Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
|
|	ssin.sa 3.3 7/29/91
|
|	The entry point sSIN computes the sine of an input argument
|	sCOS computes the cosine, and sSINCOS computes both. The
|	corresponding entry points with a "d" computes the same
|	corresponding function values for denormalized inputs.
|
|	Input: Double-extended number X in location pointed to
|		by address register a0.
|
|	Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
|		COS is requested. Otherwise, for SINCOS, sin(X) is returned
|		in Fp0, and cos(X) is returned in Fp1.
|
|	Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
|
|	Accuracy and Monotonicity: The returned result is within 1 ulp in
|		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|		result is subsequently rounded to double precision. The
|		result is provably monotonic in double precision.
|
|	Speed: The programs sSIN and sCOS take approximately 150 cycles for
|		input argument X such that |X| < 15Pi, which is the usual
|		situation. The speed for sSINCOS is approximately 190 cycles.
|
|	Algorithm:
|
|	SIN and COS:
|	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
|
|	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
|
|	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
|		k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
|		k by k := k + AdjN.
|
|	4. If k is even, go to 6.
|
|	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
|		where cos(r) is approximated by an even polynomial in r,
|		1 + r*r*(B1+s*(B2+ ... + s*B8)),	s = r*r.
|		Exit.
|
|	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
|		where sin(r) is approximated by an odd polynomial in r
|		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.
|		Exit.
|
|	7. If |X| > 1, go to 9.
|
|	8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
|
|	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
|
|	SINCOS:
|	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
|
|	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
|		k = N mod 4, so in particular, k = 0,1,2,or 3.
|
|	3. If k is even, go to 5.
|
|	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
|		j1 exclusive or with the l.s.b. of k.
|		sgn1 := (-1)**j1, sgn2 := (-1)**j2.
|		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
|		sin(r) and cos(r) are computed as odd and even polynomials
|		in r, respectively. Exit
|
|	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
|		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
|		sin(r) and cos(r) are computed as odd and even polynomials
|		in r, respectively. Exit
|
|	6. If |X| > 1, go to 8.
|
|	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
|
|	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
|

|		Copyright (C) Motorola, Inc. 1990
|			All Rights Reserved
|
|       For details on the license for this file, please see the
|       file, README, in this same directory.

|SSIN	idnt	2,1 | Motorola 040 Floating Point Software Package

	|section	8

#include "fpsp.h"

BOUNDS1:	.long 0x3FD78000,0x4004BC7E
TWOBYPI:	.long 0x3FE45F30,0x6DC9C883

SINA7:	.long 0xBD6AAA77,0xCCC994F5
SINA6:	.long 0x3DE61209,0x7AAE8DA1

SINA5:	.long 0xBE5AE645,0x2A118AE4
SINA4:	.long 0x3EC71DE3,0xA5341531

SINA3:	.long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000

SINA2:	.long 0x3FF80000,0x88888888,0x888859AF,0x00000000

SINA1:	.long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000

COSB8:	.long 0x3D2AC4D0,0xD6011EE3
COSB7:	.long 0xBDA9396F,0x9F45AC19

COSB6:	.long 0x3E21EED9,0x0612C972
COSB5:	.long 0xBE927E4F,0xB79D9FCF

COSB4:	.long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000

COSB3:	.long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000

COSB2:	.long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
COSB1:	.long 0xBF000000

INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A

TWOPI1:	.long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
TWOPI2:	.long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000

	|xref	PITBL

	.set	INARG,FP_SCR4

	.set	X,FP_SCR5
	.set	XDCARE,X+2
	.set	XFRAC,X+4

	.set	RPRIME,FP_SCR1
	.set	SPRIME,FP_SCR2

	.set	POSNEG1,L_SCR1
	.set	TWOTO63,L_SCR1

	.set	ENDFLAG,L_SCR2
	.set	N,L_SCR2

	.set	ADJN,L_SCR3

	| xref	t_frcinx
	|xref	t_extdnrm
	|xref	sto_cos

	.global	ssind
ssind:
|--SIN(X) = X FOR DENORMALIZED X
	bra		t_extdnrm

	.global	scosd
scosd:
|--COS(X) = 1 FOR DENORMALIZED X

	fmoves		#0x3F800000,%fp0
|
|	9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
|
	fmovel		#0,%fpsr
|
	bra		t_frcinx

