It can determine if
      the VM it is returning to is secure.

    * There is a new Ultravisor privileged register, SMFCTRL, which has an
      enable/disable bit SMFCTRL(E).

    * The privilege of a process is now determined by three MSR bits,
      MSR(S, HV, PR). In each of the tables below the modes are listed
      from least privilege to highest privilege. The higher privilege
      modes can access all the resources of the lower privilege modes.

      **Secure Mode MSR Settings**

      +---+---+---+---------------+
      | S | HV| PR|Privilege      |
      +===+===+===+===============+
      | 1 | 0 | 1 | Problem       |
      +---+---+---+---------------+
      | 1 | 0 | 0 | Privileged(OS)|
      +---+---+---+---------------+
      | 1 | 1 | 0 | Ultravisor    |
      +---+---+---+---------------+
      | 1 | 1 | 1 | Reserved      |
      +---+---+---+---------------+

      **Normal Mode MSR Settings**

      +---+---+---+---------------+
      | S | HV| PR|Privilege      |
      +===+===+===+===============+
      | 0 | 0 | 1 | Problem       |
      +---+---+---+---------------+
      | 0 | 0 | 0 | Privileged(OS)|
      +---+---+---+---------------+
      | 0 | 1 | 0 | Hypervisor    |
      +---+---+---+---------------+
      | 0 | 1 | 1 | Problem (Host)|
      +---+---+---+---------------+

    * Memory is partitioned into secure and normal memory. Only processes
      that are running in secure mode can access secure memory.

    * The hardware does not allow anything that is not running secure to
      access secure memory. This means that the Hypervisor cannot access
      the memory of the SVM without using an ultracall (asking the
      Ultravisor). The Ultravisor will only allow the hypervisor to see
      the SVM memory encrypted.

    * I/O systems are not allowed to directly address secure memory. This
      limits the SVMs to virtual I/O only.

    * The architecture allows the SVM to share pages of memory with the
      hypervisor that are not protected with encryption. However, this
      sharing must be initiated by the SVM.

    * When a process is running in secure mode all hypercalls
      (syscall lev=1) go to the Ultravisor.

    * When a process is in secure mode all interrupts go to the
      Ultravisor.

    * The following resources have become Ultravisor privileged and
      require an Ultravisor interface to manipulate:

      * Processor configurations registers (SCOMs).

      * Stop state information.

      * The debug registers CIABR, DAWR, and DAWRX when SMFCTRL(D) is set.
        If SMFCTRL(D) is not set they do not work in secure mode. When set,
        reading and writing requires an Ultravisor call, otherwise that
        will cause a Hypervisor Emulation Assistance interrupt.

      * PTCR and partition table entries (partition table is in secure
        memory). An attempt to write to PTCR will cause a Hypervisor
        Emulation Assitance interrupt.

      * LDBAR (LD Base Address Register) and IMC (In-Memory Collection)
        non-architected registers. An attempt to write to them will cause a
        Hypervisor Emulation Assistance interrupt.

      * Paging for an SVM, sharing of memory with Hypervisor for an SVM.
        (Including Virtual Processor Area (VPA) and virtual I/O).


Software/Microcode
==================

    The software changes include:

    * SVMs are created from normal VM using (open source) tooling supplied
      by IBM.

    * All SVMs start as normal VMs and utilize an ultracall, UV_ESM
      (Enter Secure Mode), to make the transition.

    * When the UV_ESM ultracall is made the Ultravisor copies the VM into
      secure memory, decrypts the verification information, and checks the
      integrity of the SVM. If the integrity check passes the Ultravisor
      passes control in secure mode.

    * The verification information includes the pass phrase for the
      encrypted disk associated with the SVM. This pass phrase is given
      to the SVM when requested.

    * The Ultravisor is not involved in protecting the encrypted disk of
      the SVM while at rest.

