Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2011-2013 Solarflare Communications Inc.
 */

#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/hwmon.h>
#include <linux/stat.h>

#include "net_driver.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"

enum efx_hwmon_type {
	EFX_HWMON_UNKNOWN,
	EFX_HWMON_TEMP,         /* temperature */
	EFX_HWMON_COOL,         /* cooling device, probably a heatsink */
	EFX_HWMON_IN,		/* voltage */
	EFX_HWMON_CURR,		/* current */
	EFX_HWMON_POWER,	/* power */
	EFX_HWMON_TYPES_COUNT
};

static const char *const efx_hwmon_unit[EFX_HWMON_TYPES_COUNT] = {
	[EFX_HWMON_TEMP]  = " degC",
	[EFX_HWMON_COOL]  = " rpm", /* though nonsense for a heatsink */
	[EFX_HWMON_IN]    = " mV",
	[EFX_HWMON_CURR]  = " mA",
	[EFX_HWMON_POWER] = " W",
};

static const struct {
	const char *label;
	enum efx_hwmon_type hwmon_type;
	int port;
} efx_mcdi_sensor_type[] = {
#define SENSOR(name, label, hwmon_type, port)				\
	[MC_CMD_SENSOR_##name] = { label, EFX_HWMON_ ## hwmon_type, port }
	SENSOR(CONTROLLER_TEMP,		"Controller board temp.",   TEMP,  -1),
	SENSOR(PHY_COMMON_TEMP,		"PHY temp.",		    TEMP,  -1),
	SENSOR(CONTROLLER_COOLING,	"Controller heat sink",	    COOL,  -1),
	SENSOR(PHY0_TEMP,		"PHY temp.",		    TEMP,  0),
	SENSOR(PHY0_COOLING,		"PHY heat sink",	    COOL,  0),
	SENSOR(PHY1_TEMP,		"PHY temp.",		    TEMP,  1),
	SENSOR(PHY1_COOLING,		"PHY heat sink",	    COOL,  1),
	SENSOR(IN_1V0,			"1.0V supply",		    IN,    -1),
	SENSOR(IN_1V2,			"1.2V supply",		    IN,    -1),
	SENSOR(IN_1V8,			"1.8V supply",		    IN,    -1),
	SENSOR(IN_2V5,			"2.5V supply",		    IN,    -1),
	SENSOR(IN_3V3,			"3.3V supply",		    IN,    -1),
	SENSOR(IN_12V0,			"12.0V supply",		    IN,    -1),
	SENSOR(IN_1V2A,			"1.2V analogue supply",	    IN,    -1),
	SENSOR(IN_VREF,			"Ref. voltage",		    IN,    -1),
	SENSOR(OUT_VAOE,		"AOE FPGA supply",	    IN,    -1),
	SENSOR(AOE_TEMP,		"AOE FPGA temp.",	    TEMP,  -1),
	SENSOR(PSU_AOE_TEMP,		"AOE regulator temp.",	    TEMP,  -1),
	SENSOR(PSU_TEMP,		"Controller regulator temp.",
								    TEMP,  -1),
	SENSOR(FAN_0,			"Fan 0",		    COOL,  -1),
	SENSOR(FAN_1,			"Fan 1",		    COOL,  -1),
	SENSOR(FAN_2,			"Fan 2",		    COOL,  -1),
	SENSOR(FAN_3,			"Fan 3",		    COOL,  -1),
	SENSOR(FAN_4,			"Fan 4",		    COOL,  -1),
	SENSOR(IN_VAOE,			"AOE input supply",	    IN,    -1),
	SENSOR(OUT_IAOE,		"AOE output current",	    CURR,  -1),
	SENSOR(IN_IAOE,			"AOE input current",	    CURR,  -1),
	SENSOR(NIC_POWER,		"Board power use",	    POWER, -1),
	SENSOR(IN_0V9,			"0.9V supply",		    IN,    -1),
	SENSOR(IN_I0V9,			"0.9V supply current",	    CURR,  -1),
	SENSOR(IN_I1V2,			"1.2V supply current",	    CURR,  -1),
	SENSOR(IN_0V9_ADC,		"0.9V supply (ext. ADC)",   IN,    -1),
	SENSOR(CONTROLLER_2_TEMP,	"Controller board temp. 2", TEMP,  -1),
	SENSOR(VREG_INTERNAL_TEMP,	"Regulator die temp.",	    TEMP,  -1),
	SENSOR(VREG_0V9_TEMP,		"0.9V regulator temp.",     TEMP,  -1),
	SENSOR(VREG_1V2_TEMP,		"1.2V regulator temp.",     TEMP,  -1),
	SENSOR(CONTROLLER_VPTAT,
			      "Controller PTAT voltage (int. ADC)", IN,    -1),
	SENSOR(CONTROLLER_INTERNAL_TEMP,
				 "Controller die temp. (int. ADC)", TEMP,  -1),
	SENSOR(CONTROLLER_VPTAT_EXTADC,
			      "Controller PTAT voltage (ext. ADC)", IN,    -1),
	SENSOR(CONTROLLER_INTERNAL_TEMP_EXTADC,
				 "Controller die temp. (ext. ADC)", TEMP,  -1),
	SENSOR(AMBIENT_TEMP,		"Ambient temp.",	    TEMP,  -1),
	SENSOR(AIRFLOW,			"Air flow raw",		    IN,    -1),
	SENSOR(VDD08D_VSS08D_CSR,	"0.9V die (int. ADC)",	    IN,    -1),
	SENSOR(VDD08D_VSS08D_CSR_EXTADC, "0.9V die (ext. ADC)",	    IN,    -1),
	SENSOR(HOTPOINT_TEMP,  "Controller board temp. (hotpoint)", TEMP,  -1),
#undef SENSOR
};

