Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
/*
 *	An async IO implementation for Linux
 *	Written by Benjamin LaHaise <bcrl@kvack.org>
 *
 *	Implements an efficient asynchronous io interface.
 *
 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
 *	Copyright 2018 Christoph Hellwig.
 *
 *	See ../COPYING for licensing terms.
 */
#define pr_fmt(fmt) "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/aio_abi.h>
#include <linux/export.h>
#include <linux/syscalls.h>
#include <linux/backing-dev.h>
#include <linux/refcount.h>
#include <linux/uio.h>

#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/mmu_context.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/aio.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/eventfd.h>
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/migrate.h>
#include <linux/ramfs.h>
#include <linux/percpu-refcount.h>
#include <linux/mount.h>
#include <linux/pseudo_fs.h>

#include <asm/kmap_types.h>
#include <linux/uaccess.h>
#include <linux/nospec.h>

#include "internal.h"

#define KIOCB_KEY		0

#define AIO_RING_MAGIC			0xa10a10a1
#define AIO_RING_COMPAT_FEATURES	1
#define AIO_RING_INCOMPAT_FEATURES	0
struct aio_ring {
	unsigned	id;	/* kernel internal index number */
	unsigned	nr;	/* number of io_events */
	unsigned	head;	/* Written to by userland or under ring_lock
				 * mutex by aio_read_events_ring(). */
	unsigned	tail;

	unsigned	magic;
	unsigned	compat_features;
	unsigned	incompat_features;
	unsigned	header_length;	/* size of aio_ring */


	struct io_event		io_events[0];
}; /* 128 bytes + ring size */

/*
 * Plugging is meant to work with larger batches of IOs. If we don't
 * have more than the below, then don't bother setting up a plug.
 */
#define AIO_PLUG_THRESHOLD	2

#define AIO_RING_PAGES	8

struct kioctx_table {
	struct rcu_head		rcu;
	unsigned		nr;
	struct kioctx __rcu	*table[];
};

struct kioctx_cpu {
	unsigned		reqs_available;
};

struct ctx_rq_wait {
	struct completion comp;
	atomic_t count;
};

struct kioctx {
	struct percpu_ref	users;
	atomic_t		dead;

	struct percpu_ref	reqs;

	unsigned long		user_id;

	struct __percpu kioctx_cpu *cpu;

	/*
	 * For percpu reqs_available, number of slots we move to/from global
	 * counter at a time:
	 */
	unsigned		req_batch;
	/*
	 * This is what userspace passed to io_setup(), it's not used for
	 * anything but counting against the global max_reqs quota.
	 *
	 * The real limit is nr_events - 1, which will be larger (see
	 * aio_setup_ring())
	 */
	unsigned		max_reqs;

	/* Size of ringbuffer, in units of struct io_event */
	unsigned		nr_events;

	unsigned long		mmap_base;
	unsigned long		mmap_size;

	struct page		**ring_pages;
	long			nr_pages;

	struct rcu_work		free_rwork;	/* see free_ioctx() */

	/*
	 * signals when all in-flight requests are done
	 */
	struct ctx_rq_wait	*rq_wait;

	struct {
		/*
		 * This counts the number of available slots in the ringbuffer,
		 * so we avoid overflowing it: it's decremented (if positive)
		 * when allocating a kiocb and incremented when the resulting
		 * io_event is pulled off the ringbuffer.
		 *
		 * We batch accesses to it with a percpu version.
		 */
		atomic_t	reqs_available;
	} ____cacheline_aligned_in_smp;

	struct {
		spinlock_t	ctx_lock;
		struct list_head active_reqs;	/* used for cancellation */
	} ____cacheline_aligned_in_smp;

	struct {
		struct mutex	ring_lock;
		wait_queue_head_t wait;
	} ____cacheline_aligned_in_smp;

	struct {
		unsigned	tail;
		unsigned	completed_events;
		spinlock_t	completion_lock;
	} ____cacheline_aligned_in_smp;

	struct page		*internal_pages[AIO_RING_PAGES];
	struct file		*aio_ring_file;

	unsigned		id;
};

/*
 * First field must be the file pointer in all the
 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 */
struct fsync_iocb {
	struct file		*file;
	struct work_struct	work;
	bool			datasync;
};

struct poll_iocb {
	struct file		*file;
	struct wait_queue_head	*head;
	__poll_t		events;
	bool			done;
	bool			cancelled;
	struct wait_queue_entry	wait;
	struct work_struct	work;
};

/*
 * NOTE! Each of the iocb union members has the file pointer
 * as the first entry in their struct definition. So you can
 * access the file pointer through any of the sub-structs,
 * or directly as just 'ki_filp' in this struct.
 */
struct aio_kiocb {
	union {
		struct file		*ki_filp;
		struct kiocb		rw;
		struct fsync_iocb	fsync;
		struct poll_iocb	poll;
	};

	struct kioctx		*ki_ctx;
	kiocb_cancel_fn		*ki_cancel;

	struct io_event		ki_res;

	struct list_head	ki_list;	/* the aio core uses this
						 * for cancellation */
	refcount_t		ki_refcnt;

	/*
	 * If the aio_resfd field of the userspace iocb is not zero,
	 * this is the underlying eventfd context to deliver events to.
	 */
	struct eventfd_ctx	*ki_eventfd;
};

/*------ sysctl variables----*/
static DEFINE_SPINLOCK(aio_nr_lock);
unsigned long aio_nr;		/* current system wide number of aio requests */
unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
/*----end sysctl variables---*/

static struct kmem_cache	*kiocb_cachep;
static struct kmem_cache	*kioctx_cachep;

static struct vfsmount *aio_mnt;

static const struct file_operations aio_ring_fops;
static const struct address_space_operations aio_ctx_aops;

static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
{
	struct file *file;
	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
	if (IS_ERR(inode))
		return ERR_CAST(inode);

	inode->i_mapping->a_ops = &aio_ctx_aops;
	inode->i_mapping->private_data = ctx;
	inode->i_size = PAGE_SIZE * nr_pages;

	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
				O_RDWR, &aio_ring_fops);
	if (IS_ERR(file))
		iput(inode);
	return file;
}

static int aio_init_fs_context(struct fs_context *fc)
{
	if (!init_pseudo(fc, AIO_RING_MAGIC))
		return -ENOMEM;
	fc->s_iflags |= SB_I_NOEXEC;
	return 0;
}

/* aio_setup
 *	Creates the slab caches used by the aio routines, panic on
 *	failure as this is done early during the boot sequence.
 */
static int __init aio_setup(void)
{
	static struct file_system_type aio_fs = {
		.name		= "aio",
		.init_fs_context = aio_init_fs_context,
		.kill_sb	= kill_anon_super,
	};
	aio_mnt = kern_mount(&aio_fs);
	if (IS_ERR(aio_mnt))
		panic("Failed to create aio fs mount.");

	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
	return 0;
}
__initcall(aio_setup);

static void put_aio_ring_file(struct kioctx *ctx)
{
	struct file *aio_ring_file = ctx->aio_ring_file;
	struct address_space *i_mapping;

	if (aio_ring_file) {
		truncate_setsize(file_inode(aio_ring_file), 0);

		/* Prevent further access to the kioctx from migratepages */
		i_mapping = aio_ring_file->f_mapping;
		spin_lock(&i_mapping->private_lock);
		i_mapping->private_data = NULL;
		ctx->aio_ring_file = NULL;
		spin_unlock(&i_mapping->private_lock);

		fput(aio_ring_file);
	}
}

static void aio_free_ring(struct kioctx *ctx)
{
	int i;