    * For external interrupts the Ultravisor saves the state of the SVM,
      and reflects the interrupt to the hypervisor for processing.
      For hypercalls, the Ultravisor inserts neutral state into all
      registers not needed for the hypercall then reflects the call to
      the hypervisor for processing. The H_RANDOM hypercall is performed
      by the Ultravisor and not reflected.

    * For virtual I/O to work bounce buffering must be done.

    * The Ultravisor uses AES (IAPM) for protection of SVM memory. IAPM
      is a mode of AES that provides integrity and secrecy concurrently.

    * The movement of data between normal and secure pages is coordinated
      with the Ultravisor by a new HMM plug-in in the Hypervisor.

    The Ultravisor offers new services to the hypervisor and SVMs. These
    are accessed through ultracalls.

Terminology
===========

    * Hypercalls: special system calls used to request services from
      Hypervisor.

    * Normal memory: Memory that is accessible to Hypervisor.

    * Normal page: Page backed by normal memory and available to
      Hypervisor.

    * Shared page: A page backed by normal memory and available to both
      the Hypervisor/QEMU and the SVM (i.e page has mappings in SVM and
      Hypervisor/QEMU).

    * Secure memory: Memory that is accessible only to Ultravisor and
      SVMs.

    * Secure page: Page backed by secure memory and only available to
      Ultravisor and SVM.

    * SVM: Secure Virtual Machine.

    * Ultracalls: special system calls used to request services from
      Ultravisor.


Ultravisor calls API
####################

    This section describes Ultravisor calls (ultracalls) needed to
    support Secure Virtual Machines (SVM)s and Paravirtualized KVM. The
    ultracalls allow the SVMs and Hypervisor to request services from the
    Ultravisor such as accessing a register or memory region that can only
    be accessed when running in Ultravisor-privileged mode.

    The specific service needed from an ultracall is specified in register
    R3 (the first parameter to the ultracall). Other parameters to the
    ultracall, if any, are specified in registers R4 through R12.

    Return value of all ultracalls is in register R3. Other output values
    from the ultracall, if any, are returned in registers R4 through R12.
    The only exception to this register usage is the ``UV_RETURN``
    ultracall described below.

    Each ultracall returns specific error codes, applicable in the context
    of the ultracall. However, like with the PowerPC Architecture Platform
    Reference (PAPR), if no specific error code is defined for a
    particular situation, then the ultracall will fallback to an erroneous
    parameter-position based code. i.e U_PARAMETER, U_P2, U_P3 etc
    depending on the ultracall parameter that may have caused the error.

    Some ultracalls involve transferring a page of data between Ultravisor
    and Hypervisor.  Secure pages that are transferred from secure memory
    to normal memory may be encrypted using dynamically generated keys.
    When the secure pages are transferred back to secure memory, they may
    be decrypted using the same dynamically generated keys. Generation and
    management of these keys will be covered in a separate document.

    For now this only covers ultracalls currently implemented and being
    used by Hypervisor and SVMs but others can be added here when it
    makes sense.

    The full specification for all hypercalls/ultracalls will eventually
    be made available in the public/OpenPower version of the PAPR
    specification.

    .. note::

        If PEF is not enabled, the ultracalls will be redirected to the
        Hypervisor which must handle/fail the calls.

Ultracalls used by Hypervisor
=============================

    This section describes the virtual memory management ultracalls used
    by the Hypervisor to manage SVMs.

UV_PAGE_OUT
-----------

    Encrypt and move the contents of a page from secure memory to normal
    memory.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_PAGE_OUT,
		uint16_t lpid,		/* LPAR ID */
		uint64_t dest_ra,	/* real address of destination page */
		uint64_t src_gpa,	/* source guest-physical-address */
		uint8_t  flags,		/* flags */
		uint64_t order)		/* page size order */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_P2 		if ``dest_ra`` is invalid.
	* U_P3		if the ``src_gpa`` address is invalid.
	* U_P4		if any bit in the ``flags`` is unrecognized
	* U_P5		if the ``order`` parameter is unsupported.
	* U_FUNCTION	if functionality is not supported.
	* U_BUSY	if page cannot be currently paged-out.

