Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
// SPDX-License-Identifier: GPL-2.0-only
/*
 * BPF JIT compiler for ARM64
 *
 * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
 */

#define pr_fmt(fmt) "bpf_jit: " fmt

#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/printk.h>
#include <linux/slab.h>

#include <asm/byteorder.h>
#include <asm/cacheflush.h>
#include <asm/debug-monitors.h>
#include <asm/set_memory.h>

#include "bpf_jit.h"

#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
#define TCALL_CNT (MAX_BPF_JIT_REG + 2)
#define TMP_REG_3 (MAX_BPF_JIT_REG + 3)

/* Map BPF registers to A64 registers */
static const int bpf2a64[] = {
	/* return value from in-kernel function, and exit value from eBPF */
	[BPF_REG_0] = A64_R(7),
	/* arguments from eBPF program to in-kernel function */
	[BPF_REG_1] = A64_R(0),
	[BPF_REG_2] = A64_R(1),
	[BPF_REG_3] = A64_R(2),
	[BPF_REG_4] = A64_R(3),
	[BPF_REG_5] = A64_R(4),
	/* callee saved registers that in-kernel function will preserve */
	[BPF_REG_6] = A64_R(19),
	[BPF_REG_7] = A64_R(20),
	[BPF_REG_8] = A64_R(21),
	[BPF_REG_9] = A64_R(22),
	/* read-only frame pointer to access stack */
	[BPF_REG_FP] = A64_R(25),
	/* temporary registers for internal BPF JIT */
	[TMP_REG_1] = A64_R(10),
	[TMP_REG_2] = A64_R(11),
	[TMP_REG_3] = A64_R(12),
	/* tail_call_cnt */
	[TCALL_CNT] = A64_R(26),
	/* temporary register for blinding constants */
	[BPF_REG_AX] = A64_R(9),
};

struct jit_ctx {
	const struct bpf_prog *prog;
	int idx;
	int epilogue_offset;
	int *offset;
	__le32 *image;
	u32 stack_size;
};

static inline void emit(const u32 insn, struct jit_ctx *ctx)
{
	if (ctx->image != NULL)
		ctx->image[ctx->idx] = cpu_to_le32(insn);

	ctx->idx++;
}

static inline void emit_a64_mov_i(const int is64, const int reg,
				  const s32 val, struct jit_ctx *ctx)
{
	u16 hi = val >> 16;
	u16 lo = val & 0xffff;

	if (hi & 0x8000) {
		if (hi == 0xffff) {
			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
		} else {
			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
			if (lo != 0xffff)
				emit(A64_MOVK(is64, reg, lo, 0), ctx);
		}
	} else {
		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
		if (hi)
			emit(A64_MOVK(is64, reg, hi, 16), ctx);
	}
}

static int i64_i16_blocks(const u64 val, bool inverse)
{
	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
}

static inline void emit_a64_mov_i64(const int reg, const u64 val,
				    struct jit_ctx *ctx)
{
	u64 nrm_tmp = val, rev_tmp = ~val;
	bool inverse;
	int shift;

	if (!(nrm_tmp >> 32))
		return emit_a64_mov_i(0, reg, (u32)val, ctx);

	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
					  (fls64(nrm_tmp) - 1)), 16), 0);
	if (inverse)
		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
	else
		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
	shift -= 16;
	while (shift >= 0) {
		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
		shift -= 16;
	}
}

/*
 * Kernel addresses in the vmalloc space use at most 48 bits, and the
 * remaining bits are guaranteed to be 0x1. So we can compose the address
 * with a fixed length movn/movk/movk sequence.
 */
static inline void emit_addr_mov_i64(const int reg, const u64 val,
				     struct jit_ctx *ctx)
{
	u64 tmp = val;
	int shift = 0;