static const char *const sensor_status_names[] = {
	[MC_CMD_SENSOR_STATE_OK] = "OK",
	[MC_CMD_SENSOR_STATE_WARNING] = "Warning",
	[MC_CMD_SENSOR_STATE_FATAL] = "Fatal",
	[MC_CMD_SENSOR_STATE_BROKEN] = "Device failure",
	[MC_CMD_SENSOR_STATE_NO_READING] = "No reading",
};

void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
{
	unsigned int type, state, value;
	enum efx_hwmon_type hwmon_type = EFX_HWMON_UNKNOWN;
	const char *name = NULL, *state_txt, *unit;

	type = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR);
	state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE);
	value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE);

	/* Deal gracefully with the board having more drivers than we
	 * know about, but do not expect new sensor states. */
	if (type < ARRAY_SIZE(efx_mcdi_sensor_type)) {
		name = efx_mcdi_sensor_type[type].label;
		hwmon_type = efx_mcdi_sensor_type[type].hwmon_type;
	}
	if (!name)
		name = "No sensor name available";
	EFX_WARN_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names));
	state_txt = sensor_status_names[state];
	EFX_WARN_ON_PARANOID(hwmon_type >= EFX_HWMON_TYPES_COUNT);
	unit = efx_hwmon_unit[hwmon_type];
	if (!unit)
		unit = "";

	netif_err(efx, hw, efx->net_dev,
		  "Sensor %d (%s) reports condition '%s' for value %d%s\n",
		  type, name, state_txt, value, unit);
}

#ifdef CONFIG_SFC_MCDI_MON

struct efx_mcdi_mon_attribute {
	struct device_attribute dev_attr;
	unsigned int index;
	unsigned int type;
	enum efx_hwmon_type hwmon_type;
	unsigned int limit_value;
	char name[12];
};

static int efx_mcdi_mon_update(struct efx_nic *efx)
{
	struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
	MCDI_DECLARE_BUF(inbuf, MC_CMD_READ_SENSORS_EXT_IN_LEN);
	int rc;

	MCDI_SET_QWORD(inbuf, READ_SENSORS_EXT_IN_DMA_ADDR,
		       hwmon->dma_buf.dma_addr);
	MCDI_SET_DWORD(inbuf, READ_SENSORS_EXT_IN_LENGTH, hwmon->dma_buf.len);

	rc = efx_mcdi_rpc(efx, MC_CMD_READ_SENSORS,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);
	if (rc == 0)
		hwmon->last_update = jiffies;
	return rc;
}

static int efx_mcdi_mon_get_entry(struct device *dev, unsigned int index,
				  efx_dword_t *entry)
{
	struct efx_nic *efx = dev_get_drvdata(dev->parent);
	struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
	int rc;