Description
~~~~~~~~~~~

    Encrypt the contents of a secure-page and make it available to
    Hypervisor in a normal page.

    By default, the source page is unmapped from the SVM's partition-
    scoped page table. But the Hypervisor can provide a hint to the
    Ultravisor to retain the page mapping by setting the ``UV_SNAPSHOT``
    flag in ``flags`` parameter.

    If the source page is already a shared page the call returns
    U_SUCCESS, without doing anything.

Use cases
~~~~~~~~~

    #. QEMU attempts to access an address belonging to the SVM but the
       page frame for that address is not mapped into QEMU's address
       space. In this case, the Hypervisor will allocate a page frame,
       map it into QEMU's address space and issue the ``UV_PAGE_OUT``
       call to retrieve the encrypted contents of the page.

    #. When Ultravisor runs low on secure memory and it needs to page-out
       an LRU page. In this case, Ultravisor will issue the
       ``H_SVM_PAGE_OUT`` hypercall to the Hypervisor. The Hypervisor will
       then allocate a normal page and issue the ``UV_PAGE_OUT`` ultracall
       and the Ultravisor will encrypt and move the contents of the secure
       page into the normal page.

    #. When Hypervisor accesses SVM data, the Hypervisor requests the
       Ultravisor to transfer the corresponding page into a insecure page,
       which the Hypervisor can access. The data in the normal page will
       be encrypted though.

UV_PAGE_IN
----------

    Move the contents of a page from normal memory to secure memory.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_PAGE_IN,
		uint16_t lpid,		/* the LPAR ID */
		uint64_t src_ra,	/* source real address of page */
		uint64_t dest_gpa,	/* destination guest physical address */
		uint64_t flags,		/* flags */
		uint64_t order)		/* page size order */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_BUSY	if page cannot be currently paged-in.
	* U_FUNCTION	if functionality is not supported
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_P2 		if ``src_ra`` is invalid.
	* U_P3		if the ``dest_gpa`` address is invalid.
	* U_P4		if any bit in the ``flags`` is unrecognized
	* U_P5		if the ``order`` parameter is unsupported.

Description
~~~~~~~~~~~

    Move the contents of the page identified by ``src_ra`` from normal
    memory to secure memory and map it to the guest physical address
    ``dest_gpa``.

    If `dest_gpa` refers to a shared address, map the page into the
    partition-scoped page-table of the SVM.  If `dest_gpa` is not shared,
    copy the contents of the page into the corresponding secure page.
    Depending on the context, decrypt the page before being copied.

    The caller provides the attributes of the page through the ``flags``
    parameter. Valid values for ``flags`` are:

	* CACHE_INHIBITED
	* CACHE_ENABLED
	* WRITE_PROTECTION

    The Hypervisor must pin the page in memory before making
    ``UV_PAGE_IN`` ultracall.

Use cases
~~~~~~~~~

    #. When a normal VM switches to secure mode, all its pages residing
       in normal memory, are moved into secure memory.

    #. When an SVM requests to share a page with Hypervisor the Hypervisor
       allocates a page and informs the Ultravisor.

    #. When an SVM accesses a secure page that has been paged-out,
       Ultravisor invokes the Hypervisor to locate the page. After
       locating the page, the Hypervisor uses UV_PAGE_IN to make the
       page available to Ultravisor.

UV_PAGE_INVAL
-------------

    Invalidate the Ultravisor mapping of a page.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_PAGE_INVAL,
		uint16_t lpid,		/* the LPAR ID */
		uint64_t guest_pa,	/* destination guest-physical-address */
		uint64_t order)		/* page size order */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_P2 		if ``guest_pa`` is invalid (or corresponds to a secure
                        page mapping).
	* U_P3		if the ``order`` is invalid.
	* U_FUNCTION	if functionality is not supported.
	* U_BUSY	if page cannot be currently invalidated.