	.global	ssin
ssin:
|--SET ADJN TO 0
	movel		#0,ADJN(%a6)
	bras		SINBGN

	.global	scos
scos:
|--SET ADJN TO 1
	movel		#1,ADJN(%a6)

SINBGN:
|--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE

	fmovex		(%a0),%fp0	| ...LOAD INPUT

	movel		(%a0),%d0
	movew		4(%a0),%d0
	fmovex		%fp0,X(%a6)
	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X

	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
	bges		SOK1
	bra		SINSM

SOK1:
	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
	blts		SINMAIN
	bra		REDUCEX

SINMAIN:
|--THIS IS THE USUAL CASE, |X| <= 15 PI.
|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
	fmovex		%fp0,%fp1
	fmuld		TWOBYPI,%fp1	| ...X*2/PI

|--HIDE THE NEXT THREE INSTRUCTIONS
	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32


|--FP1 IS NOW READY
	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER

	movel		N(%a6),%d0
	asll		#4,%d0
	addal		%d0,%a1	| ...A1 IS THE ADDRESS OF N*PIBY2
|				...WHICH IS IN TWO PIECES Y1 & Y2

	fsubx		(%a1)+,%fp0	| ...X-Y1
|--HIDE THE NEXT ONE
	fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2

SINCONT:
|--continuation from REDUCEX

|--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
	movel		N(%a6),%d0
	addl		ADJN(%a6),%d0	| ...SEE IF D0 IS ODD OR EVEN
	rorl		#1,%d0	| ...D0 WAS ODD IFF D0 IS NEGATIVE
	cmpil		#0,%d0
	blt		COSPOLY

SINPOLY:
|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
|--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
|--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
|--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
|--WHERE T=S*S.
|--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
|--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
	fmovex		%fp0,X(%a6)	| ...X IS R
	fmulx		%fp0,%fp0	| ...FP0 IS S
|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
	fmoved		SINA7,%fp3
	fmoved		SINA6,%fp2
|--FP0 IS NOW READY
	fmovex		%fp0,%fp1
	fmulx		%fp1,%fp1	| ...FP1 IS T
|--HIDE THE NEXT TWO WHILE WAITING FOR FP1

	rorl		#1,%d0
	andil		#0x80000000,%d0
|				...LEAST SIG. BIT OF D0 IN SIGN POSITION
	eorl		%d0,X(%a6)	| ...X IS NOW R'= SGN*R

	fmulx		%fp1,%fp3	| ...TA7
	fmulx		%fp1,%fp2	| ...TA6

	faddd		SINA5,%fp3 | ...A5+TA7
	faddd		SINA4,%fp2 | ...A4+TA6

	fmulx		%fp1,%fp3	| ...T(A5+TA7)
	fmulx		%fp1,%fp2	| ...T(A4+TA6)

	faddd		SINA3,%fp3 | ...A3+T(A5+TA7)
	faddx		SINA2,%fp2 | ...A2+T(A4+TA6)

	fmulx		%fp3,%fp1	| ...T(A3+T(A5+TA7))

	fmulx		%fp0,%fp2	| ...S(A2+T(A4+TA6))
	faddx		SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
	fmulx		X(%a6),%fp0	| ...R'*S

	faddx		%fp2,%fp1	| ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
|--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING


	fmulx		%fp1,%fp0		| ...SIN(R')-R'
|--FP1 RELEASED.

	fmovel		%d1,%FPCR		|restore users exceptions
	faddx		X(%a6),%fp0		|last inst - possible exception set
	bra		t_frcinx


COSPOLY:
|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY
|--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
|--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
|--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
|--WHERE T=S*S.
|--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
|--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
|--AND IS THEREFORE STORED AS SINGLE PRECISION.

