Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/perf_event.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/apicdef.h>
#include <asm/nmi.h>

#include "../perf_event.h"

static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
static unsigned long perf_nmi_window;

static __initconst const u64 amd_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

static __initconst const u64 amd_hw_cache_event_ids_f17h
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
		[C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
		[C(RESULT_MISS)]   = 0,
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
		[C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
		[C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
		[C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
		[C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
};

/*
 * AMD Performance Monitor K7 and later, up to and including Family 16h:
 */
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x077d,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x077e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
};

/*
 * AMD Performance Monitor Family 17h and later:
 */
static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x0287,
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x0187,
};

static u64 amd_pmu_event_map(int hw_event)
{
	if (boot_cpu_data.x86 >= 0x17)
		return amd_f17h_perfmon_event_map[hw_event];

	return amd_perfmon_event_map[hw_event];
}

/*
 * Previously calculated offsets
 */
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;

/*
 * Legacy CPUs:
 *   4 counters starting at 0xc0010000 each offset by 1
 *
 * CPUs with core performance counter extensions:
 *   6 counters starting at 0xc0010200 each offset by 2
 */
static inline int amd_pmu_addr_offset(int index, bool eventsel)
{
	int offset;

	if (!index)
		return index;

	if (eventsel)
		offset = event_offsets[index];
	else
		offset = count_offsets[index];

	if (offset)
		return offset;

	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
		offset = index;
	else
		offset = index << 1;

	if (eventsel)
		event_offsets[index] = offset;
	else
		count_offsets[index] = offset;

	return offset;
}

static int amd_core_hw_config(struct perf_event *event)
{
	if (event->attr.exclude_host && event->attr.exclude_guest)
		/*
		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
		 * and will count in both modes. We don't want to count in that
		 * case so we emulate no-counting by setting US = OS = 0.
		 */
		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
				      ARCH_PERFMON_EVENTSEL_OS);
	else if (event->attr.exclude_host)
		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
	else if (event->attr.exclude_guest)
		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;

	return 0;
}

/*
 * AMD64 events are detected based on their event codes.
 */
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}

static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

static int amd_pmu_hw_config(struct perf_event *event)
{
	int ret;

	/* pass precise event sampling to ibs: */
	if (event->attr.precise_ip && get_ibs_caps())
		return -ENOENT;

	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	ret = x86_pmu_hw_config(event);
	if (ret)
		return ret;

	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return amd_core_hw_config(event);
}

static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
{
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
		if (cmpxchg(nb->owners + i, event, NULL) == event)
			break;
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
  * calling __amd_put_nb_event_constraints()
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			       struct event_constraint *c)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	struct perf_event *old;
	int idx, new = -1;

	if (!c)
		c = &unconstrained;

	if (cpuc->is_fake)
		return c;

	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
		if (new == -1 || hwc->idx == idx)
			/* assign free slot, prefer hwc->idx */
			old = cmpxchg(nb->owners + idx, NULL, event);
		else if (nb->owners[idx] == event)
			/* event already present */
			old = event;
		else
			continue;

		if (old && old != event)
			continue;

		/* reassign to this slot */
		if (new != -1)
			cmpxchg(nb->owners + new, event, NULL);
		new = idx;

		/* already present, reuse */
		if (old == event)
			break;
	}

	if (new == -1)
		return &emptyconstraint;

	return &nb->event_constraints[new];
}

static struct amd_nb *amd_alloc_nb(int cpu)
{
	struct amd_nb *nb;
	int i;

	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
	if (!nb)
		return NULL;

	nb->nb_id = -1;

	/*
	 * initialize all possible NB constraints
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
		__set_bit(i, nb->event_constraints[i].idxmsk);
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	WARN_ON_ONCE(cpuc->amd_nb);

	if (!x86_pmu.amd_nb_constraints)
		return 0;

	cpuc->amd_nb = amd_alloc_nb(cpu);
	if (!cpuc->amd_nb)
		return -ENOMEM;

	return 0;
}

static void amd_pmu_cpu_starting(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
	struct amd_nb *nb;
	int i, nb_id;