Description
~~~~~~~~~~~

    This ultracall informs Ultravisor that the page mapping in Hypervisor
    corresponding to the given guest physical address has been invalidated
    and that the Ultravisor should not access the page. If the specified
    ``guest_pa`` corresponds to a secure page, Ultravisor will ignore the
    attempt to invalidate the page and return U_P2.

Use cases
~~~~~~~~~

    #. When a shared page is unmapped from the QEMU's page table, possibly
       because it is paged-out to disk, Ultravisor needs to know that the
       page should not be accessed from its side too.


UV_WRITE_PATE
-------------

    Validate and write the partition table entry (PATE) for a given
    partition.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_WRITE_PATE,
		uint32_t lpid,		/* the LPAR ID */
		uint64_t dw0		/* the first double word to write */
		uint64_t dw1)		/* the second double word to write */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_BUSY	if PATE cannot be currently written to.
	* U_FUNCTION	if functionality is not supported.
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_P2 		if ``dw0`` is invalid.
	* U_P3		if the ``dw1`` address is invalid.
	* U_PERMISSION	if the Hypervisor is attempting to change the PATE
			of a secure virtual machine or if called from a
			context other than Hypervisor.

Description
~~~~~~~~~~~

    Validate and write a LPID and its partition-table-entry for the given
    LPID.  If the LPID is already allocated and initialized, this call
    results in changing the partition table entry.

Use cases
~~~~~~~~~

    #. The Partition table resides in Secure memory and its entries,
       called PATE (Partition Table Entries), point to the partition-
       scoped page tables for the Hypervisor as well as each of the
       virtual machines (both secure and normal). The Hypervisor
       operates in partition 0 and its partition-scoped page tables
       reside in normal memory.

    #. This ultracall allows the Hypervisor to register the partition-
       scoped and process-scoped page table entries for the Hypervisor
       and other partitions (virtual machines) with the Ultravisor.

    #. If the value of the PATE for an existing partition (VM) changes,
       the TLB cache for the partition is flushed.

    #. The Hypervisor is responsible for allocating LPID. The LPID and
       its PATE entry are registered together.  The Hypervisor manages
       the PATE entries for a normal VM and can change the PATE entry
       anytime. Ultravisor manages the PATE entries for an SVM and
       Hypervisor is not allowed to modify them.

UV_RETURN
---------

    Return control from the Hypervisor back to the Ultravisor after
    processing an hypercall or interrupt that was forwarded (aka
    *reflected*) to the Hypervisor.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_RETURN)

Return values
~~~~~~~~~~~~~

     This call never returns to Hypervisor on success.  It returns
     U_INVALID if ultracall is not made from a Hypervisor context.

Description
~~~~~~~~~~~

    When an SVM makes an hypercall or incurs some other exception, the
    Ultravisor usually forwards (aka *reflects*) the exceptions to the
    Hypervisor.  After processing the exception, Hypervisor uses the
    ``UV_RETURN`` ultracall to return control back to the SVM.

    The expected register state on entry to this ultracall is:

    * Non-volatile registers are restored to their original values.
    * If returning from an hypercall, register R0 contains the return
      value (**unlike other ultracalls**) and, registers R4 through R12
      contain any output values of the hypercall.
    * R3 contains the ultracall number, i.e UV_RETURN.
    * If returning with a synthesized interrupt, R2 contains the
      synthesized interrupt number.

Use cases
~~~~~~~~~

    #. Ultravisor relies on the Hypervisor to provide several services to
       the SVM such as processing hypercall and other exceptions. After
       processing the exception, Hypervisor uses UV_RETURN to return
       control back to the Ultravisor.

    #. Hypervisor has to use this ultracall to return control to the SVM.


UV_REGISTER_MEM_SLOT
--------------------

    Register an SVM address-range with specified properties.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_REGISTER_MEM_SLOT,
		uint64_t lpid,		/* LPAR ID of the SVM */
		uint64_t start_gpa,	/* start guest physical address */
		uint64_t size,		/* size of address range in bytes */
		uint64_t flags		/* reserved for future expansion */
		uint16_t slotid)	/* slot identifier */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_P2 		if ``start_gpa`` is invalid.
	* U_P3		if ``size`` is invalid.
	* U_P4		if any bit in the ``flags`` is unrecognized.
	* U_P5		if the ``slotid`` parameter is unsupported.
	* U_PERMISSION	if called from context other than Hypervisor.
	* U_FUNCTION	if functionality is not supported.


Description
~~~~~~~~~~~

    Register a memory range for an SVM.  The memory range starts at the
    guest physical address ``start_gpa`` and is ``size`` bytes long.