	/* Disconnect the kiotx from the ring file.  This prevents future
	 * accesses to the kioctx from page migration.
	 */
	put_aio_ring_file(ctx);

	for (i = 0; i < ctx->nr_pages; i++) {
		struct page *page;
		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
				page_count(ctx->ring_pages[i]));
		page = ctx->ring_pages[i];
		if (!page)
			continue;
		ctx->ring_pages[i] = NULL;
		put_page(page);
	}

	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
		kfree(ctx->ring_pages);
		ctx->ring_pages = NULL;
	}
}

static int aio_ring_mremap(struct vm_area_struct *vma)
{
	struct file *file = vma->vm_file;
	struct mm_struct *mm = vma->vm_mm;
	struct kioctx_table *table;
	int i, res = -EINVAL;

	spin_lock(&mm->ioctx_lock);
	rcu_read_lock();
	table = rcu_dereference(mm->ioctx_table);
	for (i = 0; i < table->nr; i++) {
		struct kioctx *ctx;

		ctx = rcu_dereference(table->table[i]);
		if (ctx && ctx->aio_ring_file == file) {
			if (!atomic_read(&ctx->dead)) {
				ctx->user_id = ctx->mmap_base = vma->vm_start;
				res = 0;
			}
			break;
		}
	}

	rcu_read_unlock();
	spin_unlock(&mm->ioctx_lock);
	return res;
}

static const struct vm_operations_struct aio_ring_vm_ops = {
	.mremap		= aio_ring_mremap,
#if IS_ENABLED(CONFIG_MMU)
	.fault		= filemap_fault,
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= filemap_page_mkwrite,
#endif
};

static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_DONTEXPAND;
	vma->vm_ops = &aio_ring_vm_ops;
	return 0;
}

static const struct file_operations aio_ring_fops = {
	.mmap = aio_ring_mmap,
};

#if IS_ENABLED(CONFIG_MIGRATION)
static int aio_migratepage(struct address_space *mapping, struct page *new,
			struct page *old, enum migrate_mode mode)
{
	struct kioctx *ctx;
	unsigned long flags;
	pgoff_t idx;
	int rc;

	/*
	 * We cannot support the _NO_COPY case here, because copy needs to
	 * happen under the ctx->completion_lock. That does not work with the
	 * migration workflow of MIGRATE_SYNC_NO_COPY.
	 */
	if (mode == MIGRATE_SYNC_NO_COPY)
		return -EINVAL;

	rc = 0;

	/* mapping->private_lock here protects against the kioctx teardown.  */
	spin_lock(&mapping->private_lock);
	ctx = mapping->private_data;
	if (!ctx) {
		rc = -EINVAL;
		goto out;
	}

	/* The ring_lock mutex.  The prevents aio_read_events() from writing
	 * to the ring's head, and prevents page migration from mucking in
	 * a partially initialized kiotx.
	 */
	if (!mutex_trylock(&ctx->ring_lock)) {
		rc = -EAGAIN;
		goto out;
	}

	idx = old->index;
	if (idx < (pgoff_t)ctx->nr_pages) {
		/* Make sure the old page hasn't already been changed */
		if (ctx->ring_pages[idx] != old)
			rc = -EAGAIN;
	} else
		rc = -EINVAL;

	if (rc != 0)
		goto out_unlock;

	/* Writeback must be complete */
	BUG_ON(PageWriteback(old));
	get_page(new);

	rc = migrate_page_move_mapping(mapping, new, old, 1);
	if (rc != MIGRATEPAGE_SUCCESS) {
		put_page(new);
		goto out_unlock;
	}

	/* Take completion_lock to prevent other writes to the ring buffer
	 * while the old page is copied to the new.  This prevents new
	 * events from being lost.
	 */
	spin_lock_irqsave(&ctx->completion_lock, flags);
	migrate_page_copy(new, old);
	BUG_ON(ctx->ring_pages[idx] != old);
	ctx->ring_pages[idx] = new;
	spin_unlock_irqrestore(&ctx->completion_lock, flags);

	/* The old page is no longer accessible. */
	put_page(old);

out_unlock:
	mutex_unlock(&ctx->ring_lock);
out:
	spin_unlock(&mapping->private_lock);
	return rc;
}
#endif

static const struct address_space_operations aio_ctx_aops = {
	.set_page_dirty = __set_page_dirty_no_writeback,
#if IS_ENABLED(CONFIG_MIGRATION)
	.migratepage	= aio_migratepage,
#endif
};

static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
{
	struct aio_ring *ring;
	struct mm_struct *mm = current->mm;
	unsigned long size, unused;
	int nr_pages;
	int i;
	struct file *file;

	/* Compensate for the ring buffer's head/tail overlap entry */
	nr_events += 2;	/* 1 is required, 2 for good luck */

	size = sizeof(struct aio_ring);
	size += sizeof(struct io_event) * nr_events;

	nr_pages = PFN_UP(size);
	if (nr_pages < 0)
		return -EINVAL;

	file = aio_private_file(ctx, nr_pages);
	if (IS_ERR(file)) {
		ctx->aio_ring_file = NULL;
		return -ENOMEM;
	}

	ctx->aio_ring_file = file;
	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
			/ sizeof(struct io_event);

	ctx->ring_pages = ctx->internal_pages;
	if (nr_pages > AIO_RING_PAGES) {
		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
					  GFP_KERNEL);
		if (!ctx->ring_pages) {
			put_aio_ring_file(ctx);
			return -ENOMEM;
		}
	}

	for (i = 0; i < nr_pages; i++) {
		struct page *page;
		page = find_or_create_page(file->f_mapping,
					   i, GFP_HIGHUSER | __GFP_ZERO);
		if (!page)
			break;
		pr_debug("pid(%d) page[%d]->count=%d\n",
			 current->pid, i, page_count(page));
		SetPageUptodate(page);
		unlock_page(page);

		ctx->ring_pages[i] = page;
	}
	ctx->nr_pages = i;

	if (unlikely(i != nr_pages)) {
		aio_free_ring(ctx);
		return -ENOMEM;
	}

	ctx->mmap_size = nr_pages * PAGE_SIZE;
	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);

	if (down_write_killable(&mm->mmap_sem)) {
		ctx->mmap_size = 0;
		aio_free_ring(ctx);
		return -EINTR;
	}

	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
				       PROT_READ | PROT_WRITE,
				       MAP_SHARED, 0, &unused, NULL);
	up_write(&mm->mmap_sem);
	if (IS_ERR((void *)ctx->mmap_base)) {
		ctx->mmap_size = 0;
		aio_free_ring(ctx);
		return -ENOMEM;
	}

	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);

	ctx->user_id = ctx->mmap_base;
	ctx->nr_events = nr_events; /* trusted copy */

	ring = kmap_atomic(ctx->ring_pages[0]);
	ring->nr = nr_events;	/* user copy */
	ring->id = ~0U;
	ring->head = ring->tail = 0;
	ring->magic = AIO_RING_MAGIC;
	ring->compat_features = AIO_RING_COMPAT_FEATURES;
	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
	ring->header_length = sizeof(struct aio_ring);
	kunmap_atomic(ring);
	flush_dcache_page(ctx->ring_pages[0]);

	return 0;
}

#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)

void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
{
	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
	struct kioctx *ctx = req->ki_ctx;
	unsigned long flags;

	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
		return;

	spin_lock_irqsave(&ctx->ctx_lock, flags);
	list_add_tail(&req->ki_list, &ctx->active_reqs);
	req->ki_cancel = cancel;
	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
}
EXPORT_SYMBOL(kiocb_set_cancel_fn);