	fmulx		%fp0,%fp0	| ...FP0 IS S
|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
	fmoved		COSB8,%fp2
	fmoved		COSB7,%fp3
|--FP0 IS NOW READY
	fmovex		%fp0,%fp1
	fmulx		%fp1,%fp1	| ...FP1 IS T
|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
	fmovex		%fp0,X(%a6)	| ...X IS S
	rorl		#1,%d0
	andil		#0x80000000,%d0
|			...LEAST SIG. BIT OF D0 IN SIGN POSITION

	fmulx		%fp1,%fp2	| ...TB8
|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
	eorl		%d0,X(%a6)	| ...X IS NOW S'= SGN*S
	andil		#0x80000000,%d0

	fmulx		%fp1,%fp3	| ...TB7
|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
	oril		#0x3F800000,%d0	| ...D0 IS SGN IN SINGLE
	movel		%d0,POSNEG1(%a6)

	faddd		COSB6,%fp2 | ...B6+TB8
	faddd		COSB5,%fp3 | ...B5+TB7

	fmulx		%fp1,%fp2	| ...T(B6+TB8)
	fmulx		%fp1,%fp3	| ...T(B5+TB7)

	faddd		COSB4,%fp2 | ...B4+T(B6+TB8)
	faddx		COSB3,%fp3 | ...B3+T(B5+TB7)

	fmulx		%fp1,%fp2	| ...T(B4+T(B6+TB8))
	fmulx		%fp3,%fp1	| ...T(B3+T(B5+TB7))

	faddx		COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
	fadds		COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))

	fmulx		%fp2,%fp0	| ...S(B2+T(B4+T(B6+TB8)))
|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
|--FP2 RELEASED.


	faddx		%fp1,%fp0
|--FP1 RELEASED

	fmulx		X(%a6),%fp0

	fmovel		%d1,%FPCR		|restore users exceptions
	fadds		POSNEG1(%a6),%fp0	|last inst - possible exception set
	bra		t_frcinx


SINBORS:
|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
|--IF |X| < 2**(-40), RETURN X OR 1.
	cmpil		#0x3FFF8000,%d0
	bgts		REDUCEX


SINSM:
	movel		ADJN(%a6),%d0
	cmpil		#0,%d0
	bgts		COSTINY

SINTINY:
	movew		#0x0000,XDCARE(%a6)	| ...JUST IN CASE
	fmovel		%d1,%FPCR		|restore users exceptions
	fmovex		X(%a6),%fp0		|last inst - possible exception set
	bra		t_frcinx


COSTINY:
	fmoves		#0x3F800000,%fp0

	fmovel		%d1,%FPCR		|restore users exceptions
	fsubs		#0x00800000,%fp0	|last inst - possible exception set
	bra		t_frcinx


REDUCEX:
|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.

	fmovemx	%fp2-%fp5,-(%a7)	| ...save FP2 through FP5
	movel		%d2,-(%a7)
        fmoves         #0x00000000,%fp1
|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
|--there is a danger of unwanted overflow in first LOOP iteration.  In this
|--case, reduce argument by one remainder step to make subsequent reduction
|--safe.
	cmpil	#0x7ffeffff,%d0		|is argument dangerously large?
	bnes	LOOP
	movel	#0x7ffe0000,FP_SCR2(%a6)	|yes
|					;create 2**16383*PI/2
	movel	#0xc90fdaa2,FP_SCR2+4(%a6)
	clrl	FP_SCR2+8(%a6)
	ftstx	%fp0			|test sign of argument
	movel	#0x7fdc0000,FP_SCR3(%a6)	|create low half of 2**16383*
|					;PI/2 at FP_SCR3
	movel	#0x85a308d3,FP_SCR3+4(%a6)
	clrl   FP_SCR3+8(%a6)
	fblt	red_neg
	orw	#0x8000,FP_SCR2(%a6)	|positive arg
	orw	#0x8000,FP_SCR3(%a6)
red_neg:
	faddx  FP_SCR2(%a6),%fp0		|high part of reduction is exact
	fmovex  %fp0,%fp1		|save high result in fp1
	faddx  FP_SCR3(%a6),%fp0		|low part of reduction
	fsubx  %fp0,%fp1			|determine low component of result
	faddx  FP_SCR3(%a6),%fp1		|fp0/fp1 are reduced argument.

|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
|--integer quotient will be stored in N
|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)

LOOP:
	fmovex		%fp0,INARG(%a6)	| ...+-2**K * F, 1 <= F < 2
	movew		INARG(%a6),%d0
        movel          %d0,%a1		| ...save a copy of D0
	andil		#0x00007FFF,%d0
	subil		#0x00003FFF,%d0	| ...D0 IS K
	cmpil		#28,%d0
	bles		LASTLOOP
CONTLOOP:
	subil		#27,%d0	 | ...D0 IS L := K-27
	movel		#0,ENDFLAG(%a6)
	bras		WORK
LASTLOOP:
	clrl		%d0		| ...D0 IS L := 0
	movel		#1,ENDFLAG(%a6)