	BUILD_BUG_ON(MC_CMD_READ_SENSORS_OUT_LEN != 0);

	mutex_lock(&hwmon->update_lock);

	/* Use cached value if last update was < 1 s ago */
	if (time_before(jiffies, hwmon->last_update + HZ))
		rc = 0;
	else
		rc = efx_mcdi_mon_update(efx);

	/* Copy out the requested entry */
	*entry = ((efx_dword_t *)hwmon->dma_buf.addr)[index];

	mutex_unlock(&hwmon->update_lock);

	return rc;
}

static ssize_t efx_mcdi_mon_show_value(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
{
	struct efx_mcdi_mon_attribute *mon_attr =
		container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
	efx_dword_t entry;
	unsigned int value, state;
	int rc;

	rc = efx_mcdi_mon_get_entry(dev, mon_attr->index, &entry);
	if (rc)
		return rc;

	state = EFX_DWORD_FIELD(entry, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
	if (state == MC_CMD_SENSOR_STATE_NO_READING)
		return -EBUSY;

	value = EFX_DWORD_FIELD(entry, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);

	switch (mon_attr->hwmon_type) {
	case EFX_HWMON_TEMP:
		/* Convert temperature from degrees to milli-degrees Celsius */
		value *= 1000;
		break;
	case EFX_HWMON_POWER:
		/* Convert power from watts to microwatts */
		value *= 1000000;
		break;
	default:
		/* No conversion needed */
		break;
	}

	return sprintf(buf, "%u\n", value);
}

static ssize_t efx_mcdi_mon_show_limit(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
{
	struct efx_mcdi_mon_attribute *mon_attr =
		container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
	unsigned int value;

	value = mon_attr->limit_value;

	switch (mon_attr->hwmon_type) {
	case EFX_HWMON_TEMP:
		/* Convert temperature from degrees to milli-degrees Celsius */
		value *= 1000;
		break;
	case EFX_HWMON_POWER:
		/* Convert power from watts to microwatts */
		value *= 1000000;
		break;
	default:
		/* No conversion needed */
		break;
	}

	return sprintf(buf, "%u\n", value);
}

static ssize_t efx_mcdi_mon_show_alarm(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
{
	struct efx_mcdi_mon_attribute *mon_attr =
		container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
	efx_dword_t entry;
	int state;
	int rc;

	rc = efx_mcdi_mon_get_entry(dev, mon_attr->index, &entry);
	if (rc)
		return rc;

	state = EFX_DWORD_FIELD(entry, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
	return sprintf(buf, "%d\n", state != MC_CMD_SENSOR_STATE_OK);
}

static ssize_t efx_mcdi_mon_show_label(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
{
	struct efx_mcdi_mon_attribute *mon_attr =
		container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
	return sprintf(buf, "%s\n",
		       efx_mcdi_sensor_type[mon_attr->type].label);
}

static void
efx_mcdi_mon_add_attr(struct efx_nic *efx, const char *name,
		      ssize_t (*reader)(struct device *,
					struct device_attribute *, char *),
		      unsigned int index, unsigned int type,
		      unsigned int limit_value)
{
	struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
	struct efx_mcdi_mon_attribute *attr = &hwmon->attrs[hwmon->n_attrs];

	strlcpy(attr->name, name, sizeof(attr->name));
	attr->index = index;
	attr->type = type;
	if (type < ARRAY_SIZE(efx_mcdi_sensor_type))
		attr->hwmon_type = efx_mcdi_sensor_type[type].hwmon_type;
	else
		attr->hwmon_type = EFX_HWMON_UNKNOWN;
	attr->limit_value = limit_value;
	sysfs_attr_init(&attr->dev_attr.attr);
	attr->dev_attr.attr.name = attr->name;
	attr->dev_attr.attr.mode = 0444;
	attr->dev_attr.show = reader;
	hwmon->group.attrs[hwmon->n_attrs++] = &attr->dev_attr.attr;
}