Use cases
~~~~~~~~~


    #. When a virtual machine goes secure, all the memory slots managed by
       the Hypervisor move into secure memory. The Hypervisor iterates
       through each of memory slots, and registers the slot with
       Ultravisor.  Hypervisor may discard some slots such as those used
       for firmware (SLOF).

    #. When new memory is hot-plugged, a new memory slot gets registered.


UV_UNREGISTER_MEM_SLOT
----------------------

    Unregister an SVM address-range that was previously registered using
    UV_REGISTER_MEM_SLOT.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_UNREGISTER_MEM_SLOT,
		uint64_t lpid,		/* LPAR ID of the SVM */
		uint64_t slotid)	/* reservation slotid */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_FUNCTION	if functionality is not supported.
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_P2 		if ``slotid`` is invalid.
	* U_PERMISSION	if called from context other than Hypervisor.

Description
~~~~~~~~~~~

    Release the memory slot identified by ``slotid`` and free any
    resources allocated towards the reservation.

Use cases
~~~~~~~~~

    #. Memory hot-remove.


UV_SVM_TERMINATE
----------------

    Terminate an SVM and release its resources.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_SVM_TERMINATE,
		uint64_t lpid,		/* LPAR ID of the SVM */)

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_FUNCTION	if functionality is not supported.
	* U_PARAMETER	if ``lpid`` is invalid.
	* U_INVALID	if VM is not secure.
	* U_PERMISSION  if not called from a Hypervisor context.

Description
~~~~~~~~~~~

    Terminate an SVM and release all its resources.

Use cases
~~~~~~~~~

    #. Called by Hypervisor when terminating an SVM.


Ultracalls used by SVM
======================

UV_SHARE_PAGE
-------------

    Share a set of guest physical pages with the Hypervisor.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_SHARE_PAGE,
		uint64_t gfn,	/* guest page frame number */
		uint64_t num)	/* number of pages of size PAGE_SIZE */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_FUNCTION	if functionality is not supported.
	* U_INVALID	if the VM is not secure.
	* U_PARAMETER	if ``gfn`` is invalid.
	* U_P2 		if ``num`` is invalid.

Description
~~~~~~~~~~~

    Share the ``num`` pages starting at guest physical frame number ``gfn``
    with the Hypervisor. Assume page size is PAGE_SIZE bytes. Zero the
    pages before returning.

    If the address is already backed by a secure page, unmap the page and
    back it with an insecure page, with the help of the Hypervisor. If it
    is not backed by any page yet, mark the PTE as insecure and back it
    with an insecure page when the address is accessed. If it is already
    backed by an insecure page, zero the page and return.

Use cases
~~~~~~~~~

    #. The Hypervisor cannot access the SVM pages since they are backed by
       secure pages. Hence an SVM must explicitly request Ultravisor for
       pages it can share with Hypervisor.

    #. Shared pages are needed to support virtio and Virtual Processor Area
       (VPA) in SVMs.


UV_UNSHARE_PAGE
---------------

    Restore a shared SVM page to its initial state.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_UNSHARE_PAGE,
		uint64_t gfn,	/* guest page frame number */
		uint73 num)	/* number of pages of size PAGE_SIZE*/

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_FUNCTION	if functionality is not supported.
	* U_INVALID	if VM is not secure.
	* U_PARAMETER	if ``gfn`` is invalid.
	* U_P2 		if ``num`` is invalid.

Description
~~~~~~~~~~~

    Stop sharing ``num`` pages starting at ``gfn`` with the Hypervisor.
    Assume that the page size is PAGE_SIZE. Zero the pages before
    returning.