	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;

	if (!x86_pmu.amd_nb_constraints)
		return;

	nb_id = amd_get_nb_id(cpu);
	WARN_ON_ONCE(nb_id == BAD_APICID);

	for_each_online_cpu(i) {
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
			continue;

		if (nb->nb_id == nb_id) {
			*onln = cpuc->amd_nb;
			cpuc->amd_nb = nb;
			break;
		}
	}

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;
}

static void amd_pmu_cpu_dead(int cpu)
{
	struct cpu_hw_events *cpuhw;

	if (!x86_pmu.amd_nb_constraints)
		return;

	cpuhw = &per_cpu(cpu_hw_events, cpu);

	if (cpuhw->amd_nb) {
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);

		cpuhw->amd_nb = NULL;
	}
}

/*
 * When a PMC counter overflows, an NMI is used to process the event and
 * reset the counter. NMI latency can result in the counter being updated
 * before the NMI can run, which can result in what appear to be spurious
 * NMIs. This function is intended to wait for the NMI to run and reset
 * the counter to avoid possible unhandled NMI messages.
 */
#define OVERFLOW_WAIT_COUNT	50

static void amd_pmu_wait_on_overflow(int idx)
{
	unsigned int i;
	u64 counter;

	/*
	 * Wait for the counter to be reset if it has overflowed. This loop
	 * should exit very, very quickly, but just in case, don't wait
	 * forever...
	 */
	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
		rdmsrl(x86_pmu_event_addr(idx), counter);
		if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
			break;

		/* Might be in IRQ context, so can't sleep */
		udelay(1);
	}
}

static void amd_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	x86_pmu_disable_all();

	/*
	 * This shouldn't be called from NMI context, but add a safeguard here
	 * to return, since if we're in NMI context we can't wait for an NMI
	 * to reset an overflowed counter value.
	 */
	if (in_nmi())
		return;

	/*
	 * Check each counter for overflow and wait for it to be reset by the
	 * NMI if it has overflowed. This relies on the fact that all active
	 * counters are always enabled when this function is caled and
	 * ARCH_PERFMON_EVENTSEL_INT is always set.
	 */
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_wait_on_overflow(idx);
	}
}

static void amd_pmu_disable_event(struct perf_event *event)
{
	x86_pmu_disable_event(event);

	/*
	 * This can be called from NMI context (via x86_pmu_stop). The counter
	 * may have overflowed, but either way, we'll never see it get reset
	 * by the NMI if we're already in the NMI. And the NMI latency support
	 * below will take care of any pending NMI that might have been
	 * generated by the overflow.
	 */
	if (in_nmi())
		return;

	amd_pmu_wait_on_overflow(event->hw.idx);
}

/*
 * Because of NMI latency, if multiple PMC counters are active or other sources
 * of NMIs are received, the perf NMI handler can handle one or more overflowed
 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
 * back-to-back NMI support won't be active. This PMC handler needs to take into
 * account that this can occur, otherwise this could result in unknown NMI
 * messages being issued. Examples of this is PMC overflow while in the NMI
 * handler when multiple PMCs are active or PMC overflow while handling some
 * other source of an NMI.
 *
 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
 * received during this window will be claimed. This prevents extending the
 * window past when it is possible that latent NMIs should be received. The
 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
 * handled a counter. When an un-handled NMI is received, it will be claimed
 * only if arriving within that window.
 */
static int amd_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int active, handled;

	/*
	 * Obtain the active count before calling x86_pmu_handle_irq() since
	 * it is possible that x86_pmu_handle_irq() may make a counter
	 * inactive (through x86_pmu_stop).
	 */
	active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);

	/* Process any counter overflows */
	handled = x86_pmu_handle_irq(regs);