int efx_mcdi_mon_probe(struct efx_nic *efx)
{
	unsigned int n_temp = 0, n_cool = 0, n_in = 0, n_curr = 0, n_power = 0;
	struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
	MCDI_DECLARE_BUF(inbuf, MC_CMD_SENSOR_INFO_EXT_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_SENSOR_INFO_OUT_LENMAX);
	unsigned int n_pages, n_sensors, n_attrs, page;
	size_t outlen;
	char name[12];
	u32 mask;
	int rc, i, j, type;

	/* Find out how many sensors are present */
	n_sensors = 0;
	page = 0;
	do {
		MCDI_SET_DWORD(inbuf, SENSOR_INFO_EXT_IN_PAGE, page);

		rc = efx_mcdi_rpc(efx, MC_CMD_SENSOR_INFO, inbuf, sizeof(inbuf),
				  outbuf, sizeof(outbuf), &outlen);
		if (rc)
			return rc;
		if (outlen < MC_CMD_SENSOR_INFO_OUT_LENMIN)
			return -EIO;

		mask = MCDI_DWORD(outbuf, SENSOR_INFO_OUT_MASK);
		n_sensors += hweight32(mask & ~(1 << MC_CMD_SENSOR_PAGE0_NEXT));
		++page;
	} while (mask & (1 << MC_CMD_SENSOR_PAGE0_NEXT));
	n_pages = page;

	/* Don't create a device if there are none */
	if (n_sensors == 0)
		return 0;

	rc = efx_nic_alloc_buffer(
		efx, &hwmon->dma_buf,
		n_sensors * MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_LEN,
		GFP_KERNEL);
	if (rc)
		return rc;

	mutex_init(&hwmon->update_lock);
	efx_mcdi_mon_update(efx);

	/* Allocate space for the maximum possible number of
	 * attributes for this set of sensors:
	 * value, min, max, crit, alarm and label for each sensor.
	 */
	n_attrs = 6 * n_sensors;
	hwmon->attrs = kcalloc(n_attrs, sizeof(*hwmon->attrs), GFP_KERNEL);
	if (!hwmon->attrs) {
		rc = -ENOMEM;
		goto fail;
	}
	hwmon->group.attrs = kcalloc(n_attrs + 1, sizeof(struct attribute *),
				     GFP_KERNEL);
	if (!hwmon->group.attrs) {
		rc = -ENOMEM;
		goto fail;
	}

	for (i = 0, j = -1, type = -1; ; i++) {
		enum efx_hwmon_type hwmon_type;
		const char *hwmon_prefix;
		unsigned hwmon_index;
		u16 min1, max1, min2, max2;

		/* Find next sensor type or exit if there is none */
		do {
			type++;

			if ((type % 32) == 0) {
				page = type / 32;
				j = -1;
				if (page == n_pages)
					goto hwmon_register;

				MCDI_SET_DWORD(inbuf, SENSOR_INFO_EXT_IN_PAGE,
					       page);
				rc = efx_mcdi_rpc(efx, MC_CMD_SENSOR_INFO,
						  inbuf, sizeof(inbuf),
						  outbuf, sizeof(outbuf),
						  &outlen);
				if (rc)
					goto fail;
				if (outlen < MC_CMD_SENSOR_INFO_OUT_LENMIN) {
					rc = -EIO;
					goto fail;
				}

				mask = (MCDI_DWORD(outbuf,
						   SENSOR_INFO_OUT_MASK) &
					~(1 << MC_CMD_SENSOR_PAGE0_NEXT));

				/* Check again for short response */
				if (outlen <
				    MC_CMD_SENSOR_INFO_OUT_LEN(hweight32(mask))) {
					rc = -EIO;
					goto fail;
				}
			}
		} while (!(mask & (1 << type % 32)));
		j++;

		if (type < ARRAY_SIZE(efx_mcdi_sensor_type)) {
			hwmon_type = efx_mcdi_sensor_type[type].hwmon_type;