    If the address is already backed by an insecure page, unmap the page
    and back it with a secure page. Inform the Hypervisor to release
    reference to its shared page. If the address is not backed by a page
    yet, mark the PTE as secure and back it with a secure page when that
    address is accessed. If it is already backed by an secure page zero
    the page and return.

Use cases
~~~~~~~~~

    #. The SVM may decide to unshare a page from the Hypervisor.


UV_UNSHARE_ALL_PAGES
--------------------

    Unshare all pages the SVM has shared with Hypervisor.

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_UNSHARE_ALL_PAGES)

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success.
	* U_FUNCTION	if functionality is not supported.
	* U_INVAL	if VM is not secure.

Description
~~~~~~~~~~~

    Unshare all shared pages from the Hypervisor. All unshared pages are
    zeroed on return. Only pages explicitly shared by the SVM with the
    Hypervisor (using UV_SHARE_PAGE ultracall) are unshared. Ultravisor
    may internally share some pages with the Hypervisor without explicit
    request from the SVM.  These pages will not be unshared by this
    ultracall.

Use cases
~~~~~~~~~

    #. This call is needed when ``kexec`` is used to boot a different
       kernel. It may also be needed during SVM reset.

UV_ESM
------

    Secure the virtual machine (*enter secure mode*).

Syntax
~~~~~~

.. code-block:: c

	uint64_t ultracall(const uint64_t UV_ESM,
		uint64_t esm_blob_addr,	/* location of the ESM blob */
		unint64_t fdt)		/* Flattened device tree */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* U_SUCCESS	on success (including if VM is already secure).
	* U_FUNCTION	if functionality is not supported.
	* U_INVALID	if VM is not secure.
	* U_PARAMETER	if ``esm_blob_addr`` is invalid.
	* U_P2 		if ``fdt`` is invalid.
	* U_PERMISSION	if any integrity checks fail.
	* U_RETRY	insufficient memory to create SVM.
	* U_NO_KEY	symmetric key unavailable.

Description
~~~~~~~~~~~

    Secure the virtual machine. On successful completion, return
    control to the virtual machine at the address specified in the
    ESM blob.

Use cases
~~~~~~~~~

    #. A normal virtual machine can choose to switch to a secure mode.

Hypervisor Calls API
####################

    This document describes the Hypervisor calls (hypercalls) that are
    needed to support the Ultravisor. Hypercalls are services provided by
    the Hypervisor to virtual machines and Ultravisor.

    Register usage for these hypercalls is identical to that of the other
    hypercalls defined in the Power Architecture Platform Reference (PAPR)
    document.  i.e on input, register R3 identifies the specific service
    that is being requested and registers R4 through R11 contain
    additional parameters to the hypercall, if any. On output, register
    R3 contains the return value and registers R4 through R9 contain any
    other output values from the hypercall.

    This document only covers hypercalls currently implemented/planned
    for Ultravisor usage but others can be added here when it makes sense.

    The full specification for all hypercalls/ultracalls will eventually
    be made available in the public/OpenPower version of the PAPR
    specification.

Hypervisor calls to support Ultravisor
======================================

    Following are the set of hypercalls needed to support Ultravisor.

H_SVM_INIT_START
----------------

    Begin the process of converting a normal virtual machine into an SVM.

Syntax
~~~~~~

.. code-block:: c

	uint64_t hypercall(const uint64_t H_SVM_INIT_START)

Return values
~~~~~~~~~~~~~

    One of the following values:

	* H_SUCCESS	 on success.

Description
~~~~~~~~~~~

    Initiate the process of securing a virtual machine. This involves
    coordinating with the Ultravisor, using ultracalls, to allocate
    resources in the Ultravisor for the new SVM, transferring the VM's
    pages from normal to secure memory etc. When the process is
    completed, Ultravisor issues the H_SVM_INIT_DONE hypercall.

Use cases
~~~~~~~~~

     #. Ultravisor uses this hypercall to inform Hypervisor that a VM
        has initiated the process of switching to secure mode.


