Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c)  2018 Intel Corporation */

#include <linux/delay.h>

#include "igc_hw.h"

/**
 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 * @hw: pointer to the HW structure
 *
 * Acquire the necessary semaphores for exclusive access to the EEPROM.
 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 * Return successful if access grant bit set, else clear the request for
 * EEPROM access and return -IGC_ERR_NVM (-1).
 */
static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
{
	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}

/**
 * igc_release_nvm_i225 - Release exclusive access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 * then release the semaphores acquired.
 */
static void igc_release_nvm_i225(struct igc_hw *hw)
{
	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}

/**
 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 * @hw: pointer to the HW structure
 *
 * Acquire the HW semaphore to access the PHY or NVM
 */
static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
{
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;
	u32 swsm;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = rd32(IGC_SWSM);
		if (!(swsm & IGC_SWSM_SMBI))
			break;

		usleep_range(500, 600);
		i++;
	}

	if (i == timeout) {
		/* In rare circumstances, the SW semaphore may already be held
		 * unintentionally. Clear the semaphore once before giving up.
		 */
		if (hw->dev_spec._base.clear_semaphore_once) {
			hw->dev_spec._base.clear_semaphore_once = false;
			igc_put_hw_semaphore(hw);
			for (i = 0; i < timeout; i++) {
				swsm = rd32(IGC_SWSM);
				if (!(swsm & IGC_SWSM_SMBI))
					break;

				usleep_range(500, 600);
			}
		}

		/* If we do not have the semaphore here, we have to give up. */
		if (i == timeout) {
			hw_dbg("Driver can't access device - SMBI bit is set.\n");
			return -IGC_ERR_NVM;
		}
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(IGC_SWSM);
		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
			break;

		usleep_range(500, 600);
	}

	if (i == timeout) {
		/* Release semaphores */
		igc_put_hw_semaphore(hw);
		hw_dbg("Driver can't access the NVM\n");
		return -IGC_ERR_NVM;
	}

	return 0;
}

/**
 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 * will also specify which port we're acquiring the lock for.
 */
s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
	s32 i = 0, timeout = 200;
	u32 fwmask = mask << 16;
	u32 swmask = mask;
	s32 ret_val = 0;
	u32 swfw_sync;

	while (i < timeout) {
		if (igc_get_hw_semaphore_i225(hw)) {
			ret_val = -IGC_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(IGC_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/* Firmware currently using resource (fwmask) */
		igc_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -IGC_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(IGC_SW_FW_SYNC, swfw_sync);

	igc_put_hw_semaphore(hw);
out:
	return ret_val;
}

/**
 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 * will also specify which port we're releasing the lock for.
 */
void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igc_get_hw_semaphore_i225(hw))
		; /* Empty */

	swfw_sync = rd32(IGC_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(IGC_SW_FW_SYNC, swfw_sync);

	igc_put_hw_semaphore(hw);
}

/**
 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
 * @hw: pointer to the HW structure
 * @offset: offset of word in the Shadow Ram to read
 * @words: number of words to read
 * @data: word read from the Shadow Ram
 *
 * Reads a 16 bit word from the Shadow Ram using the EERD register.
 * Uses necessary synchronization semaphores.
 */
static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	s32 status = 0;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
			IGC_EERD_EEWR_MAX_COUNT : (words - i);

		status = hw->nvm.ops.acquire(hw);
		if (status)
			break;

		status = igc_read_nvm_eerd(hw, offset, count, data + i);
		hw->nvm.ops.release(hw);
		if (status)
			break;
	}

	return status;
}

/**
 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
 * @hw: pointer to the HW structure
 * @offset: offset within the Shadow Ram to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the Shadow Ram
 *
 * Writes data to Shadow Ram at offset using EEWR register.
 *
 * If igc_update_nvm_checksum is not called after this function , the
 * Shadow Ram will most likely contain an invalid checksum.
 */
static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
			      u16 *data)
{
	struct igc_nvm_info *nvm = &hw->nvm;
	u32 attempts = 100000;
	u32 i, k, eewr = 0;
	s32 ret_val = 0;