	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
	while (shift < 32) {
		tmp >>= 16;
		shift += 16;
		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
	}
}

static inline int bpf2a64_offset(int bpf_to, int bpf_from,
				 const struct jit_ctx *ctx)
{
	int to = ctx->offset[bpf_to];
	/* -1 to account for the Branch instruction */
	int from = ctx->offset[bpf_from] - 1;

	return to - from;
}

static void jit_fill_hole(void *area, unsigned int size)
{
	__le32 *ptr;
	/* We are guaranteed to have aligned memory. */
	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
}

static inline int epilogue_offset(const struct jit_ctx *ctx)
{
	int to = ctx->epilogue_offset;
	int from = ctx->idx;

	return to - from;
}

/* Stack must be multiples of 16B */
#define STACK_ALIGN(sz) (((sz) + 15) & ~15)

/* Tail call offset to jump into */
#define PROLOGUE_OFFSET 7

static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
{
	const struct bpf_prog *prog = ctx->prog;
	const u8 r6 = bpf2a64[BPF_REG_6];
	const u8 r7 = bpf2a64[BPF_REG_7];
	const u8 r8 = bpf2a64[BPF_REG_8];
	const u8 r9 = bpf2a64[BPF_REG_9];
	const u8 fp = bpf2a64[BPF_REG_FP];
	const u8 tcc = bpf2a64[TCALL_CNT];
	const int idx0 = ctx->idx;
	int cur_offset;

	/*
	 * BPF prog stack layout
	 *
	 *                         high
	 * original A64_SP =>   0:+-----+ BPF prologue
	 *                        |FP/LR|
	 * current A64_FP =>  -16:+-----+
	 *                        | ... | callee saved registers
	 * BPF fp register => -64:+-----+ <= (BPF_FP)
	 *                        |     |
	 *                        | ... | BPF prog stack
	 *                        |     |
	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
	 *                        |RSVD | padding
	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
	 *                        |     |
	 *                        | ... | Function call stack
	 *                        |     |
	 *                        +-----+
	 *                          low
	 *
	 */

	/* Save FP and LR registers to stay align with ARM64 AAPCS */
	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
	emit(A64_MOV(1, A64_FP, A64_SP), ctx);

	/* Save callee-saved registers */
	emit(A64_PUSH(r6, r7, A64_SP), ctx);
	emit(A64_PUSH(r8, r9, A64_SP), ctx);
	emit(A64_PUSH(fp, tcc, A64_SP), ctx);

	/* Set up BPF prog stack base register */
	emit(A64_MOV(1, fp, A64_SP), ctx);

	if (!ebpf_from_cbpf) {
		/* Initialize tail_call_cnt */
		emit(A64_MOVZ(1, tcc, 0, 0), ctx);

		cur_offset = ctx->idx - idx0;
		if (cur_offset != PROLOGUE_OFFSET) {
			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
				    cur_offset, PROLOGUE_OFFSET);
			return -1;
		}
	}

	ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth);

	/* Set up function call stack */
	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
	return 0;
}

static int out_offset = -1; /* initialized on the first pass of build_body() */
static int emit_bpf_tail_call(struct jit_ctx *ctx)
{
	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
	const u8 r2 = bpf2a64[BPF_REG_2];
	const u8 r3 = bpf2a64[BPF_REG_3];

	const u8 tmp = bpf2a64[TMP_REG_1];
	const u8 prg = bpf2a64[TMP_REG_2];
	const u8 tcc = bpf2a64[TCALL_CNT];
	const int idx0 = ctx->idx;
#define cur_offset (ctx->idx - idx0)
#define jmp_offset (out_offset - (cur_offset))
	size_t off;

	/* if (index >= array->map.max_entries)
	 *     goto out;
	 */
	off = offsetof(struct bpf_array, map.max_entries);
	emit_a64_mov_i64(tmp, off, ctx);
	emit(A64_LDR32(tmp, r2, tmp), ctx);
	emit(A64_MOV(0, r3, r3), ctx);
	emit(A64_CMP(0, r3, tmp), ctx);
	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);