H_SVM_INIT_DONE
---------------

    Complete the process of securing an SVM.

Syntax
~~~~~~

.. code-block:: c

	uint64_t hypercall(const uint64_t H_SVM_INIT_DONE)

Return values
~~~~~~~~~~~~~

    One of the following values:

	* H_SUCCESS 		on success.
	* H_UNSUPPORTED		if called from the wrong context (e.g.
				from an SVM or before an H_SVM_INIT_START
				hypercall).

Description
~~~~~~~~~~~

    Complete the process of securing a virtual machine. This call must
    be made after a prior call to ``H_SVM_INIT_START`` hypercall.

Use cases
~~~~~~~~~

    On successfully securing a virtual machine, the Ultravisor informs
    Hypervisor about it. Hypervisor can use this call to finish setting
    up its internal state for this virtual machine.


H_SVM_PAGE_IN
-------------

    Move the contents of a page from normal memory to secure memory.

Syntax
~~~~~~

.. code-block:: c

	uint64_t hypercall(const uint64_t H_SVM_PAGE_IN,
		uint64_t guest_pa,	/* guest-physical-address */
		uint64_t flags,		/* flags */
		uint64_t order)		/* page size order */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* H_SUCCESS	on success.
	* H_PARAMETER	if ``guest_pa`` is invalid.
	* H_P2		if ``flags`` is invalid.
	* H_P3		if ``order`` of page is invalid.

Description
~~~~~~~~~~~

    Retrieve the content of the page, belonging to the VM at the specified
    guest physical address.

    Only valid value(s) in ``flags`` are:

        * H_PAGE_IN_SHARED which indicates that the page is to be shared
	  with the Ultravisor.

	* H_PAGE_IN_NONSHARED indicates that the UV is not anymore
          interested in the page. Applicable if the page is a shared page.

    The ``order`` parameter must correspond to the configured page size.

Use cases
~~~~~~~~~

    #. When a normal VM becomes a secure VM (using the UV_ESM ultracall),
       the Ultravisor uses this hypercall to move contents of each page of
       the VM from normal memory to secure memory.

    #. Ultravisor uses this hypercall to ask Hypervisor to provide a page
       in normal memory that can be shared between the SVM and Hypervisor.

    #. Ultravisor uses this hypercall to page-in a paged-out page. This
       can happen when the SVM touches a paged-out page.

    #. If SVM wants to disable sharing of pages with Hypervisor, it can
       inform Ultravisor to do so. Ultravisor will then use this hypercall
       and inform Hypervisor that it has released access to the normal
       page.

H_SVM_PAGE_OUT
---------------

    Move the contents of the page to normal memory.

Syntax
~~~~~~

.. code-block:: c

	uint64_t hypercall(const uint64_t H_SVM_PAGE_OUT,
		uint64_t guest_pa,	/* guest-physical-address */
		uint64_t flags,		/* flags (currently none) */
		uint64_t order)		/* page size order */

Return values
~~~~~~~~~~~~~

    One of the following values:

	* H_SUCCESS	on success.
	* H_PARAMETER	if ``guest_pa`` is invalid.
	* H_P2		if ``flags`` is invalid.
	* H_P3		if ``order`` is invalid.

Description
~~~~~~~~~~~

    Move the contents of the page identified by ``guest_pa`` to normal
    memory.

    Currently ``flags`` is unused and must be set to 0. The ``order``
    parameter must correspond to the configured page size.

Use cases
~~~~~~~~~

    #. If Ultravisor is running low on secure pages, it can move the
       contents of some secure pages, into normal pages using this
       hypercall. The content will be encrypted.

References
##########

- `Supporting Protected Computing on IBM Power Architecture <https://developer.ibm.com/articles/l-support-protected-computing/>`_