/*
 * free_ioctx() should be RCU delayed to synchronize against the RCU
 * protected lookup_ioctx() and also needs process context to call
 * aio_free_ring().  Use rcu_work.
 */
static void free_ioctx(struct work_struct *work)
{
	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
					  free_rwork);
	pr_debug("freeing %p\n", ctx);

	aio_free_ring(ctx);
	free_percpu(ctx->cpu);
	percpu_ref_exit(&ctx->reqs);
	percpu_ref_exit(&ctx->users);
	kmem_cache_free(kioctx_cachep, ctx);
}

static void free_ioctx_reqs(struct percpu_ref *ref)
{
	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);

	/* At this point we know that there are no any in-flight requests */
	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
		complete(&ctx->rq_wait->comp);

	/* Synchronize against RCU protected table->table[] dereferences */
	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
	queue_rcu_work(system_wq, &ctx->free_rwork);
}

/*
 * When this function runs, the kioctx has been removed from the "hash table"
 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 * now it's safe to cancel any that need to be.
 */
static void free_ioctx_users(struct percpu_ref *ref)
{
	struct kioctx *ctx = container_of(ref, struct kioctx, users);
	struct aio_kiocb *req;

	spin_lock_irq(&ctx->ctx_lock);

	while (!list_empty(&ctx->active_reqs)) {
		req = list_first_entry(&ctx->active_reqs,
				       struct aio_kiocb, ki_list);
		req->ki_cancel(&req->rw);
		list_del_init(&req->ki_list);
	}

	spin_unlock_irq(&ctx->ctx_lock);

	percpu_ref_kill(&ctx->reqs);
	percpu_ref_put(&ctx->reqs);
}

static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
{
	unsigned i, new_nr;
	struct kioctx_table *table, *old;
	struct aio_ring *ring;

	spin_lock(&mm->ioctx_lock);
	table = rcu_dereference_raw(mm->ioctx_table);

	while (1) {
		if (table)
			for (i = 0; i < table->nr; i++)
				if (!rcu_access_pointer(table->table[i])) {
					ctx->id = i;
					rcu_assign_pointer(table->table[i], ctx);
					spin_unlock(&mm->ioctx_lock);

					/* While kioctx setup is in progress,
					 * we are protected from page migration
					 * changes ring_pages by ->ring_lock.
					 */
					ring = kmap_atomic(ctx->ring_pages[0]);
					ring->id = ctx->id;
					kunmap_atomic(ring);
					return 0;
				}

		new_nr = (table ? table->nr : 1) * 4;
		spin_unlock(&mm->ioctx_lock);

		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
				new_nr, GFP_KERNEL);
		if (!table)
			return -ENOMEM;

		table->nr = new_nr;

		spin_lock(&mm->ioctx_lock);
		old = rcu_dereference_raw(mm->ioctx_table);

		if (!old) {
			rcu_assign_pointer(mm->ioctx_table, table);
		} else if (table->nr > old->nr) {
			memcpy(table->table, old->table,
			       old->nr * sizeof(struct kioctx *));

			rcu_assign_pointer(mm->ioctx_table, table);
			kfree_rcu(old, rcu);
		} else {
			kfree(table);
			table = old;
		}
	}
}

static void aio_nr_sub(unsigned nr)
{
	spin_lock(&aio_nr_lock);
	if (WARN_ON(aio_nr - nr > aio_nr))
		aio_nr = 0;
	else
		aio_nr -= nr;
	spin_unlock(&aio_nr_lock);
}

/* ioctx_alloc
 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 */
static struct kioctx *ioctx_alloc(unsigned nr_events)
{
	struct mm_struct *mm = current->mm;
	struct kioctx *ctx;
	int err = -ENOMEM;

	/*
	 * Store the original nr_events -- what userspace passed to io_setup(),
	 * for counting against the global limit -- before it changes.
	 */
	unsigned int max_reqs = nr_events;

	/*
	 * We keep track of the number of available ringbuffer slots, to prevent
	 * overflow (reqs_available), and we also use percpu counters for this.
	 *
	 * So since up to half the slots might be on other cpu's percpu counters
	 * and unavailable, double nr_events so userspace sees what they
	 * expected: additionally, we move req_batch slots to/from percpu
	 * counters at a time, so make sure that isn't 0:
	 */
	nr_events = max(nr_events, num_possible_cpus() * 4);
	nr_events *= 2;

	/* Prevent overflows */
	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
		pr_debug("ENOMEM: nr_events too high\n");
		return ERR_PTR(-EINVAL);
	}

	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
		return ERR_PTR(-EAGAIN);

	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

	ctx->max_reqs = max_reqs;

	spin_lock_init(&ctx->ctx_lock);
	spin_lock_init(&ctx->completion_lock);
	mutex_init(&ctx->ring_lock);
	/* Protect against page migration throughout kiotx setup by keeping
	 * the ring_lock mutex held until setup is complete. */
	mutex_lock(&ctx->ring_lock);
	init_waitqueue_head(&ctx->wait);

	INIT_LIST_HEAD(&ctx->active_reqs);

	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
		goto err;

	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
		goto err;

	ctx->cpu = alloc_percpu(struct kioctx_cpu);
	if (!ctx->cpu)
		goto err;

	err = aio_setup_ring(ctx, nr_events);
	if (err < 0)
		goto err;

	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
	if (ctx->req_batch < 1)
		ctx->req_batch = 1;

	/* limit the number of system wide aios */
	spin_lock(&aio_nr_lock);
	if (aio_nr + ctx->max_reqs > aio_max_nr ||
	    aio_nr + ctx->max_reqs < aio_nr) {
		spin_unlock(&aio_nr_lock);
		err = -EAGAIN;
		goto err_ctx;
	}
	aio_nr += ctx->max_reqs;
	spin_unlock(&aio_nr_lock);

	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */

	err = ioctx_add_table(ctx, mm);
	if (err)
		goto err_cleanup;

	/* Release the ring_lock mutex now that all setup is complete. */
	mutex_unlock(&ctx->ring_lock);

	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
		 ctx, ctx->user_id, mm, ctx->nr_events);
	return ctx;

err_cleanup:
	aio_nr_sub(ctx->max_reqs);
err_ctx:
	atomic_set(&ctx->dead, 1);
	if (ctx->mmap_size)
		vm_munmap(ctx->mmap_base, ctx->mmap_size);
	aio_free_ring(ctx);
err:
	mutex_unlock(&ctx->ring_lock);
	free_percpu(ctx->cpu);
	percpu_ref_exit(&ctx->reqs);
	percpu_ref_exit(&ctx->users);
	kmem_cache_free(kioctx_cachep, ctx);
	pr_debug("error allocating ioctx %d\n", err);
	return ERR_PTR(err);
}

/* kill_ioctx
 *	Cancels all outstanding aio requests on an aio context.  Used
 *	when the processes owning a context have all exited to encourage
 *	the rapid destruction of the kioctx.
 */
static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
		      struct ctx_rq_wait *wait)
{
	struct kioctx_table *table;

	spin_lock(&mm->ioctx_lock);
	if (atomic_xchg(&ctx->dead, 1)) {
		spin_unlock(&mm->ioctx_lock);
		return -EINVAL;
	}

	table = rcu_dereference_raw(mm->ioctx_table);
	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
	RCU_INIT_POINTER(table->table[ctx->id], NULL);
	spin_unlock(&mm->ioctx_lock);

