Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2012  Realtek Corporation.*/

#include "../wifi.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "hw.h"

void rtl92d_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw, u8 bandwidth)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u8 rfpath;

	switch (bandwidth) {
	case HT_CHANNEL_WIDTH_20:
		for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
			rtlphy->rfreg_chnlval[rfpath] = ((rtlphy->rfreg_chnlval
					[rfpath] & 0xfffff3ff) | 0x0400);
			rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(10) |
				      BIT(11), 0x01);

			RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
				 "20M RF 0x18 = 0x%x\n",
				 rtlphy->rfreg_chnlval[rfpath]);
		}

		break;
	case HT_CHANNEL_WIDTH_20_40:
		for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
			rtlphy->rfreg_chnlval[rfpath] =
			    ((rtlphy->rfreg_chnlval[rfpath] & 0xfffff3ff));
			rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(10) | BIT(11),
				      0x00);
			RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
				 "40M RF 0x18 = 0x%x\n",
				 rtlphy->rfreg_chnlval[rfpath]);
		}
		break;
	default:
		pr_err("unknown bandwidth: %#X\n", bandwidth);
		break;
	}
}

void rtl92d_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw,
				       u8 *ppowerlevel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u32 tx_agc[2] = {0, 0}, tmpval;
	bool turbo_scanoff = false;
	u8 idx1, idx2;
	u8 *ptr;

	if (rtlefuse->eeprom_regulatory != 0)
		turbo_scanoff = true;
	if (mac->act_scanning) {
		tx_agc[RF90_PATH_A] = 0x3f3f3f3f;
		tx_agc[RF90_PATH_B] = 0x3f3f3f3f;
		if (turbo_scanoff) {
			for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
				tx_agc[idx1] = ppowerlevel[idx1] |
				    (ppowerlevel[idx1] << 8) |
				    (ppowerlevel[idx1] << 16) |
				    (ppowerlevel[idx1] << 24);
			}
		}
	} else {
		for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
			tx_agc[idx1] = ppowerlevel[idx1] |
			    (ppowerlevel[idx1] << 8) |
			    (ppowerlevel[idx1] << 16) |
			    (ppowerlevel[idx1] << 24);
		}
		if (rtlefuse->eeprom_regulatory == 0) {
			tmpval = (rtlphy->mcs_offset[0][6]) +
			    (rtlphy->mcs_offset[0][7] << 8);
			tx_agc[RF90_PATH_A] += tmpval;
			tmpval = (rtlphy->mcs_offset[0][14]) +
			    (rtlphy->mcs_offset[0][15] << 24);
			tx_agc[RF90_PATH_B] += tmpval;
		}
	}

	for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
		ptr = (u8 *) (&(tx_agc[idx1]));
		for (idx2 = 0; idx2 < 4; idx2++) {
			if (*ptr > RF6052_MAX_TX_PWR)
				*ptr = RF6052_MAX_TX_PWR;
			ptr++;
		}
	}

	tmpval = tx_agc[RF90_PATH_A] & 0xff;
	rtl_set_bbreg(hw, RTXAGC_A_CCK1_MCS32, MASKBYTE1, tmpval);
	RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
		"CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n",
		tmpval, RTXAGC_A_CCK1_MCS32);
	tmpval = tx_agc[RF90_PATH_A] >> 8;
	rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
	RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
		"CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n",
		tmpval, RTXAGC_B_CCK11_A_CCK2_11);
	tmpval = tx_agc[RF90_PATH_B] >> 24;
	rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, MASKBYTE0, tmpval);
	RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
		"CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n",
		tmpval, RTXAGC_B_CCK11_A_CCK2_11);
	tmpval = tx_agc[RF90_PATH_B] & 0x00ffffff;
	rtl_set_bbreg(hw, RTXAGC_B_CCK1_55_MCS32, 0xffffff00, tmpval);
	RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
		"CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n",
		tmpval, RTXAGC_B_CCK1_55_MCS32);
}

static void _rtl92d_phy_get_power_base(struct ieee80211_hw *hw,
				       u8 *ppowerlevel, u8 channel,
				       u32 *ofdmbase, u32 *mcsbase)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u32 powerbase0, powerbase1;
	u8 legacy_pwrdiff, ht20_pwrdiff;
	u8 i, powerlevel[2];