	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
	 *     goto out;
	 * tail_call_cnt++;
	 */
	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
	emit(A64_CMP(1, tcc, tmp), ctx);
	emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);

	/* prog = array->ptrs[index];
	 * if (prog == NULL)
	 *     goto out;
	 */
	off = offsetof(struct bpf_array, ptrs);
	emit_a64_mov_i64(tmp, off, ctx);
	emit(A64_ADD(1, tmp, r2, tmp), ctx);
	emit(A64_LSL(1, prg, r3, 3), ctx);
	emit(A64_LDR64(prg, tmp, prg), ctx);
	emit(A64_CBZ(1, prg, jmp_offset), ctx);

	/* goto *(prog->bpf_func + prologue_offset); */
	off = offsetof(struct bpf_prog, bpf_func);
	emit_a64_mov_i64(tmp, off, ctx);
	emit(A64_LDR64(tmp, prg, tmp), ctx);
	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
	emit(A64_BR(tmp), ctx);

	/* out: */
	if (out_offset == -1)
		out_offset = cur_offset;
	if (cur_offset != out_offset) {
		pr_err_once("tail_call out_offset = %d, expected %d!\n",
			    cur_offset, out_offset);
		return -1;
	}
	return 0;
#undef cur_offset
#undef jmp_offset
}

static void build_epilogue(struct jit_ctx *ctx)
{
	const u8 r0 = bpf2a64[BPF_REG_0];
	const u8 r6 = bpf2a64[BPF_REG_6];
	const u8 r7 = bpf2a64[BPF_REG_7];
	const u8 r8 = bpf2a64[BPF_REG_8];
	const u8 r9 = bpf2a64[BPF_REG_9];
	const u8 fp = bpf2a64[BPF_REG_FP];

	/* We're done with BPF stack */
	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);

	/* Restore fs (x25) and x26 */
	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);

	/* Restore callee-saved register */
	emit(A64_POP(r8, r9, A64_SP), ctx);
	emit(A64_POP(r6, r7, A64_SP), ctx);

	/* Restore FP/LR registers */
	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);

	/* Set return value */
	emit(A64_MOV(1, A64_R(0), r0), ctx);

	emit(A64_RET(A64_LR), ctx);
}

/* JITs an eBPF instruction.
 * Returns:
 * 0  - successfully JITed an 8-byte eBPF instruction.
 * >0 - successfully JITed a 16-byte eBPF instruction.
 * <0 - failed to JIT.
 */
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
		      bool extra_pass)
{
	const u8 code = insn->code;
	const u8 dst = bpf2a64[insn->dst_reg];
	const u8 src = bpf2a64[insn->src_reg];
	const u8 tmp = bpf2a64[TMP_REG_1];
	const u8 tmp2 = bpf2a64[TMP_REG_2];
	const u8 tmp3 = bpf2a64[TMP_REG_3];
	const s16 off = insn->off;
	const s32 imm = insn->imm;
	const int i = insn - ctx->prog->insnsi;
	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
			  BPF_CLASS(code) == BPF_JMP;
	const bool isdw = BPF_SIZE(code) == BPF_DW;
	u8 jmp_cond, reg;
	s32 jmp_offset;

#define check_imm(bits, imm) do {				\
	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
			i, imm, imm);				\
		return -EINVAL;					\
	}							\
} while (0)
#define check_imm19(imm) check_imm(19, imm)
#define check_imm26(imm) check_imm(26, imm)