			/* Skip sensors specific to a different port */
			if (hwmon_type != EFX_HWMON_UNKNOWN &&
			    efx_mcdi_sensor_type[type].port >= 0 &&
			    efx_mcdi_sensor_type[type].port !=
			    efx_port_num(efx))
				continue;
		} else {
			hwmon_type = EFX_HWMON_UNKNOWN;
		}

		switch (hwmon_type) {
		case EFX_HWMON_TEMP:
			hwmon_prefix = "temp";
			hwmon_index = ++n_temp; /* 1-based */
			break;
		case EFX_HWMON_COOL:
			/* This is likely to be a heatsink, but there
			 * is no convention for representing cooling
			 * devices other than fans.
			 */
			hwmon_prefix = "fan";
			hwmon_index = ++n_cool; /* 1-based */
			break;
		default:
			hwmon_prefix = "in";
			hwmon_index = n_in++; /* 0-based */
			break;
		case EFX_HWMON_CURR:
			hwmon_prefix = "curr";
			hwmon_index = ++n_curr; /* 1-based */
			break;
		case EFX_HWMON_POWER:
			hwmon_prefix = "power";
			hwmon_index = ++n_power; /* 1-based */
			break;
		}

		min1 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
					SENSOR_INFO_ENTRY, j, MIN1);
		max1 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
					SENSOR_INFO_ENTRY, j, MAX1);
		min2 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
					SENSOR_INFO_ENTRY, j, MIN2);
		max2 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
					SENSOR_INFO_ENTRY, j, MAX2);

		if (min1 != max1) {
			snprintf(name, sizeof(name), "%s%u_input",
				 hwmon_prefix, hwmon_index);
			efx_mcdi_mon_add_attr(
				efx, name, efx_mcdi_mon_show_value, i, type, 0);

			if (hwmon_type != EFX_HWMON_POWER) {
				snprintf(name, sizeof(name), "%s%u_min",
					 hwmon_prefix, hwmon_index);
				efx_mcdi_mon_add_attr(
					efx, name, efx_mcdi_mon_show_limit,
					i, type, min1);
			}

			snprintf(name, sizeof(name), "%s%u_max",
				 hwmon_prefix, hwmon_index);
			efx_mcdi_mon_add_attr(
				efx, name, efx_mcdi_mon_show_limit,
				i, type, max1);

			if (min2 != max2) {
				/* Assume max2 is critical value.
				 * But we have no good way to expose min2.
				 */
				snprintf(name, sizeof(name), "%s%u_crit",
					 hwmon_prefix, hwmon_index);
				efx_mcdi_mon_add_attr(
					efx, name, efx_mcdi_mon_show_limit,
					i, type, max2);
			}
		}

		snprintf(name, sizeof(name), "%s%u_alarm",
			 hwmon_prefix, hwmon_index);
		efx_mcdi_mon_add_attr(
			efx, name, efx_mcdi_mon_show_alarm, i, type, 0);

		if (type < ARRAY_SIZE(efx_mcdi_sensor_type) &&
		    efx_mcdi_sensor_type[type].label) {
			snprintf(name, sizeof(name), "%s%u_label",
				 hwmon_prefix, hwmon_index);
			efx_mcdi_mon_add_attr(
				efx, name, efx_mcdi_mon_show_label, i, type, 0);
		}
	}

hwmon_register:
	hwmon->groups[0] = &hwmon->group;
	hwmon->device = hwmon_device_register_with_groups(&efx->pci_dev->dev,
							  KBUILD_MODNAME, NULL,
							  hwmon->groups);
	if (IS_ERR(hwmon->device)) {
		rc = PTR_ERR(hwmon->device);
		goto fail;
	}

	return 0;

fail:
	efx_mcdi_mon_remove(efx);
	return rc;
}

void efx_mcdi_mon_remove(struct efx_nic *efx)
{
	struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);

	if (hwmon->device)
		hwmon_device_unregister(hwmon->device);
	kfree(hwmon->attrs);
	kfree(hwmon->group.attrs);
	efx_nic_free_buffer(efx, &hwmon->dma_buf);
}

#endif /* CONFIG_SFC_MCDI_MON */