WORK:
|--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
|--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.

|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
|--2**L * (PIby2_1), 2**L * (PIby2_2)

	movel		#0x00003FFE,%d2	| ...BIASED EXPO OF 2/PI
	subl		%d0,%d2		| ...BIASED EXPO OF 2**(-L)*(2/PI)

	movel		#0xA2F9836E,FP_SCR1+4(%a6)
	movel		#0x4E44152A,FP_SCR1+8(%a6)
	movew		%d2,FP_SCR1(%a6)	| ...FP_SCR1 is 2**(-L)*(2/PI)

	fmovex		%fp0,%fp2
	fmulx		FP_SCR1(%a6),%fp2
|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
|--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
|--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
|--US THE DESIRED VALUE IN FLOATING POINT.

|--HIDE SIX CYCLES OF INSTRUCTION
        movel		%a1,%d2
        swap		%d2
	andil		#0x80000000,%d2
	oril		#0x5F000000,%d2	| ...D2 IS SIGN(INARG)*2**63 IN SGL
	movel		%d2,TWOTO63(%a6)

	movel		%d0,%d2
	addil		#0x00003FFF,%d2	| ...BIASED EXPO OF 2**L * (PI/2)

|--FP2 IS READY
	fadds		TWOTO63(%a6),%fp2	| ...THE FRACTIONAL PART OF FP1 IS ROUNDED

|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
        movew		%d2,FP_SCR2(%a6)
	clrw           FP_SCR2+2(%a6)
	movel		#0xC90FDAA2,FP_SCR2+4(%a6)
	clrl		FP_SCR2+8(%a6)		| ...FP_SCR2 is  2**(L) * Piby2_1

|--FP2 IS READY
	fsubs		TWOTO63(%a6),%fp2		| ...FP2 is N

	addil		#0x00003FDD,%d0
        movew		%d0,FP_SCR3(%a6)
	clrw           FP_SCR3+2(%a6)
	movel		#0x85A308D3,FP_SCR3+4(%a6)
	clrl		FP_SCR3+8(%a6)		| ...FP_SCR3 is 2**(L) * Piby2_2

	movel		ENDFLAG(%a6),%d0

|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
|--P2 = 2**(L) * Piby2_2
	fmovex		%fp2,%fp4
	fmulx		FP_SCR2(%a6),%fp4		| ...W = N*P1
	fmovex		%fp2,%fp5
	fmulx		FP_SCR3(%a6),%fp5		| ...w = N*P2
	fmovex		%fp4,%fp3
|--we want P+p = W+w  but  |p| <= half ulp of P
|--Then, we need to compute  A := R-P   and  a := r-p
	faddx		%fp5,%fp3			| ...FP3 is P
	fsubx		%fp3,%fp4			| ...W-P

	fsubx		%fp3,%fp0			| ...FP0 is A := R - P
        faddx		%fp5,%fp4			| ...FP4 is p = (W-P)+w

	fmovex		%fp0,%fp3			| ...FP3 A
	fsubx		%fp4,%fp1			| ...FP1 is a := r - p

|--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
|--|r| <= half ulp of R.
	faddx		%fp1,%fp0			| ...FP0 is R := A+a
|--No need to calculate r if this is the last loop
	cmpil		#0,%d0
	bgt		RESTORE

|--Need to calculate r
	fsubx		%fp0,%fp3			| ...A-R
	faddx		%fp3,%fp1			| ...FP1 is r := (A-R)+a
	bra		LOOP

RESTORE:
        fmovel		%fp2,N(%a6)
	movel		(%a7)+,%d2
	fmovemx	(%a7)+,%fp2-%fp5


	movel		ADJN(%a6),%d0
	cmpil		#4,%d0

	blt		SINCONT
	bras		SCCONT

	.global	ssincosd
ssincosd:
|--SIN AND COS OF X FOR DENORMALIZED X

	fmoves		#0x3F800000,%fp1
	bsr		sto_cos		|store cosine result
	bra		t_extdnrm

	.global	ssincos
ssincos:
|--SET ADJN TO 4
	movel		#4,ADJN(%a6)

	fmovex		(%a0),%fp0	| ...LOAD INPUT

	movel		(%a0),%d0
	movew		4(%a0),%d0
	fmovex		%fp0,X(%a6)
	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X