	/* free_ioctx_reqs() will do the necessary RCU synchronization */
	wake_up_all(&ctx->wait);

	/*
	 * It'd be more correct to do this in free_ioctx(), after all
	 * the outstanding kiocbs have finished - but by then io_destroy
	 * has already returned, so io_setup() could potentially return
	 * -EAGAIN with no ioctxs actually in use (as far as userspace
	 *  could tell).
	 */
	aio_nr_sub(ctx->max_reqs);

	if (ctx->mmap_size)
		vm_munmap(ctx->mmap_base, ctx->mmap_size);

	ctx->rq_wait = wait;
	percpu_ref_kill(&ctx->users);
	return 0;
}

/*
 * exit_aio: called when the last user of mm goes away.  At this point, there is
 * no way for any new requests to be submited or any of the io_* syscalls to be
 * called on the context.
 *
 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 * them.
 */
void exit_aio(struct mm_struct *mm)
{
	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
	struct ctx_rq_wait wait;
	int i, skipped;

	if (!table)
		return;

	atomic_set(&wait.count, table->nr);
	init_completion(&wait.comp);

	skipped = 0;
	for (i = 0; i < table->nr; ++i) {
		struct kioctx *ctx =
			rcu_dereference_protected(table->table[i], true);

		if (!ctx) {
			skipped++;
			continue;
		}

		/*
		 * We don't need to bother with munmap() here - exit_mmap(mm)
		 * is coming and it'll unmap everything. And we simply can't,
		 * this is not necessarily our ->mm.
		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
		 * that it needs to unmap the area, just set it to 0.
		 */
		ctx->mmap_size = 0;
		kill_ioctx(mm, ctx, &wait);
	}

	if (!atomic_sub_and_test(skipped, &wait.count)) {
		/* Wait until all IO for the context are done. */
		wait_for_completion(&wait.comp);
	}

	RCU_INIT_POINTER(mm->ioctx_table, NULL);
	kfree(table);
}

static void put_reqs_available(struct kioctx *ctx, unsigned nr)
{
	struct kioctx_cpu *kcpu;
	unsigned long flags;

	local_irq_save(flags);
	kcpu = this_cpu_ptr(ctx->cpu);
	kcpu->reqs_available += nr;

	while (kcpu->reqs_available >= ctx->req_batch * 2) {
		kcpu->reqs_available -= ctx->req_batch;
		atomic_add(ctx->req_batch, &ctx->reqs_available);
	}

	local_irq_restore(flags);
}

static bool __get_reqs_available(struct kioctx *ctx)
{
	struct kioctx_cpu *kcpu;
	bool ret = false;
	unsigned long flags;

	local_irq_save(flags);
	kcpu = this_cpu_ptr(ctx->cpu);
	if (!kcpu->reqs_available) {
		int old, avail = atomic_read(&ctx->reqs_available);

		do {
			if (avail < ctx->req_batch)
				goto out;

			old = avail;
			avail = atomic_cmpxchg(&ctx->reqs_available,
					       avail, avail - ctx->req_batch);
		} while (avail != old);

		kcpu->reqs_available += ctx->req_batch;
	}

	ret = true;
	kcpu->reqs_available--;
out:
	local_irq_restore(flags);
	return ret;
}

/* refill_reqs_available
 *	Updates the reqs_available reference counts used for tracking the
 *	number of free slots in the completion ring.  This can be called
 *	from aio_complete() (to optimistically update reqs_available) or
 *	from aio_get_req() (the we're out of events case).  It must be
 *	called holding ctx->completion_lock.
 */
static void refill_reqs_available(struct kioctx *ctx, unsigned head,
                                  unsigned tail)
{
	unsigned events_in_ring, completed;

	/* Clamp head since userland can write to it. */
	head %= ctx->nr_events;
	if (head <= tail)
		events_in_ring = tail - head;
	else
		events_in_ring = ctx->nr_events - (head - tail);

	completed = ctx->completed_events;
	if (events_in_ring < completed)
		completed -= events_in_ring;
	else
		completed = 0;

	if (!completed)
		return;

	ctx->completed_events -= completed;
	put_reqs_available(ctx, completed);
}

/* user_refill_reqs_available
 *	Called to refill reqs_available when aio_get_req() encounters an
 *	out of space in the completion ring.
 */
static void user_refill_reqs_available(struct kioctx *ctx)
{
	spin_lock_irq(&ctx->completion_lock);
	if (ctx->completed_events) {
		struct aio_ring *ring;
		unsigned head;

		/* Access of ring->head may race with aio_read_events_ring()
		 * here, but that's okay since whether we read the old version
		 * or the new version, and either will be valid.  The important
		 * part is that head cannot pass tail since we prevent
		 * aio_complete() from updating tail by holding
		 * ctx->completion_lock.  Even if head is invalid, the check
		 * against ctx->completed_events below will make sure we do the
		 * safe/right thing.
		 */
		ring = kmap_atomic(ctx->ring_pages[0]);
		head = ring->head;
		kunmap_atomic(ring);

		refill_reqs_available(ctx, head, ctx->tail);
	}

	spin_unlock_irq(&ctx->completion_lock);
}

static bool get_reqs_available(struct kioctx *ctx)
{
	if (__get_reqs_available(ctx))
		return true;
	user_refill_reqs_available(ctx);
	return __get_reqs_available(ctx);
}

/* aio_get_req
 *	Allocate a slot for an aio request.
 * Returns NULL if no requests are free.
 *
 * The refcount is initialized to 2 - one for the async op completion,
 * one for the synchronous code that does this.
 */
static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
{
	struct aio_kiocb *req;

	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
	if (unlikely(!req))
		return NULL;

	if (unlikely(!get_reqs_available(ctx))) {
		kmem_cache_free(kiocb_cachep, req);
		return NULL;
	}

	percpu_ref_get(&ctx->reqs);
	req->ki_ctx = ctx;
	INIT_LIST_HEAD(&req->ki_list);
	refcount_set(&req->ki_refcnt, 2);
	req->ki_eventfd = NULL;
	return req;
}

static struct kioctx *lookup_ioctx(unsigned long ctx_id)
{
	struct aio_ring __user *ring  = (void __user *)ctx_id;
	struct mm_struct *mm = current->mm;
	struct kioctx *ctx, *ret = NULL;
	struct kioctx_table *table;
	unsigned id;

	if (get_user(id, &ring->id))
		return NULL;

	rcu_read_lock();
	table = rcu_dereference(mm->ioctx_table);

	if (!table || id >= table->nr)
		goto out;

	id = array_index_nospec(id, table->nr);
	ctx = rcu_dereference(table->table[id]);
	if (ctx && ctx->user_id == ctx_id) {
		if (percpu_ref_tryget_live(&ctx->users))
			ret = ctx;
	}
out:
	rcu_read_unlock();
	return ret;
}

static inline void iocb_destroy(struct aio_kiocb *iocb)
{
	if (iocb->ki_eventfd)
		eventfd_ctx_put(iocb->ki_eventfd);
	if (iocb->ki_filp)
		fput(iocb->ki_filp);
	percpu_ref_put(&iocb->ki_ctx->reqs);
	kmem_cache_free(kiocb_cachep, iocb);
}

/* aio_complete
 *	Called when the io request on the given iocb is complete.
 */
static void aio_complete(struct aio_kiocb *iocb)
{
	struct kioctx	*ctx = iocb->ki_ctx;
	struct aio_ring	*ring;
	struct io_event	*ev_page, *event;
	unsigned tail, pos, head;
	unsigned long	flags;