	for (i = 0; i < 2; i++) {
		powerlevel[i] = ppowerlevel[i];
		legacy_pwrdiff = rtlefuse->txpwr_legacyhtdiff[i][channel - 1];
		powerbase0 = powerlevel[i] + legacy_pwrdiff;
		powerbase0 = (powerbase0 << 24) | (powerbase0 << 16) |
		    (powerbase0 << 8) | powerbase0;
		*(ofdmbase + i) = powerbase0;
		RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
			" [OFDM power base index rf(%c) = 0x%x]\n",
			i == 0 ? 'A' : 'B', *(ofdmbase + i));
	}

	for (i = 0; i < 2; i++) {
		if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20) {
			ht20_pwrdiff = rtlefuse->txpwr_ht20diff[i][channel - 1];
			powerlevel[i] += ht20_pwrdiff;
		}
		powerbase1 = powerlevel[i];
		powerbase1 = (powerbase1 << 24) | (powerbase1 << 16) |
			     (powerbase1 << 8) | powerbase1;
		*(mcsbase + i) = powerbase1;
		RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
			" [MCS power base index rf(%c) = 0x%x]\n",
			i == 0 ? 'A' : 'B', *(mcsbase + i));
	}
}

static u8 _rtl92d_phy_get_chnlgroup_bypg(u8 chnlindex)
{
	u8 group;
	u8 channel_info[59] = {
		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
		36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
		60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
		114, 116, 118, 120, 122, 124, 126, 128,	130, 132,
		134, 136, 138, 140, 149, 151, 153, 155, 157, 159,
		161, 163, 165
	};

	if (channel_info[chnlindex] <= 3)	/* Chanel 1-3 */
		group = 0;
	else if (channel_info[chnlindex] <= 9)	/* Channel 4-9 */
		group = 1;
	else if (channel_info[chnlindex] <= 14)	/* Channel 10-14 */
		group = 2;
	else if (channel_info[chnlindex] <= 64)
		group = 6;
	else if (channel_info[chnlindex] <= 140)
		group = 7;
	else
		group = 8;
	return group;
}

static void _rtl92d_get_txpower_writeval_by_regulatory(struct ieee80211_hw *hw,
						       u8 channel, u8 index,
						       u32 *powerbase0,
						       u32 *powerbase1,
						       u32 *p_outwriteval)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 i, chnlgroup = 0, pwr_diff_limit[4];
	u32 writeval = 0, customer_limit, rf;