	switch (code) {
	/* dst = src */
	case BPF_ALU | BPF_MOV | BPF_X:
	case BPF_ALU64 | BPF_MOV | BPF_X:
		emit(A64_MOV(is64, dst, src), ctx);
		break;
	/* dst = dst OP src */
	case BPF_ALU | BPF_ADD | BPF_X:
	case BPF_ALU64 | BPF_ADD | BPF_X:
		emit(A64_ADD(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_SUB | BPF_X:
	case BPF_ALU64 | BPF_SUB | BPF_X:
		emit(A64_SUB(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_AND | BPF_X:
	case BPF_ALU64 | BPF_AND | BPF_X:
		emit(A64_AND(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_OR | BPF_X:
	case BPF_ALU64 | BPF_OR | BPF_X:
		emit(A64_ORR(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_XOR | BPF_X:
	case BPF_ALU64 | BPF_XOR | BPF_X:
		emit(A64_EOR(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_MUL | BPF_X:
	case BPF_ALU64 | BPF_MUL | BPF_X:
		emit(A64_MUL(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_DIV | BPF_X:
	case BPF_ALU64 | BPF_DIV | BPF_X:
	case BPF_ALU | BPF_MOD | BPF_X:
	case BPF_ALU64 | BPF_MOD | BPF_X:
		switch (BPF_OP(code)) {
		case BPF_DIV:
			emit(A64_UDIV(is64, dst, dst, src), ctx);
			break;
		case BPF_MOD:
			emit(A64_UDIV(is64, tmp, dst, src), ctx);
			emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
			break;
		}
		break;
	case BPF_ALU | BPF_LSH | BPF_X:
	case BPF_ALU64 | BPF_LSH | BPF_X:
		emit(A64_LSLV(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_RSH | BPF_X:
	case BPF_ALU64 | BPF_RSH | BPF_X:
		emit(A64_LSRV(is64, dst, dst, src), ctx);
		break;
	case BPF_ALU | BPF_ARSH | BPF_X:
	case BPF_ALU64 | BPF_ARSH | BPF_X:
		emit(A64_ASRV(is64, dst, dst, src), ctx);
		break;
	/* dst = -dst */
	case BPF_ALU | BPF_NEG:
	case BPF_ALU64 | BPF_NEG:
		emit(A64_NEG(is64, dst, dst), ctx);
		break;
	/* dst = BSWAP##imm(dst) */
	case BPF_ALU | BPF_END | BPF_FROM_LE:
	case BPF_ALU | BPF_END | BPF_FROM_BE:
#ifdef CONFIG_CPU_BIG_ENDIAN
		if (BPF_SRC(code) == BPF_FROM_BE)
			goto emit_bswap_uxt;
#else /* !CONFIG_CPU_BIG_ENDIAN */
		if (BPF_SRC(code) == BPF_FROM_LE)
			goto emit_bswap_uxt;
#endif
		switch (imm) {
		case 16:
			emit(A64_REV16(is64, dst, dst), ctx);
			/* zero-extend 16 bits into 64 bits */
			emit(A64_UXTH(is64, dst, dst), ctx);
			break;
		case 32:
			emit(A64_REV32(is64, dst, dst), ctx);
			/* upper 32 bits already cleared */
			break;
		case 64:
			emit(A64_REV64(dst, dst), ctx);
			break;
		}
		break;
emit_bswap_uxt:
		switch (imm) {
		case 16:
			/* zero-extend 16 bits into 64 bits */
			emit(A64_UXTH(is64, dst, dst), ctx);
			break;
		case 32:
			/* zero-extend 32 bits into 64 bits */
			emit(A64_UXTW(is64, dst, dst), ctx);
			break;
		case 64:
			/* nop */
			break;
		}
		break;
	/* dst = imm */
	case BPF_ALU | BPF_MOV | BPF_K:
	case BPF_ALU64 | BPF_MOV | BPF_K:
		emit_a64_mov_i(is64, dst, imm, ctx);
		break;
	/* dst = dst OP imm */
	case BPF_ALU | BPF_ADD | BPF_K:
	case BPF_ALU64 | BPF_ADD | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_ADD(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_SUB | BPF_K:
	case BPF_ALU64 | BPF_SUB | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_SUB(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_AND | BPF_K:
	case BPF_ALU64 | BPF_AND | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_AND(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_OR | BPF_K:
	case BPF_ALU64 | BPF_OR | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_ORR(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_XOR | BPF_K:
	case BPF_ALU64 | BPF_XOR | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_EOR(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_MUL | BPF_K:
	case BPF_ALU64 | BPF_MUL | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_MUL(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_DIV | BPF_K:
	case BPF_ALU64 | BPF_DIV | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
		break;
	case BPF_ALU | BPF_MOD | BPF_K:
	case BPF_ALU64 | BPF_MOD | BPF_K:
		emit_a64_mov_i(is64, tmp2, imm, ctx);
		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
		emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
		break;
	case BPF_ALU | BPF_LSH | BPF_K:
	case BPF_ALU64 | BPF_LSH | BPF_K:
		emit(A64_LSL(is64, dst, dst, imm), ctx);
		break;
	case BPF_ALU | BPF_RSH | BPF_K:
	case BPF_ALU64 | BPF_RSH | BPF_K:
		emit(A64_LSR(is64, dst, dst, imm), ctx);
		break;
	case BPF_ALU | BPF_ARSH | BPF_K:
	case BPF_ALU64 | BPF_ARSH | BPF_K:
		emit(A64_ASR(is64, dst, dst, imm), ctx);
		break;