	/*
	 * Add a completion event to the ring buffer. Must be done holding
	 * ctx->completion_lock to prevent other code from messing with the tail
	 * pointer since we might be called from irq context.
	 */
	spin_lock_irqsave(&ctx->completion_lock, flags);

	tail = ctx->tail;
	pos = tail + AIO_EVENTS_OFFSET;

	if (++tail >= ctx->nr_events)
		tail = 0;

	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
	event = ev_page + pos % AIO_EVENTS_PER_PAGE;

	*event = iocb->ki_res;

	kunmap_atomic(ev_page);
	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);

	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
		 (void __user *)(unsigned long)iocb->ki_res.obj,
		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);

	/* after flagging the request as done, we
	 * must never even look at it again
	 */
	smp_wmb();	/* make event visible before updating tail */

	ctx->tail = tail;

	ring = kmap_atomic(ctx->ring_pages[0]);
	head = ring->head;
	ring->tail = tail;
	kunmap_atomic(ring);
	flush_dcache_page(ctx->ring_pages[0]);

	ctx->completed_events++;
	if (ctx->completed_events > 1)
		refill_reqs_available(ctx, head, tail);
	spin_unlock_irqrestore(&ctx->completion_lock, flags);

	pr_debug("added to ring %p at [%u]\n", iocb, tail);

	/*
	 * Check if the user asked us to deliver the result through an
	 * eventfd. The eventfd_signal() function is safe to be called
	 * from IRQ context.
	 */
	if (iocb->ki_eventfd)
		eventfd_signal(iocb->ki_eventfd, 1);

	/*
	 * We have to order our ring_info tail store above and test
	 * of the wait list below outside the wait lock.  This is
	 * like in wake_up_bit() where clearing a bit has to be
	 * ordered with the unlocked test.
	 */
	smp_mb();

	if (waitqueue_active(&ctx->wait))
		wake_up(&ctx->wait);
}

static inline void iocb_put(struct aio_kiocb *iocb)
{
	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
		aio_complete(iocb);
		iocb_destroy(iocb);
	}
}

/* aio_read_events_ring
 *	Pull an event off of the ioctx's event ring.  Returns the number of
 *	events fetched
 */
static long aio_read_events_ring(struct kioctx *ctx,
				 struct io_event __user *event, long nr)
{
	struct aio_ring *ring;
	unsigned head, tail, pos;
	long ret = 0;
	int copy_ret;

	/*
	 * The mutex can block and wake us up and that will cause
	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
	 * and repeat. This should be rare enough that it doesn't cause
	 * peformance issues. See the comment in read_events() for more detail.
	 */
	sched_annotate_sleep();
	mutex_lock(&ctx->ring_lock);

	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
	ring = kmap_atomic(ctx->ring_pages[0]);
	head = ring->head;
	tail = ring->tail;
	kunmap_atomic(ring);

	/*
	 * Ensure that once we've read the current tail pointer, that
	 * we also see the events that were stored up to the tail.
	 */
	smp_rmb();

	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);

	if (head == tail)
		goto out;

	head %= ctx->nr_events;
	tail %= ctx->nr_events;

	while (ret < nr) {
		long avail;
		struct io_event *ev;
		struct page *page;

		avail = (head <= tail ?  tail : ctx->nr_events) - head;
		if (head == tail)
			break;

		pos = head + AIO_EVENTS_OFFSET;
		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
		pos %= AIO_EVENTS_PER_PAGE;

		avail = min(avail, nr - ret);
		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);

		ev = kmap(page);
		copy_ret = copy_to_user(event + ret, ev + pos,
					sizeof(*ev) * avail);
		kunmap(page);

		if (unlikely(copy_ret)) {
			ret = -EFAULT;
			goto out;
		}

		ret += avail;
		head += avail;
		head %= ctx->nr_events;
	}

	ring = kmap_atomic(ctx->ring_pages[0]);
	ring->head = head;
	kunmap_atomic(ring);
	flush_dcache_page(ctx->ring_pages[0]);

	pr_debug("%li  h%u t%u\n", ret, head, tail);
out:
	mutex_unlock(&ctx->ring_lock);

	return ret;
}

static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
			    struct io_event __user *event, long *i)
{
	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);

	if (ret > 0)
		*i += ret;

	if (unlikely(atomic_read(&ctx->dead)))
		ret = -EINVAL;

	if (!*i)
		*i = ret;

	return ret < 0 || *i >= min_nr;
}

static long read_events(struct kioctx *ctx, long min_nr, long nr,
			struct io_event __user *event,
			ktime_t until)
{
	long ret = 0;

	/*
	 * Note that aio_read_events() is being called as the conditional - i.e.
	 * we're calling it after prepare_to_wait() has set task state to
	 * TASK_INTERRUPTIBLE.
	 *
	 * But aio_read_events() can block, and if it blocks it's going to flip
	 * the task state back to TASK_RUNNING.
	 *
	 * This should be ok, provided it doesn't flip the state back to
	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
	 * will only happen if the mutex_lock() call blocks, and we then find
	 * the ringbuffer empty. So in practice we should be ok, but it's
	 * something to be aware of when touching this code.
	 */
	if (until == 0)
		aio_read_events(ctx, min_nr, nr, event, &ret);
	else
		wait_event_interruptible_hrtimeout(ctx->wait,
				aio_read_events(ctx, min_nr, nr, event, &ret),
				until);
	return ret;
}

/* sys_io_setup:
 *	Create an aio_context capable of receiving at least nr_events.
 *	ctxp must not point to an aio_context that already exists, and
 *	must be initialized to 0 prior to the call.  On successful
 *	creation of the aio_context, *ctxp is filled in with the resulting 
 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
 *	if the specified nr_events exceeds internal limits.  May fail 
 *	with -EAGAIN if the specified nr_events exceeds the user's limit 
 *	of available events.  May fail with -ENOMEM if insufficient kernel
 *	resources are available.  May fail with -EFAULT if an invalid
 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
 *	implemented.
 */
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
{
	struct kioctx *ioctx = NULL;
	unsigned long ctx;
	long ret;

	ret = get_user(ctx, ctxp);
	if (unlikely(ret))
		goto out;

	ret = -EINVAL;
	if (unlikely(ctx || nr_events == 0)) {
		pr_debug("EINVAL: ctx %lu nr_events %u\n",
		         ctx, nr_events);
		goto out;
	}

	ioctx = ioctx_alloc(nr_events);
	ret = PTR_ERR(ioctx);
	if (!IS_ERR(ioctx)) {
		ret = put_user(ioctx->user_id, ctxp);
		if (ret)
			kill_ioctx(current->mm, ioctx, NULL);
		percpu_ref_put(&ioctx->users);
	}

out:
	return ret;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
{
	struct kioctx *ioctx = NULL;
	unsigned long ctx;
	long ret;

	ret = get_user(ctx, ctx32p);
	if (unlikely(ret))
		goto out;

	ret = -EINVAL;
	if (unlikely(ctx || nr_events == 0)) {
		pr_debug("EINVAL: ctx %lu nr_events %u\n",
		         ctx, nr_events);
		goto out;
	}

	ioctx = ioctx_alloc(nr_events);
	ret = PTR_ERR(ioctx);
	if (!IS_ERR(ioctx)) {
		/* truncating is ok because it's a user address */
		ret = put_user((u32)ioctx->user_id, ctx32p);
		if (ret)
			kill_ioctx(current->mm, ioctx, NULL);
		percpu_ref_put(&ioctx->users);
	}

out:
	return ret;
}
#endif

/* sys_io_destroy:
 *	Destroy the aio_context specified.  May cancel any outstanding 
 *	AIOs and block on completion.  Will fail with -ENOSYS if not
 *	implemented.  May fail with -EINVAL if the context pointed to
 *	is invalid.
 */
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
{
	struct kioctx *ioctx = lookup_ioctx(ctx);
	if (likely(NULL != ioctx)) {
		struct ctx_rq_wait wait;
		int ret;

		init_completion(&wait.comp);
		atomic_set(&wait.count, 1);