	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
	bges		SCOK1
	bra		SCSM

SCOK1:
	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
	blts		SCMAIN
	bra		REDUCEX


SCMAIN:
|--THIS IS THE USUAL CASE, |X| <= 15 PI.
|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
	fmovex		%fp0,%fp1
	fmuld		TWOBYPI,%fp1	| ...X*2/PI

|--HIDE THE NEXT THREE INSTRUCTIONS
	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32


|--FP1 IS NOW READY
	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER

	movel		N(%a6),%d0
	asll		#4,%d0
	addal		%d0,%a1		| ...ADDRESS OF N*PIBY2, IN Y1, Y2

	fsubx		(%a1)+,%fp0	| ...X-Y1
        fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2

SCCONT:
|--continuation point from REDUCEX

|--HIDE THE NEXT TWO
	movel		N(%a6),%d0
	rorl		#1,%d0

	cmpil		#0,%d0		| ...D0 < 0 IFF N IS ODD
	bge		NEVEN

NODD:
|--REGISTERS SAVED SO FAR: D0, A0, FP2.

	fmovex		%fp0,RPRIME(%a6)
	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
	fmoved		SINA7,%fp1	| ...A7
	fmoved		COSB8,%fp2	| ...B8
	fmulx		%fp0,%fp1	 | ...SA7
	movel		%d2,-(%a7)
	movel		%d0,%d2
	fmulx		%fp0,%fp2	 | ...SB8
	rorl		#1,%d2
	andil		#0x80000000,%d2

	faddd		SINA6,%fp1	| ...A6+SA7
	eorl		%d0,%d2
	andil		#0x80000000,%d2
	faddd		COSB7,%fp2	| ...B7+SB8

	fmulx		%fp0,%fp1	 | ...S(A6+SA7)
	eorl		%d2,RPRIME(%a6)
	movel		(%a7)+,%d2
	fmulx		%fp0,%fp2	 | ...S(B7+SB8)
	rorl		#1,%d0
	andil		#0x80000000,%d0

	faddd		SINA5,%fp1	| ...A5+S(A6+SA7)
	movel		#0x3F800000,POSNEG1(%a6)
	eorl		%d0,POSNEG1(%a6)
	faddd		COSB6,%fp2	| ...B6+S(B7+SB8)

	fmulx		%fp0,%fp1	 | ...S(A5+S(A6+SA7))
	fmulx		%fp0,%fp2	 | ...S(B6+S(B7+SB8))
	fmovex		%fp0,SPRIME(%a6)

	faddd		SINA4,%fp1	| ...A4+S(A5+S(A6+SA7))
	eorl		%d0,SPRIME(%a6)
	faddd		COSB5,%fp2	| ...B5+S(B6+S(B7+SB8))

	fmulx		%fp0,%fp1	 | ...S(A4+...)
	fmulx		%fp0,%fp2	 | ...S(B5+...)

	faddd		SINA3,%fp1	| ...A3+S(A4+...)
	faddd		COSB4,%fp2	| ...B4+S(B5+...)

	fmulx		%fp0,%fp1	 | ...S(A3+...)
	fmulx		%fp0,%fp2	 | ...S(B4+...)

	faddx		SINA2,%fp1	| ...A2+S(A3+...)
	faddx		COSB3,%fp2	| ...B3+S(B4+...)

	fmulx		%fp0,%fp1	 | ...S(A2+...)
	fmulx		%fp0,%fp2	 | ...S(B3+...)

	faddx		SINA1,%fp1	| ...A1+S(A2+...)
	faddx		COSB2,%fp2	| ...B2+S(B3+...)

	fmulx		%fp0,%fp1	 | ...S(A1+...)
	fmulx		%fp2,%fp0	 | ...S(B2+...)



	fmulx		RPRIME(%a6),%fp1	| ...R'S(A1+...)
	fadds		COSB1,%fp0	| ...B1+S(B2...)
	fmulx		SPRIME(%a6),%fp0	| ...S'(B1+S(B2+...))