	/* JUMP off */
	case BPF_JMP | BPF_JA:
		jmp_offset = bpf2a64_offset(i + off, i, ctx);
		check_imm26(jmp_offset);
		emit(A64_B(jmp_offset), ctx);
		break;
	/* IF (dst COND src) JUMP off */
	case BPF_JMP | BPF_JEQ | BPF_X:
	case BPF_JMP | BPF_JGT | BPF_X:
	case BPF_JMP | BPF_JLT | BPF_X:
	case BPF_JMP | BPF_JGE | BPF_X:
	case BPF_JMP | BPF_JLE | BPF_X:
	case BPF_JMP | BPF_JNE | BPF_X:
	case BPF_JMP | BPF_JSGT | BPF_X:
	case BPF_JMP | BPF_JSLT | BPF_X:
	case BPF_JMP | BPF_JSGE | BPF_X:
	case BPF_JMP | BPF_JSLE | BPF_X:
	case BPF_JMP32 | BPF_JEQ | BPF_X:
	case BPF_JMP32 | BPF_JGT | BPF_X:
	case BPF_JMP32 | BPF_JLT | BPF_X:
	case BPF_JMP32 | BPF_JGE | BPF_X:
	case BPF_JMP32 | BPF_JLE | BPF_X:
	case BPF_JMP32 | BPF_JNE | BPF_X:
	case BPF_JMP32 | BPF_JSGT | BPF_X:
	case BPF_JMP32 | BPF_JSLT | BPF_X:
	case BPF_JMP32 | BPF_JSGE | BPF_X:
	case BPF_JMP32 | BPF_JSLE | BPF_X:
		emit(A64_CMP(is64, dst, src), ctx);
emit_cond_jmp:
		jmp_offset = bpf2a64_offset(i + off, i, ctx);
		check_imm19(jmp_offset);
		switch (BPF_OP(code)) {
		case BPF_JEQ:
			jmp_cond = A64_COND_EQ;
			break;
		case BPF_JGT:
			jmp_cond = A64_COND_HI;
			break;
		case BPF_JLT:
			jmp_cond = A64_COND_CC;
			break;
		case BPF_JGE:
			jmp_cond = A64_COND_CS;
			break;
		case BPF_JLE:
			jmp_cond = A64_COND_LS;
			break;
		case BPF_JSET:
		case BPF_JNE:
			jmp_cond = A64_COND_NE;
			break;
		case BPF_JSGT:
			jmp_cond = A64_COND_GT;
			break;
		case BPF_JSLT:
			jmp_cond = A64_COND_LT;
			break;
		case BPF_JSGE:
			jmp_cond = A64_COND_GE;
			break;
		case BPF_JSLE:
			jmp_cond = A64_COND_LE;
			break;
		default:
			return -EFAULT;
		}
		emit(A64_B_(jmp_cond, jmp_offset), ctx);
		break;
	case BPF_JMP | BPF_JSET | BPF_X:
	case BPF_JMP32 | BPF_JSET | BPF_X:
		emit(A64_TST(is64, dst, src), ctx);
		goto emit_cond_jmp;
	/* IF (dst COND imm) JUMP off */
	case BPF_JMP | BPF_JEQ | BPF_K:
	case BPF_JMP | BPF_JGT | BPF_K:
	case BPF_JMP | BPF_JLT | BPF_K:
	case BPF_JMP | BPF_JGE | BPF_K:
	case BPF_JMP | BPF_JLE | BPF_K:
	case BPF_JMP | BPF_JNE | BPF_K:
	case BPF_JMP | BPF_JSGT | BPF_K:
	case BPF_JMP | BPF_JSLT | BPF_K:
	case BPF_JMP | BPF_JSGE | BPF_K:
	case BPF_JMP | BPF_JSLE | BPF_K:
	case BPF_JMP32 | BPF_JEQ | BPF_K:
	case BPF_JMP32 | BPF_JGT | BPF_K:
	case BPF_JMP32 | BPF_JLT | BPF_K:
	case BPF_JMP32 | BPF_JGE | BPF_K:
	case BPF_JMP32 | BPF_JLE | BPF_K:
	case BPF_JMP32 | BPF_JNE | BPF_K:
	case BPF_JMP32 | BPF_JSGT | BPF_K:
	case BPF_JMP32 | BPF_JSLT | BPF_K:
	case BPF_JMP32 | BPF_JSGE | BPF_K:
	case BPF_JMP32 | BPF_JSLE | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_CMP(is64, dst, tmp), ctx);
		goto emit_cond_jmp;
	case BPF_JMP | BPF_JSET | BPF_K:
	case BPF_JMP32 | BPF_JSET | BPF_K:
		emit_a64_mov_i(is64, tmp, imm, ctx);
		emit(A64_TST(is64, dst, tmp), ctx);
		goto emit_cond_jmp;
	/* function call */
	case BPF_JMP | BPF_CALL:
	{
		const u8 r0 = bpf2a64[BPF_REG_0];
		bool func_addr_fixed;
		u64 func_addr;
		int ret;