	for (rf = 0; rf < 2; rf++) {
		switch (rtlefuse->eeprom_regulatory) {
		case 0:
			chnlgroup = 0;
			writeval = rtlphy->mcs_offset
					[chnlgroup][index +
					(rf ? 8 : 0)] + ((index < 2) ?
					powerbase0[rf] :
					powerbase1[rf]);
			RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
				"RTK better performance, writeval(%c) = 0x%x\n",
				rf == 0 ? 'A' : 'B', writeval);
			break;
		case 1:
			if (rtlphy->pwrgroup_cnt == 1)
				chnlgroup = 0;
			if (rtlphy->pwrgroup_cnt >= MAX_PG_GROUP) {
				chnlgroup = _rtl92d_phy_get_chnlgroup_bypg(
								channel - 1);
				if (rtlphy->current_chan_bw ==
				    HT_CHANNEL_WIDTH_20)
					chnlgroup++;
				else
					chnlgroup += 4;
				writeval = rtlphy->mcs_offset
						[chnlgroup][index +
						(rf ? 8 : 0)] + ((index < 2) ?
						powerbase0[rf] :
						powerbase1[rf]);
				RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
					"Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n",
					rf == 0 ? 'A' : 'B', writeval);
			}
			break;
		case 2:
			writeval = ((index < 2) ? powerbase0[rf] :
				   powerbase1[rf]);
			RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
				"Better regulatory, writeval(%c) = 0x%x\n",
				rf == 0 ? 'A' : 'B', writeval);
			break;
		case 3:
			chnlgroup = 0;
			if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
				RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
					"customer's limit, 40MHz rf(%c) = 0x%x\n",
					rf == 0 ? 'A' : 'B',
					rtlefuse->pwrgroup_ht40[rf]
					[channel - 1]);
			} else {
				RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
					"customer's limit, 20MHz rf(%c) = 0x%x\n",
					rf == 0 ? 'A' : 'B',
					rtlefuse->pwrgroup_ht20[rf]
					[channel - 1]);
			}
			for (i = 0; i < 4; i++) {
				pwr_diff_limit[i] = (u8)((rtlphy->mcs_offset
					[chnlgroup][index + (rf ? 8 : 0)] &
					(0x7f << (i * 8))) >> (i * 8));
				if (rtlphy->current_chan_bw ==
				    HT_CHANNEL_WIDTH_20_40) {
					if (pwr_diff_limit[i] >
					    rtlefuse->pwrgroup_ht40[rf]
					   [channel - 1])
						pwr_diff_limit[i] =
							rtlefuse->pwrgroup_ht40
							[rf][channel - 1];
				} else {
					if (pwr_diff_limit[i] >
					    rtlefuse->pwrgroup_ht20[rf][
						channel - 1])
						pwr_diff_limit[i] =
						   rtlefuse->pwrgroup_ht20[rf]
						   [channel - 1];
				}
			}
			customer_limit = (pwr_diff_limit[3] << 24) |
					 (pwr_diff_limit[2] << 16) |
					 (pwr_diff_limit[1] << 8) |
					 (pwr_diff_limit[0]);
			RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
				"Customer's limit rf(%c) = 0x%x\n",
				rf == 0 ? 'A' : 'B', customer_limit);
			writeval = customer_limit + ((index < 2) ?
				   powerbase0[rf] : powerbase1[rf]);
			RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
				"Customer, writeval rf(%c)= 0x%x\n",
				rf == 0 ? 'A' : 'B', writeval);
			break;
		default:
			chnlgroup = 0;
			writeval = rtlphy->mcs_offset[chnlgroup][index +
				   (rf ? 8 : 0)] + ((index < 2) ?
				   powerbase0[rf] : powerbase1[rf]);
			RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
				"RTK better performance, writeval rf(%c) = 0x%x\n",
				rf == 0 ? 'A' : 'B', writeval);
			break;
		}
		*(p_outwriteval + rf) = writeval;
	}
}

static void _rtl92d_write_ofdm_power_reg(struct ieee80211_hw *hw,
					 u8 index, u32 *pvalue)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	static u16 regoffset_a[6] = {
		RTXAGC_A_RATE18_06, RTXAGC_A_RATE54_24,
		RTXAGC_A_MCS03_MCS00, RTXAGC_A_MCS07_MCS04,
		RTXAGC_A_MCS11_MCS08, RTXAGC_A_MCS15_MCS12
	};
	static u16 regoffset_b[6] = {
		RTXAGC_B_RATE18_06, RTXAGC_B_RATE54_24,
		RTXAGC_B_MCS03_MCS00, RTXAGC_B_MCS07_MCS04,
		RTXAGC_B_MCS11_MCS08, RTXAGC_B_MCS15_MCS12
	};
	u8 i, rf, pwr_val[4];
	u32 writeval;
	u16 regoffset;