	movel		%d1,-(%sp)	|restore users mode & precision
	andil		#0xff,%d1		|mask off all exceptions
	fmovel		%d1,%FPCR
	faddx		RPRIME(%a6),%fp1	| ...COS(X)
	bsr		sto_cos		|store cosine result
	fmovel		(%sp)+,%FPCR	|restore users exceptions
	fadds		POSNEG1(%a6),%fp0	| ...SIN(X)

	bra		t_frcinx


NEVEN:
|--REGISTERS SAVED SO FAR: FP2.

	fmovex		%fp0,RPRIME(%a6)
	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
	fmoved		COSB8,%fp1			| ...B8
	fmoved		SINA7,%fp2			| ...A7
	fmulx		%fp0,%fp1	 | ...SB8
	fmovex		%fp0,SPRIME(%a6)
	fmulx		%fp0,%fp2	 | ...SA7
	rorl		#1,%d0
	andil		#0x80000000,%d0
	faddd		COSB7,%fp1	| ...B7+SB8
	faddd		SINA6,%fp2	| ...A6+SA7
	eorl		%d0,RPRIME(%a6)
	eorl		%d0,SPRIME(%a6)
	fmulx		%fp0,%fp1	 | ...S(B7+SB8)
	oril		#0x3F800000,%d0
	movel		%d0,POSNEG1(%a6)
	fmulx		%fp0,%fp2	 | ...S(A6+SA7)

	faddd		COSB6,%fp1	| ...B6+S(B7+SB8)
	faddd		SINA5,%fp2	| ...A5+S(A6+SA7)

	fmulx		%fp0,%fp1	 | ...S(B6+S(B7+SB8))
	fmulx		%fp0,%fp2	 | ...S(A5+S(A6+SA7))

	faddd		COSB5,%fp1	| ...B5+S(B6+S(B7+SB8))
	faddd		SINA4,%fp2	| ...A4+S(A5+S(A6+SA7))

	fmulx		%fp0,%fp1	 | ...S(B5+...)
	fmulx		%fp0,%fp2	 | ...S(A4+...)

	faddd		COSB4,%fp1	| ...B4+S(B5+...)
	faddd		SINA3,%fp2	| ...A3+S(A4+...)

	fmulx		%fp0,%fp1	 | ...S(B4+...)
	fmulx		%fp0,%fp2	 | ...S(A3+...)

	faddx		COSB3,%fp1	| ...B3+S(B4+...)
	faddx		SINA2,%fp2	| ...A2+S(A3+...)

	fmulx		%fp0,%fp1	 | ...S(B3+...)
	fmulx		%fp0,%fp2	 | ...S(A2+...)

	faddx		COSB2,%fp1	| ...B2+S(B3+...)
	faddx		SINA1,%fp2	| ...A1+S(A2+...)

	fmulx		%fp0,%fp1	 | ...S(B2+...)
	fmulx		%fp2,%fp0	 | ...s(a1+...)



	fadds		COSB1,%fp1	| ...B1+S(B2...)
	fmulx		RPRIME(%a6),%fp0	| ...R'S(A1+...)
	fmulx		SPRIME(%a6),%fp1	| ...S'(B1+S(B2+...))

	movel		%d1,-(%sp)	|save users mode & precision
	andil		#0xff,%d1		|mask off all exceptions
	fmovel		%d1,%FPCR
	fadds		POSNEG1(%a6),%fp1	| ...COS(X)
	bsr		sto_cos		|store cosine result
	fmovel		(%sp)+,%FPCR	|restore users exceptions
	faddx		RPRIME(%a6),%fp0	| ...SIN(X)

	bra		t_frcinx

SCBORS:
	cmpil		#0x3FFF8000,%d0
	bgt		REDUCEX


SCSM:
	movew		#0x0000,XDCARE(%a6)
	fmoves		#0x3F800000,%fp1

	movel		%d1,-(%sp)	|save users mode & precision
	andil		#0xff,%d1		|mask off all exceptions
	fmovel		%d1,%FPCR
	fsubs		#0x00800000,%fp1
	bsr		sto_cos		|store cosine result
	fmovel		(%sp)+,%FPCR	|restore users exceptions
	fmovex		X(%a6),%fp0
	bra		t_frcinx

	|end