		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
					    &func_addr, &func_addr_fixed);
		if (ret < 0)
			return ret;
		emit_addr_mov_i64(tmp, func_addr, ctx);
		emit(A64_BLR(tmp), ctx);
		emit(A64_MOV(1, r0, A64_R(0)), ctx);
		break;
	}
	/* tail call */
	case BPF_JMP | BPF_TAIL_CALL:
		if (emit_bpf_tail_call(ctx))
			return -EFAULT;
		break;
	/* function return */
	case BPF_JMP | BPF_EXIT:
		/* Optimization: when last instruction is EXIT,
		   simply fallthrough to epilogue. */
		if (i == ctx->prog->len - 1)
			break;
		jmp_offset = epilogue_offset(ctx);
		check_imm26(jmp_offset);
		emit(A64_B(jmp_offset), ctx);
		break;

	/* dst = imm64 */
	case BPF_LD | BPF_IMM | BPF_DW:
	{
		const struct bpf_insn insn1 = insn[1];
		u64 imm64;

		imm64 = (u64)insn1.imm << 32 | (u32)imm;
		emit_a64_mov_i64(dst, imm64, ctx);

		return 1;
	}

	/* LDX: dst = *(size *)(src + off) */
	case BPF_LDX | BPF_MEM | BPF_W:
	case BPF_LDX | BPF_MEM | BPF_H:
	case BPF_LDX | BPF_MEM | BPF_B:
	case BPF_LDX | BPF_MEM | BPF_DW:
		emit_a64_mov_i(1, tmp, off, ctx);
		switch (BPF_SIZE(code)) {
		case BPF_W:
			emit(A64_LDR32(dst, src, tmp), ctx);
			break;
		case BPF_H:
			emit(A64_LDRH(dst, src, tmp), ctx);
			break;
		case BPF_B:
			emit(A64_LDRB(dst, src, tmp), ctx);
			break;
		case BPF_DW:
			emit(A64_LDR64(dst, src, tmp), ctx);
			break;
		}
		break;