	/* A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
	    words == 0) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -IGC_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
			(data[i] << IGC_NVM_RW_REG_DATA) |
			IGC_NVM_RW_REG_START;

		wr32(IGC_SRWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (IGC_NVM_RW_REG_DONE &
			    rd32(IGC_SRWR)) {
				ret_val = 0;
				break;
			}
			udelay(5);
		}

		if (ret_val) {
			hw_dbg("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

/**
 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
 * @hw: pointer to the HW structure
 * @offset: offset within the Shadow RAM to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the Shadow RAM
 *
 * Writes data to Shadow RAM at offset using EEWR register.
 *
 * If igc_update_nvm_checksum is not called after this function , the
 * data will not be committed to FLASH and also Shadow RAM will most likely
 * contain an invalid checksum.
 *
 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
 * partially written.
 */
static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	s32 status = 0;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to write in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
			IGC_EERD_EEWR_MAX_COUNT : (words - i);

		status = hw->nvm.ops.acquire(hw);
		if (status)
			break;

		status = igc_write_nvm_srwr(hw, offset, count, data + i);
		hw->nvm.ops.release(hw);
		if (status)
			break;
	}

	return status;
}

/**
 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
 */
static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
{
	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
			   u16 *data);
	s32 status = 0;

	status = hw->nvm.ops.acquire(hw);
	if (status)
		goto out;

	/* Replace the read function with semaphore grabbing with
	 * the one that skips this for a while.
	 * We have semaphore taken already here.
	 */
	read_op_ptr = hw->nvm.ops.read;
	hw->nvm.ops.read = igc_read_nvm_eerd;

	status = igc_validate_nvm_checksum(hw);

	/* Revert original read operation. */
	hw->nvm.ops.read = read_op_ptr;

	hw->nvm.ops.release(hw);

out:
	return status;
}

/**
 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
 * @hw: pointer to the HW structure
 */
static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
{
	s32 ret_val = -IGC_ERR_NVM;
	u32 i, reg;

	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
		reg = rd32(IGC_EECD);
		if (reg & IGC_EECD_FLUDONE_I225) {
			ret_val = 0;
			break;
		}
		udelay(5);
	}

	return ret_val;
}

/**
 * igc_update_flash_i225 - Commit EEPROM to the flash
 * @hw: pointer to the HW structure
 */
static s32 igc_update_flash_i225(struct igc_hw *hw)
{
	s32 ret_val = 0;
	u32 flup;

	ret_val = igc_pool_flash_update_done_i225(hw);
	if (ret_val == -IGC_ERR_NVM) {
		hw_dbg("Flash update time out\n");
		goto out;
	}

	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
	wr32(IGC_EECD, flup);

	ret_val = igc_pool_flash_update_done_i225(hw);
	if (ret_val)
		hw_dbg("Flash update time out\n");
	else
		hw_dbg("Flash update complete\n");

out:
	return ret_val;
}

/**
 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
 * up to the checksum.  Then calculates the EEPROM checksum and writes the
 * value to the EEPROM. Next commit EEPROM data onto the Flash.
 */
static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
{
	u16 checksum = 0;
	s32 ret_val = 0;
	u16 i, nvm_data;

	/* Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("EEPROM read failed\n");
		goto out;
	}

	ret_val = hw->nvm.ops.acquire(hw);
	if (ret_val)
		goto out;

	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
	 * because we do not want to take the synchronization
	 * semaphores twice here.
	 */

	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw->nvm.ops.release(hw);
			hw_dbg("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16)NVM_SUM - checksum;
	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
				     &checksum);
	if (ret_val) {
		hw->nvm.ops.release(hw);
		hw_dbg("NVM Write Error while updating checksum.\n");
		goto out;
	}

	hw->nvm.ops.release(hw);

	ret_val = igc_update_flash_i225(hw);

out:
	return ret_val;
}

/**
 * igc_get_flash_presence_i225 - Check if flash device is detected
 * @hw: pointer to the HW structure
 */
bool igc_get_flash_presence_i225(struct igc_hw *hw)
{
	bool ret_val = false;
	u32 eec = 0;

	eec = rd32(IGC_EECD);
	if (eec & IGC_EECD_FLASH_DETECTED_I225)
		ret_val = true;

	return ret_val;
}

/**
 * igc_init_nvm_params_i225 - Init NVM func ptrs.
 * @hw: pointer to the HW structure
 */
s32 igc_init_nvm_params_i225(struct igc_hw *hw)
{
	struct igc_nvm_info *nvm = &hw->nvm;

	nvm->ops.acquire = igc_acquire_nvm_i225;
	nvm->ops.release = igc_release_nvm_i225;

	/* NVM Function Pointers */
	if (igc_get_flash_presence_i225(hw)) {
		hw->nvm.type = igc_nvm_flash_hw;
		nvm->ops.read = igc_read_nvm_srrd_i225;
		nvm->ops.write = igc_write_nvm_srwr_i225;
		nvm->ops.validate = igc_validate_nvm_checksum_i225;
		nvm->ops.update = igc_update_nvm_checksum_i225;
	} else {
		hw->nvm.type = igc_nvm_invm;
		nvm->ops.read = igc_read_nvm_eerd;
		nvm->ops.write = NULL;
		nvm->ops.validate = NULL;
		nvm->ops.update = NULL;
	}
	return 0;
}