		/* Pass requests_done to kill_ioctx() where it can be set
		 * in a thread-safe way. If we try to set it here then we have
		 * a race condition if two io_destroy() called simultaneously.
		 */
		ret = kill_ioctx(current->mm, ioctx, &wait);
		percpu_ref_put(&ioctx->users);

		/* Wait until all IO for the context are done. Otherwise kernel
		 * keep using user-space buffers even if user thinks the context
		 * is destroyed.
		 */
		if (!ret)
			wait_for_completion(&wait.comp);

		return ret;
	}
	pr_debug("EINVAL: invalid context id\n");
	return -EINVAL;
}

static void aio_remove_iocb(struct aio_kiocb *iocb)
{
	struct kioctx *ctx = iocb->ki_ctx;
	unsigned long flags;

	spin_lock_irqsave(&ctx->ctx_lock, flags);
	list_del(&iocb->ki_list);
	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
}

static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
{
	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);

	if (!list_empty_careful(&iocb->ki_list))
		aio_remove_iocb(iocb);

	if (kiocb->ki_flags & IOCB_WRITE) {
		struct inode *inode = file_inode(kiocb->ki_filp);

		/*
		 * Tell lockdep we inherited freeze protection from submission
		 * thread.
		 */
		if (S_ISREG(inode->i_mode))
			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
		file_end_write(kiocb->ki_filp);
	}

	iocb->ki_res.res = res;
	iocb->ki_res.res2 = res2;
	iocb_put(iocb);
}

static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
{
	int ret;

	req->ki_complete = aio_complete_rw;
	req->private = NULL;
	req->ki_pos = iocb->aio_offset;
	req->ki_flags = iocb_flags(req->ki_filp);
	if (iocb->aio_flags & IOCB_FLAG_RESFD)
		req->ki_flags |= IOCB_EVENTFD;
	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
		/*
		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
		 * aio_reqprio is interpreted as an I/O scheduling
		 * class and priority.
		 */
		ret = ioprio_check_cap(iocb->aio_reqprio);
		if (ret) {
			pr_debug("aio ioprio check cap error: %d\n", ret);
			return ret;
		}

		req->ki_ioprio = iocb->aio_reqprio;
	} else
		req->ki_ioprio = get_current_ioprio();

	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
	if (unlikely(ret))
		return ret;

	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
	return 0;
}

static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
		struct iovec **iovec, bool vectored, bool compat,
		struct iov_iter *iter)
{
	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
	size_t len = iocb->aio_nbytes;

	if (!vectored) {
		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
		*iovec = NULL;
		return ret;
	}
#ifdef CONFIG_COMPAT
	if (compat)
		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
				iter);
#endif
	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
}

static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
{
	switch (ret) {
	case -EIOCBQUEUED:
		break;
	case -ERESTARTSYS:
	case -ERESTARTNOINTR:
	case -ERESTARTNOHAND:
	case -ERESTART_RESTARTBLOCK:
		/*
		 * There's no easy way to restart the syscall since other AIO's
		 * may be already running. Just fail this IO with EINTR.
		 */
		ret = -EINTR;
		/*FALLTHRU*/
	default:
		req->ki_complete(req, ret, 0);
	}
}

static int aio_read(struct kiocb *req, const struct iocb *iocb,
			bool vectored, bool compat)
{
	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
	struct iov_iter iter;
	struct file *file;
	int ret;

	ret = aio_prep_rw(req, iocb);
	if (ret)
		return ret;
	file = req->ki_filp;
	if (unlikely(!(file->f_mode & FMODE_READ)))
		return -EBADF;
	ret = -EINVAL;
	if (unlikely(!file->f_op->read_iter))
		return -EINVAL;

	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
	if (ret < 0)
		return ret;
	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
	if (!ret)
		aio_rw_done(req, call_read_iter(file, req, &iter));
	kfree(iovec);
	return ret;
}

static int aio_write(struct kiocb *req, const struct iocb *iocb,
			 bool vectored, bool compat)
{
	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
	struct iov_iter iter;
	struct file *file;
	int ret;

	ret = aio_prep_rw(req, iocb);
	if (ret)
		return ret;
	file = req->ki_filp;

	if (unlikely(!(file->f_mode & FMODE_WRITE)))
		return -EBADF;
	if (unlikely(!file->f_op->write_iter))
		return -EINVAL;

	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
	if (ret < 0)
		return ret;
	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
	if (!ret) {
		/*
		 * Open-code file_start_write here to grab freeze protection,
		 * which will be released by another thread in
		 * aio_complete_rw().  Fool lockdep by telling it the lock got
		 * released so that it doesn't complain about the held lock when
		 * we return to userspace.
		 */
		if (S_ISREG(file_inode(file)->i_mode)) {
			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
		}
		req->ki_flags |= IOCB_WRITE;
		aio_rw_done(req, call_write_iter(file, req, &iter));
	}
	kfree(iovec);
	return ret;
}

static void aio_fsync_work(struct work_struct *work)
{
	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);

	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
	iocb_put(iocb);
}

static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
		     bool datasync)
{
	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
			iocb->aio_rw_flags))
		return -EINVAL;

	if (unlikely(!req->file->f_op->fsync))
		return -EINVAL;

	req->datasync = datasync;
	INIT_WORK(&req->work, aio_fsync_work);
	schedule_work(&req->work);
	return 0;
}

static void aio_poll_complete_work(struct work_struct *work)
{
	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
	struct poll_table_struct pt = { ._key = req->events };
	struct kioctx *ctx = iocb->ki_ctx;
	__poll_t mask = 0;

	if (!READ_ONCE(req->cancelled))
		mask = vfs_poll(req->file, &pt) & req->events;

	/*
	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
	 * synchronize with them.  In the cancellation case the list_del_init
	 * itself is not actually needed, but harmless so we keep it in to
	 * avoid further branches in the fast path.
	 */
	spin_lock_irq(&ctx->ctx_lock);
	if (!mask && !READ_ONCE(req->cancelled)) {
		add_wait_queue(req->head, &req->wait);
		spin_unlock_irq(&ctx->ctx_lock);
		return;
	}
	list_del_init(&iocb->ki_list);
	iocb->ki_res.res = mangle_poll(mask);
	req->done = true;
	spin_unlock_irq(&ctx->ctx_lock);

	iocb_put(iocb);
}

/* assumes we are called with irqs disabled */
static int aio_poll_cancel(struct kiocb *iocb)
{
	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
	struct poll_iocb *req = &aiocb->poll;

	spin_lock(&req->head->lock);
	WRITE_ONCE(req->cancelled, true);
	if (!list_empty(&req->wait.entry)) {
		list_del_init(&req->wait.entry);
		schedule_work(&aiocb->poll.work);
	}
	spin_unlock(&req->head->lock);

	return 0;
}

static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
		void *key)
{
	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
	__poll_t mask = key_to_poll(key);
	unsigned long flags;

	/* for instances that support it check for an event match first: */
	if (mask && !(mask & req->events))
		return 0;

	list_del_init(&req->wait.entry);