	/* ST: *(size *)(dst + off) = imm */
	case BPF_ST | BPF_MEM | BPF_W:
	case BPF_ST | BPF_MEM | BPF_H:
	case BPF_ST | BPF_MEM | BPF_B:
	case BPF_ST | BPF_MEM | BPF_DW:
		/* Load imm to a register then store it */
		emit_a64_mov_i(1, tmp2, off, ctx);
		emit_a64_mov_i(1, tmp, imm, ctx);
		switch (BPF_SIZE(code)) {
		case BPF_W:
			emit(A64_STR32(tmp, dst, tmp2), ctx);
			break;
		case BPF_H:
			emit(A64_STRH(tmp, dst, tmp2), ctx);
			break;
		case BPF_B:
			emit(A64_STRB(tmp, dst, tmp2), ctx);
			break;
		case BPF_DW:
			emit(A64_STR64(tmp, dst, tmp2), ctx);
			break;
		}
		break;

	/* STX: *(size *)(dst + off) = src */
	case BPF_STX | BPF_MEM | BPF_W:
	case BPF_STX | BPF_MEM | BPF_H:
	case BPF_STX | BPF_MEM | BPF_B:
	case BPF_STX | BPF_MEM | BPF_DW:
		emit_a64_mov_i(1, tmp, off, ctx);
		switch (BPF_SIZE(code)) {
		case BPF_W:
			emit(A64_STR32(src, dst, tmp), ctx);
			break;
		case BPF_H:
			emit(A64_STRH(src, dst, tmp), ctx);
			break;
		case BPF_B:
			emit(A64_STRB(src, dst, tmp), ctx);
			break;
		case BPF_DW:
			emit(A64_STR64(src, dst, tmp), ctx);
			break;
		}
		break;

	/* STX XADD: lock *(u32 *)(dst + off) += src */
	case BPF_STX | BPF_XADD | BPF_W:
	/* STX XADD: lock *(u64 *)(dst + off) += src */
	case BPF_STX | BPF_XADD | BPF_DW:
		if (!off) {
			reg = dst;
		} else {
			emit_a64_mov_i(1, tmp, off, ctx);
			emit(A64_ADD(1, tmp, tmp, dst), ctx);
			reg = tmp;
		}
		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) {
			emit(A64_STADD(isdw, reg, src), ctx);
		} else {
			emit(A64_LDXR(isdw, tmp2, reg), ctx);
			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
			emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
			jmp_offset = -3;
			check_imm19(jmp_offset);
			emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
		}
		break;

	default:
		pr_err_once("unknown opcode %02x\n", code);
		return -EINVAL;
	}

	return 0;
}

static int build_body(struct jit_ctx *ctx, bool extra_pass)
{
	const struct bpf_prog *prog = ctx->prog;
	int i;

	for (i = 0; i < prog->len; i++) {
		const struct bpf_insn *insn = &prog->insnsi[i];
		int ret;

		ret = build_insn(insn, ctx, extra_pass);
		if (ret > 0) {
			i++;
			if (ctx->image == NULL)
				ctx->offset[i] = ctx->idx;
			continue;
		}
		if (ctx->image == NULL)
			ctx->offset[i] = ctx->idx;
		if (ret)
			return ret;
	}

	return 0;
}

static int validate_code(struct jit_ctx *ctx)
{
	int i;

	for (i = 0; i < ctx->idx; i++) {
		u32 a64_insn = le32_to_cpu(ctx->image[i]);

		if (a64_insn == AARCH64_BREAK_FAULT)
			return -1;
	}

	return 0;
}

static inline void bpf_flush_icache(void *start, void *end)
{
	flush_icache_range((unsigned long)start, (unsigned long)end);
}

struct arm64_jit_data {
	struct bpf_binary_header *header;
	u8 *image;
	struct jit_ctx ctx;
};