	for (rf = 0; rf < 2; rf++) {
		writeval = pvalue[rf];
		for (i = 0; i < 4; i++) {
			pwr_val[i] = (u8) ((writeval & (0x7f <<
				     (i * 8))) >> (i * 8));
			if (pwr_val[i] > RF6052_MAX_TX_PWR)
				pwr_val[i] = RF6052_MAX_TX_PWR;
		}
		writeval = (pwr_val[3] << 24) | (pwr_val[2] << 16) |
			   (pwr_val[1] << 8) | pwr_val[0];
		if (rf == 0)
			regoffset = regoffset_a[index];
		else
			regoffset = regoffset_b[index];
		rtl_set_bbreg(hw, regoffset, MASKDWORD, writeval);
		RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
			"Set 0x%x = %08x\n", regoffset, writeval);
		if (((get_rf_type(rtlphy) == RF_2T2R) &&
		    (regoffset == RTXAGC_A_MCS15_MCS12 ||
		    regoffset == RTXAGC_B_MCS15_MCS12)) ||
		    ((get_rf_type(rtlphy) != RF_2T2R) &&
		    (regoffset == RTXAGC_A_MCS07_MCS04 ||
		    regoffset == RTXAGC_B_MCS07_MCS04))) {
			writeval = pwr_val[3];
			if (regoffset == RTXAGC_A_MCS15_MCS12 ||
			    regoffset == RTXAGC_A_MCS07_MCS04)
				regoffset = 0xc90;
			if (regoffset == RTXAGC_B_MCS15_MCS12 ||
			    regoffset == RTXAGC_B_MCS07_MCS04)
				regoffset = 0xc98;
			for (i = 0; i < 3; i++) {
				if (i != 2)
					writeval = (writeval > 8) ?
						   (writeval - 8) : 0;
				else
					writeval = (writeval > 6) ?
						   (writeval - 6) : 0;
				rtl_write_byte(rtlpriv, (u32) (regoffset + i),
					       (u8) writeval);
			}
		}
	}
}

void rtl92d_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw,
					u8 *ppowerlevel, u8 channel)
{
	u32 writeval[2], powerbase0[2], powerbase1[2];
	u8 index;

	_rtl92d_phy_get_power_base(hw, ppowerlevel, channel,
			&powerbase0[0],	&powerbase1[0]);
	for (index = 0; index < 6; index++) {
		_rtl92d_get_txpower_writeval_by_regulatory(hw,
				channel, index,	&powerbase0[0],
				&powerbase1[0],	&writeval[0]);
		_rtl92d_write_ofdm_power_reg(hw, index, &writeval[0]);
	}
}

bool rtl92d_phy_enable_anotherphy(struct ieee80211_hw *hw, bool bmac0)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u8 u1btmp;
	u8 direct = bmac0 ? BIT(3) | BIT(2) : BIT(3);
	u8 mac_reg = bmac0 ? REG_MAC1 : REG_MAC0;
	u8 mac_on_bit = bmac0 ? MAC1_ON : MAC0_ON;
	bool bresult = true; /* true: need to enable BB/RF power */

	rtlhal->during_mac0init_radiob = false;
	rtlhal->during_mac1init_radioa = false;
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "===>\n");
	/* MAC0 Need PHY1 load radio_b.txt . Driver use DBI to write. */
	u1btmp = rtl_read_byte(rtlpriv, mac_reg);
	if (!(u1btmp & mac_on_bit)) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "enable BB & RF\n");
		/* Enable BB and RF power */
		rtl92de_write_dword_dbi(hw, REG_SYS_ISO_CTRL,
			rtl92de_read_dword_dbi(hw, REG_SYS_ISO_CTRL, direct) |
				BIT(29) | BIT(16) | BIT(17), direct);
	} else {
		/* We think if MAC1 is ON,then radio_a.txt
		 * and radio_b.txt has been load. */
		bresult = false;
	}
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<===\n");
	return bresult;

}

void rtl92d_phy_powerdown_anotherphy(struct ieee80211_hw *hw, bool bmac0)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u8 u1btmp;
	u8 direct = bmac0 ? BIT(3) | BIT(2) : BIT(3);
	u8 mac_reg = bmac0 ? REG_MAC1 : REG_MAC0;
	u8 mac_on_bit = bmac0 ? MAC1_ON : MAC0_ON;

	rtlhal->during_mac0init_radiob = false;
	rtlhal->during_mac1init_radioa = false;
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
	/* check MAC0 enable or not again now, if
	 * enabled, not power down radio A. */
	u1btmp = rtl_read_byte(rtlpriv, mac_reg);
	if (!(u1btmp & mac_on_bit)) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "power down\n");
		/* power down RF radio A according to YuNan's advice. */
		rtl92de_write_dword_dbi(hw, RFPGA0_XA_LSSIPARAMETER,
					0x00000000, direct);
	}
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
}

bool rtl92d_phy_rf6052_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	bool rtstatus = true;
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u32 u4_regvalue = 0;
	u8 rfpath;
	struct bb_reg_def *pphyreg;
	bool mac1_initradioa_first = false, mac0_initradiob_first = false;
	bool need_pwrdown_radioa = false, need_pwrdown_radiob = false;
	bool true_bpath = false;

	if (rtlphy->rf_type == RF_1T1R)
		rtlphy->num_total_rfpath = 1;
	else
		rtlphy->num_total_rfpath = 2;