	/*
	 * If a counter was handled, record a timestamp such that un-handled
	 * NMIs will be claimed if arriving within that window.
	 */
	if (handled) {
		this_cpu_write(perf_nmi_tstamp,
			       jiffies + perf_nmi_window);

		return handled;
	}

	if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
		return NMI_DONE;

	return NMI_HANDLED;
}

static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
		return &unconstrained;

	return __amd_get_nb_event_constraints(cpuc, event, NULL);
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
		__amd_put_nb_event_constraints(cpuc, event);
}

PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *amd_format_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

/* AMD Family 15h */

#define AMD_EVENT_TYPE_MASK	0x000000F0ULL

#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS		0x000000C0ULL
#define AMD_EVENT_DE		0x000000D0ULL
#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL

/*
 * AMD family 15h event code/PMC mappings:
 *
 * type = event_code & 0x0F0:
 *
 * 0x000	FP	PERF_CTL[5:3]
 * 0x010	FP	PERF_CTL[5:3]
 * 0x020	LS	PERF_CTL[5:0]
 * 0x030	LS	PERF_CTL[5:0]
 * 0x040	DC	PERF_CTL[5:0]
 * 0x050	DC	PERF_CTL[5:0]
 * 0x060	CU	PERF_CTL[2:0]
 * 0x070	CU	PERF_CTL[2:0]
 * 0x080	IC/DE	PERF_CTL[2:0]
 * 0x090	IC/DE	PERF_CTL[2:0]
 * 0x0A0	---
 * 0x0B0	---
 * 0x0C0	EX/LS	PERF_CTL[5:0]
 * 0x0D0	DE	PERF_CTL[2:0]
 * 0x0E0	NB	NB_PERF_CTL[3:0]
 * 0x0F0	NB	NB_PERF_CTL[3:0]
 *
 * Exceptions:
 *
 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
 * 0x003	FP	PERF_CTL[3]
 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
 * 0x00B	FP	PERF_CTL[3]
 * 0x00D	FP	PERF_CTL[3]
 * 0x023	DE	PERF_CTL[2:0]
 * 0x02D	LS	PERF_CTL[3]
 * 0x02E	LS	PERF_CTL[3,0]
 * 0x031	LS	PERF_CTL[2:0] (**)
 * 0x043	CU	PERF_CTL[2:0]
 * 0x045	CU	PERF_CTL[2:0]
 * 0x046	CU	PERF_CTL[2:0]
 * 0x054	CU	PERF_CTL[2:0]
 * 0x055	CU	PERF_CTL[2:0]
 * 0x08F	IC	PERF_CTL[0]
 * 0x187	DE	PERF_CTL[0]
 * 0x188	DE	PERF_CTL[0]
 * 0x0DB	EX	PERF_CTL[5:0]
 * 0x0DC	LS	PERF_CTL[5:0]
 * 0x0DD	LS	PERF_CTL[5:0]
 * 0x0DE	LS	PERF_CTL[5:0]
 * 0x0DF	LS	PERF_CTL[5:0]
 * 0x1C0	EX	PERF_CTL[5:3]
 * 0x1D6	EX	PERF_CTL[5:0]
 * 0x1D8	EX	PERF_CTL[5:0]
 *
 * (*)  depending on the umask all FPU counters may be used
 * (**) only one unitmask enabled at a time
 */

static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);

static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	unsigned int event_code = amd_get_event_code(hwc);