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
	struct bpf_prog *tmp, *orig_prog = prog;
	struct bpf_binary_header *header;
	struct arm64_jit_data *jit_data;
	bool was_classic = bpf_prog_was_classic(prog);
	bool tmp_blinded = false;
	bool extra_pass = false;
	struct jit_ctx ctx;
	int image_size;
	u8 *image_ptr;

	if (!prog->jit_requested)
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}

	jit_data = prog->aux->jit_data;
	if (!jit_data) {
		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
		if (!jit_data) {
			prog = orig_prog;
			goto out;
		}
		prog->aux->jit_data = jit_data;
	}
	if (jit_data->ctx.offset) {
		ctx = jit_data->ctx;
		image_ptr = jit_data->image;
		header = jit_data->header;
		extra_pass = true;
		image_size = sizeof(u32) * ctx.idx;
		goto skip_init_ctx;
	}
	memset(&ctx, 0, sizeof(ctx));
	ctx.prog = prog;

	ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
	if (ctx.offset == NULL) {
		prog = orig_prog;
		goto out_off;
	}

	/* 1. Initial fake pass to compute ctx->idx. */

	/* Fake pass to fill in ctx->offset. */
	if (build_body(&ctx, extra_pass)) {
		prog = orig_prog;
		goto out_off;
	}

	if (build_prologue(&ctx, was_classic)) {
		prog = orig_prog;
		goto out_off;
	}

	ctx.epilogue_offset = ctx.idx;
	build_epilogue(&ctx);

	/* Now we know the actual image size. */
	image_size = sizeof(u32) * ctx.idx;
	header = bpf_jit_binary_alloc(image_size, &image_ptr,
				      sizeof(u32), jit_fill_hole);
	if (header == NULL) {
		prog = orig_prog;
		goto out_off;
	}

	/* 2. Now, the actual pass. */

	ctx.image = (__le32 *)image_ptr;
skip_init_ctx:
	ctx.idx = 0;

	build_prologue(&ctx, was_classic);

	if (build_body(&ctx, extra_pass)) {
		bpf_jit_binary_free(header);
		prog = orig_prog;
		goto out_off;
	}

	build_epilogue(&ctx);

	/* 3. Extra pass to validate JITed code. */
	if (validate_code(&ctx)) {
		bpf_jit_binary_free(header);
		prog = orig_prog;
		goto out_off;
	}

	/* And we're done. */
	if (bpf_jit_enable > 1)
		bpf_jit_dump(prog->len, image_size, 2, ctx.image);

	bpf_flush_icache(header, ctx.image + ctx.idx);

	if (!prog->is_func || extra_pass) {
		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
			pr_err_once("multi-func JIT bug %d != %d\n",
				    ctx.idx, jit_data->ctx.idx);
			bpf_jit_binary_free(header);
			prog->bpf_func = NULL;
			prog->jited = 0;
			goto out_off;
		}
		bpf_jit_binary_lock_ro(header);
	} else {
		jit_data->ctx = ctx;
		jit_data->image = image_ptr;
		jit_data->header = header;
	}
	prog->bpf_func = (void *)ctx.image;
	prog->jited = 1;
	prog->jited_len = image_size;

	if (!prog->is_func || extra_pass) {
		bpf_prog_fill_jited_linfo(prog, ctx.offset);
out_off:
		kfree(ctx.offset);
		kfree(jit_data);
		prog->aux->jit_data = NULL;
	}
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
	return prog;
}

void *bpf_jit_alloc_exec(unsigned long size)
{
	return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
				    BPF_JIT_REGION_END, GFP_KERNEL,
				    PAGE_KERNEL, 0, NUMA_NO_NODE,
				    __builtin_return_address(0));
}

void bpf_jit_free_exec(void *addr)
{
	return vfree(addr);
}