	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
		/*
		 * Try to complete the iocb inline if we can. Use
		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
		 * call this function with IRQs disabled and because IRQs
		 * have to be disabled before ctx_lock is obtained.
		 */
		list_del(&iocb->ki_list);
		iocb->ki_res.res = mangle_poll(mask);
		req->done = true;
		spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
		iocb_put(iocb);
	} else {
		schedule_work(&req->work);
	}
	return 1;
}

struct aio_poll_table {
	struct poll_table_struct	pt;
	struct aio_kiocb		*iocb;
	int				error;
};

static void
aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
		struct poll_table_struct *p)
{
	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);

	/* multiple wait queues per file are not supported */
	if (unlikely(pt->iocb->poll.head)) {
		pt->error = -EINVAL;
		return;
	}

	pt->error = 0;
	pt->iocb->poll.head = head;
	add_wait_queue(head, &pt->iocb->poll.wait);
}

static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
{
	struct kioctx *ctx = aiocb->ki_ctx;
	struct poll_iocb *req = &aiocb->poll;
	struct aio_poll_table apt;
	bool cancel = false;
	__poll_t mask;

	/* reject any unknown events outside the normal event mask. */
	if ((u16)iocb->aio_buf != iocb->aio_buf)
		return -EINVAL;
	/* reject fields that are not defined for poll */
	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
		return -EINVAL;

	INIT_WORK(&req->work, aio_poll_complete_work);
	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;

	req->head = NULL;
	req->done = false;
	req->cancelled = false;

	apt.pt._qproc = aio_poll_queue_proc;
	apt.pt._key = req->events;
	apt.iocb = aiocb;
	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */

	/* initialized the list so that we can do list_empty checks */
	INIT_LIST_HEAD(&req->wait.entry);
	init_waitqueue_func_entry(&req->wait, aio_poll_wake);

	mask = vfs_poll(req->file, &apt.pt) & req->events;
	spin_lock_irq(&ctx->ctx_lock);
	if (likely(req->head)) {
		spin_lock(&req->head->lock);
		if (unlikely(list_empty(&req->wait.entry))) {
			if (apt.error)
				cancel = true;
			apt.error = 0;
			mask = 0;
		}
		if (mask || apt.error) {
			list_del_init(&req->wait.entry);
		} else if (cancel) {
			WRITE_ONCE(req->cancelled, true);
		} else if (!req->done) { /* actually waiting for an event */
			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
			aiocb->ki_cancel = aio_poll_cancel;
		}
		spin_unlock(&req->head->lock);
	}
	if (mask) { /* no async, we'd stolen it */
		aiocb->ki_res.res = mangle_poll(mask);
		apt.error = 0;
	}
	spin_unlock_irq(&ctx->ctx_lock);
	if (mask)
		iocb_put(aiocb);
	return apt.error;
}

static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
			   struct iocb __user *user_iocb, struct aio_kiocb *req,
			   bool compat)
{
	req->ki_filp = fget(iocb->aio_fildes);
	if (unlikely(!req->ki_filp))
		return -EBADF;

	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
		struct eventfd_ctx *eventfd;
		/*
		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
		 * instance of the file* now. The file descriptor must be
		 * an eventfd() fd, and will be signaled for each completed
		 * event using the eventfd_signal() function.
		 */
		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
		if (IS_ERR(eventfd))
			return PTR_ERR(eventfd);

		req->ki_eventfd = eventfd;
	}

	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
		pr_debug("EFAULT: aio_key\n");
		return -EFAULT;
	}

	req->ki_res.obj = (u64)(unsigned long)user_iocb;
	req->ki_res.data = iocb->aio_data;
	req->ki_res.res = 0;
	req->ki_res.res2 = 0;

	switch (iocb->aio_lio_opcode) {
	case IOCB_CMD_PREAD:
		return aio_read(&req->rw, iocb, false, compat);
	case IOCB_CMD_PWRITE:
		return aio_write(&req->rw, iocb, false, compat);
	case IOCB_CMD_PREADV:
		return aio_read(&req->rw, iocb, true, compat);
	case IOCB_CMD_PWRITEV:
		return aio_write(&req->rw, iocb, true, compat);
	case IOCB_CMD_FSYNC:
		return aio_fsync(&req->fsync, iocb, false);
	case IOCB_CMD_FDSYNC:
		return aio_fsync(&req->fsync, iocb, true);
	case IOCB_CMD_POLL:
		return aio_poll(req, iocb);
	default:
		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
		return -EINVAL;
	}
}

static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
			 bool compat)
{
	struct aio_kiocb *req;
	struct iocb iocb;
	int err;

	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
		return -EFAULT;

	/* enforce forwards compatibility on users */
	if (unlikely(iocb.aio_reserved2)) {
		pr_debug("EINVAL: reserve field set\n");
		return -EINVAL;
	}

	/* prevent overflows */
	if (unlikely(
	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
	    ((ssize_t)iocb.aio_nbytes < 0)
	   )) {
		pr_debug("EINVAL: overflow check\n");
		return -EINVAL;
	}

	req = aio_get_req(ctx);
	if (unlikely(!req))
		return -EAGAIN;

	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);

	/* Done with the synchronous reference */
	iocb_put(req);

	/*
	 * If err is 0, we'd either done aio_complete() ourselves or have
	 * arranged for that to be done asynchronously.  Anything non-zero
	 * means that we need to destroy req ourselves.
	 */
	if (unlikely(err)) {
		iocb_destroy(req);
		put_reqs_available(ctx, 1);
	}
	return err;
}

/* sys_io_submit:
 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
 *	the number of iocbs queued.  May return -EINVAL if the aio_context
 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
 *	*iocbpp[0] is not properly initialized, if the operation specified
 *	is invalid for the file descriptor in the iocb.  May fail with
 *	-EFAULT if any of the data structures point to invalid data.  May
 *	fail with -EBADF if the file descriptor specified in the first
 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
 *	fail with -ENOSYS if not implemented.
 */
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
		struct iocb __user * __user *, iocbpp)
{
	struct kioctx *ctx;
	long ret = 0;
	int i = 0;
	struct blk_plug plug;

	if (unlikely(nr < 0))
		return -EINVAL;

	ctx = lookup_ioctx(ctx_id);
	if (unlikely(!ctx)) {
		pr_debug("EINVAL: invalid context id\n");
		return -EINVAL;
	}

	if (nr > ctx->nr_events)
		nr = ctx->nr_events;

	if (nr > AIO_PLUG_THRESHOLD)
		blk_start_plug(&plug);
	for (i = 0; i < nr; i++) {
		struct iocb __user *user_iocb;

		if (unlikely(get_user(user_iocb, iocbpp + i))) {
			ret = -EFAULT;
			break;
		}

		ret = io_submit_one(ctx, user_iocb, false);
		if (ret)
			break;
	}
	if (nr > AIO_PLUG_THRESHOLD)
		blk_finish_plug(&plug);

	percpu_ref_put(&ctx->users);
	return i ? i : ret;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
		       int, nr, compat_uptr_t __user *, iocbpp)
{
	struct kioctx *ctx;
	long ret = 0;
	int i = 0;
	struct blk_plug plug;

	if (unlikely(nr < 0))
		return -EINVAL;

	ctx = lookup_ioctx(ctx_id);
	if (unlikely(!ctx)) {
		pr_debug("EINVAL: invalid context id\n");
		return -EINVAL;
	}

	if (nr > ctx->nr_events)
		nr = ctx->nr_events;