	switch (event_code & AMD_EVENT_TYPE_MASK) {
	case AMD_EVENT_FP:
		switch (event_code) {
		case 0x000:
			if (!(hwc->config & 0x0000F000ULL))
				break;
			if (!(hwc->config & 0x00000F00ULL))
				break;
			return &amd_f15_PMC3;
		case 0x004:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				break;
			return &amd_f15_PMC3;
		case 0x003:
		case 0x00B:
		case 0x00D:
			return &amd_f15_PMC3;
		}
		return &amd_f15_PMC53;
	case AMD_EVENT_LS:
	case AMD_EVENT_DC:
	case AMD_EVENT_EX_LS:
		switch (event_code) {
		case 0x023:
		case 0x043:
		case 0x045:
		case 0x046:
		case 0x054:
		case 0x055:
			return &amd_f15_PMC20;
		case 0x02D:
			return &amd_f15_PMC3;
		case 0x02E:
			return &amd_f15_PMC30;
		case 0x031:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				return &amd_f15_PMC20;
			return &emptyconstraint;
		case 0x1C0:
			return &amd_f15_PMC53;
		default:
			return &amd_f15_PMC50;
		}
	case AMD_EVENT_CU:
	case AMD_EVENT_IC_DE:
	case AMD_EVENT_DE:
		switch (event_code) {
		case 0x08F:
		case 0x187:
		case 0x188:
			return &amd_f15_PMC0;
		case 0x0DB ... 0x0DF:
		case 0x1D6:
		case 0x1D8:
			return &amd_f15_PMC50;
		default:
			return &amd_f15_PMC20;
		}
	case AMD_EVENT_NB:
		/* moved to uncore.c */
		return &emptyconstraint;
	default:
		return &emptyconstraint;
	}
}

static ssize_t amd_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
		    (config & AMD64_EVENTSEL_EVENT) >> 24;

	return x86_event_sysfs_show(page, config, event);
}

static __initconst const struct x86_pmu amd_pmu = {
	.name			= "AMD",
	.handle_irq		= amd_pmu_handle_irq,
	.disable_all		= amd_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= amd_pmu_disable_event,
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
	.addr_offset            = amd_pmu_addr_offset,
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
	.num_counters		= AMD64_NUM_COUNTERS,
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
	.get_event_constraints	= amd_get_event_constraints,
	.put_event_constraints	= amd_put_event_constraints,

	.format_attrs		= amd_format_attr,
	.events_sysfs_show	= amd_event_sysfs_show,

	.cpu_prepare		= amd_pmu_cpu_prepare,
	.cpu_starting		= amd_pmu_cpu_starting,
	.cpu_dead		= amd_pmu_cpu_dead,

	.amd_nb_constraints	= 1,
};

static int __init amd_core_pmu_init(void)
{
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
		return 0;

	/* Avoid calulating the value each time in the NMI handler */
	perf_nmi_window = msecs_to_jiffies(100);

	switch (boot_cpu_data.x86) {
	case 0x15:
		pr_cont("Fam15h ");
		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
		break;
	case 0x17:
		pr_cont("Fam17h ");
		/*
		 * In family 17h, there are no event constraints in the PMC hardware.
		 * We fallback to using default amd_get_event_constraints.
		 */
		break;
	case 0x18:
		pr_cont("Fam18h ");
		/* Using default amd_get_event_constraints. */
		break;
	default:
		pr_err("core perfctr but no constraints; unknown hardware!\n");
		return -ENODEV;
	}

	/*
	 * If core performance counter extensions exists, we must use
	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
	 * amd_pmu_addr_offset().
	 */
	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
	/*
	 * AMD Core perfctr has separate MSRs for the NB events, see
	 * the amd/uncore.c driver.
	 */
	x86_pmu.amd_nb_constraints = 0;

	pr_cont("core perfctr, ");
	return 0;
}

__init int amd_pmu_init(void)
{
	int ret;

	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

	x86_pmu = amd_pmu;

	ret = amd_core_pmu_init();
	if (ret)
		return ret;

	if (num_possible_cpus() == 1) {
		/*
		 * No point in allocating data structures to serialize
		 * against other CPUs, when there is only the one CPU.
		 */
		x86_pmu.amd_nb_constraints = 0;
	}

	if (boot_cpu_data.x86 >= 0x17)
		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
	else
		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));

	return 0;
}

void amd_pmu_enable_virt(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	cpuc->perf_ctr_virt_mask = 0;

	/* Reload all events */
	amd_pmu_disable_all();
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);

void amd_pmu_disable_virt(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * We only mask out the Host-only bit so that host-only counting works
	 * when SVM is disabled. If someone sets up a guest-only counter when
	 * SVM is disabled the Guest-only bits still gets set and the counter
	 * will not count anything.
	 */
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;

	/* Reload all events */
	amd_pmu_disable_all();
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);