	if (nr > AIO_PLUG_THRESHOLD)
		blk_start_plug(&plug);
	for (i = 0; i < nr; i++) {
		compat_uptr_t user_iocb;

		if (unlikely(get_user(user_iocb, iocbpp + i))) {
			ret = -EFAULT;
			break;
		}

		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
		if (ret)
			break;
	}
	if (nr > AIO_PLUG_THRESHOLD)
		blk_finish_plug(&plug);

	percpu_ref_put(&ctx->users);
	return i ? i : ret;
}
#endif

/* sys_io_cancel:
 *	Attempts to cancel an iocb previously passed to io_submit.  If
 *	the operation is successfully cancelled, the resulting event is
 *	copied into the memory pointed to by result without being placed
 *	into the completion queue and 0 is returned.  May fail with
 *	-EFAULT if any of the data structures pointed to are invalid.
 *	May fail with -EINVAL if aio_context specified by ctx_id is
 *	invalid.  May fail with -EAGAIN if the iocb specified was not
 *	cancelled.  Will fail with -ENOSYS if not implemented.
 */
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
		struct io_event __user *, result)
{
	struct kioctx *ctx;
	struct aio_kiocb *kiocb;
	int ret = -EINVAL;
	u32 key;
	u64 obj = (u64)(unsigned long)iocb;

	if (unlikely(get_user(key, &iocb->aio_key)))
		return -EFAULT;
	if (unlikely(key != KIOCB_KEY))
		return -EINVAL;

	ctx = lookup_ioctx(ctx_id);
	if (unlikely(!ctx))
		return -EINVAL;

	spin_lock_irq(&ctx->ctx_lock);
	/* TODO: use a hash or array, this sucks. */
	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
		if (kiocb->ki_res.obj == obj) {
			ret = kiocb->ki_cancel(&kiocb->rw);
			list_del_init(&kiocb->ki_list);
			break;
		}
	}
	spin_unlock_irq(&ctx->ctx_lock);

	if (!ret) {
		/*
		 * The result argument is no longer used - the io_event is
		 * always delivered via the ring buffer. -EINPROGRESS indicates
		 * cancellation is progress:
		 */
		ret = -EINPROGRESS;
	}

	percpu_ref_put(&ctx->users);

	return ret;
}

static long do_io_getevents(aio_context_t ctx_id,
		long min_nr,
		long nr,
		struct io_event __user *events,
		struct timespec64 *ts)
{
	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
	struct kioctx *ioctx = lookup_ioctx(ctx_id);
	long ret = -EINVAL;

	if (likely(ioctx)) {
		if (likely(min_nr <= nr && min_nr >= 0))
			ret = read_events(ioctx, min_nr, nr, events, until);
		percpu_ref_put(&ioctx->users);
	}

	return ret;
}

/* io_getevents:
 *	Attempts to read at least min_nr events and up to nr events from
 *	the completion queue for the aio_context specified by ctx_id. If
 *	it succeeds, the number of read events is returned. May fail with
 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
 *	out of range, if timeout is out of range.  May fail with -EFAULT
 *	if any of the memory specified is invalid.  May return 0 or
 *	< min_nr if the timeout specified by timeout has elapsed
 *	before sufficient events are available, where timeout == NULL
 *	specifies an infinite timeout. Note that the timeout pointed to by
 *	timeout is relative.  Will fail with -ENOSYS if not implemented.
 */
#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)

SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
		long, min_nr,
		long, nr,
		struct io_event __user *, events,
		struct __kernel_timespec __user *, timeout)
{
	struct timespec64	ts;
	int			ret;

	if (timeout && unlikely(get_timespec64(&ts, timeout)))
		return -EFAULT;

	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
	if (!ret && signal_pending(current))
		ret = -EINTR;
	return ret;
}

#endif

struct __aio_sigset {
	const sigset_t __user	*sigmask;
	size_t		sigsetsize;
};

SYSCALL_DEFINE6(io_pgetevents,
		aio_context_t, ctx_id,
		long, min_nr,
		long, nr,
		struct io_event __user *, events,
		struct __kernel_timespec __user *, timeout,
		const struct __aio_sigset __user *, usig)
{
	struct __aio_sigset	ksig = { NULL, };
	struct timespec64	ts;
	bool interrupted;
	int ret;

	if (timeout && unlikely(get_timespec64(&ts, timeout)))
		return -EFAULT;

	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
		return -EFAULT;

	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
	if (ret)
		return ret;

	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);

	interrupted = signal_pending(current);
	restore_saved_sigmask_unless(interrupted);
	if (interrupted && !ret)
		ret = -ERESTARTNOHAND;

	return ret;
}

#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)

SYSCALL_DEFINE6(io_pgetevents_time32,
		aio_context_t, ctx_id,
		long, min_nr,
		long, nr,
		struct io_event __user *, events,
		struct old_timespec32 __user *, timeout,
		const struct __aio_sigset __user *, usig)
{
	struct __aio_sigset	ksig = { NULL, };
	struct timespec64	ts;
	bool interrupted;
	int ret;

	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
		return -EFAULT;

	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
		return -EFAULT;


	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
	if (ret)
		return ret;

	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);

	interrupted = signal_pending(current);
	restore_saved_sigmask_unless(interrupted);
	if (interrupted && !ret)
		ret = -ERESTARTNOHAND;

	return ret;
}

#endif

#if defined(CONFIG_COMPAT_32BIT_TIME)

SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
		__s32, min_nr,
		__s32, nr,
		struct io_event __user *, events,
		struct old_timespec32 __user *, timeout)
{
	struct timespec64 t;
	int ret;

	if (timeout && get_old_timespec32(&t, timeout))
		return -EFAULT;

	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
	if (!ret && signal_pending(current))
		ret = -EINTR;
	return ret;
}

#endif

#ifdef CONFIG_COMPAT

struct __compat_aio_sigset {
	compat_uptr_t		sigmask;
	compat_size_t		sigsetsize;
};

#if defined(CONFIG_COMPAT_32BIT_TIME)

COMPAT_SYSCALL_DEFINE6(io_pgetevents,
		compat_aio_context_t, ctx_id,
		compat_long_t, min_nr,
		compat_long_t, nr,
		struct io_event __user *, events,
		struct old_timespec32 __user *, timeout,
		const struct __compat_aio_sigset __user *, usig)
{
	struct __compat_aio_sigset ksig = { 0, };
	struct timespec64 t;
	bool interrupted;
	int ret;

	if (timeout && get_old_timespec32(&t, timeout))
		return -EFAULT;

	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
		return -EFAULT;

	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
	if (ret)
		return ret;

	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);

	interrupted = signal_pending(current);
	restore_saved_sigmask_unless(interrupted);
	if (interrupted && !ret)
		ret = -ERESTARTNOHAND;

	return ret;
}

#endif

COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
		compat_aio_context_t, ctx_id,
		compat_long_t, min_nr,
		compat_long_t, nr,
		struct io_event __user *, events,
		struct __kernel_timespec __user *, timeout,
		const struct __compat_aio_sigset __user *, usig)
{
	struct __compat_aio_sigset ksig = { 0, };
	struct timespec64 t;
	bool interrupted;
	int ret;

	if (timeout && get_timespec64(&t, timeout))
		return -EFAULT;

	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
		return -EFAULT;

	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
	if (ret)
		return ret;

	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);

	interrupted = signal_pending(current);
	restore_saved_sigmask_unless(interrupted);
	if (interrupted && !ret)
		ret = -ERESTARTNOHAND;

	return ret;
}
#endif