	/* Single phy mode: use radio_a radio_b config path_A path_B */
	/* seperately by MAC0, and MAC1 needn't configure RF; */
	/* Dual PHY mode:MAC0 use radio_a config 1st phy path_A, */
	/* MAC1 use radio_b config 2nd PHY path_A. */
	/* DMDP,MAC0 on G band,MAC1 on A band. */
	if (rtlhal->macphymode == DUALMAC_DUALPHY) {
		if (rtlhal->current_bandtype == BAND_ON_2_4G &&
		    rtlhal->interfaceindex == 0) {
			/* MAC0 needs PHY1 load radio_b.txt.
			 * Driver use DBI to write. */
			if (rtl92d_phy_enable_anotherphy(hw, true)) {
				rtlphy->num_total_rfpath = 2;
				mac0_initradiob_first = true;
			} else {
				/* We think if MAC1 is ON,then radio_a.txt and
				 * radio_b.txt has been load. */
				return rtstatus;
			}
		} else if (rtlhal->current_bandtype == BAND_ON_5G &&
			   rtlhal->interfaceindex == 1) {
			/* MAC1 needs PHY0 load radio_a.txt.
			 * Driver use DBI to write. */
			if (rtl92d_phy_enable_anotherphy(hw, false)) {
				rtlphy->num_total_rfpath = 2;
				mac1_initradioa_first = true;
			} else {
				/* We think if MAC0 is ON,then radio_a.txt and
				 * radio_b.txt has been load. */
				return rtstatus;
			}
		} else if (rtlhal->interfaceindex == 1) {
			/* MAC0 enabled, only init radia B.   */
			true_bpath = true;
		}
	}

	for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
		/* Mac1 use PHY0 write */
		if (mac1_initradioa_first) {
			if (rfpath == RF90_PATH_A) {
				rtlhal->during_mac1init_radioa = true;
				need_pwrdown_radioa = true;
			} else if (rfpath == RF90_PATH_B) {
				rtlhal->during_mac1init_radioa = false;
				mac1_initradioa_first = false;
				rfpath = RF90_PATH_A;
				true_bpath = true;
				rtlphy->num_total_rfpath = 1;
			}
		} else if (mac0_initradiob_first) {
			/* Mac0 use PHY1 write */
			if (rfpath == RF90_PATH_A)
				rtlhal->during_mac0init_radiob = false;
			if (rfpath == RF90_PATH_B) {
				rtlhal->during_mac0init_radiob = true;
				mac0_initradiob_first = false;
				need_pwrdown_radiob = true;
				rfpath = RF90_PATH_A;
				true_bpath = true;
				rtlphy->num_total_rfpath = 1;
			}
		}
		pphyreg = &rtlphy->phyreg_def[rfpath];
		switch (rfpath) {
		case RF90_PATH_A:
		case RF90_PATH_C:
			u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs,
						    BRFSI_RFENV);
			break;
		case RF90_PATH_B:
		case RF90_PATH_D:
			u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs,
				BRFSI_RFENV << 16);
			break;
		}
		rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
		udelay(1);
		rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
		udelay(1);
		/* Set bit number of Address and Data for RF register */
		/* Set 1 to 4 bits for 8255 */
		rtl_set_bbreg(hw, pphyreg->rfhssi_para2,
			      B3WIREADDRESSLENGTH, 0x0);
		udelay(1);
		/* Set 0 to 12  bits for 8255 */
		rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
		udelay(1);
		switch (rfpath) {
		case RF90_PATH_A:
			if (true_bpath)
				rtstatus = rtl92d_phy_config_rf_with_headerfile(
						hw, radiob_txt,
						(enum radio_path)rfpath);
			else
				rtstatus = rtl92d_phy_config_rf_with_headerfile(
					     hw, radioa_txt,
					     (enum radio_path)rfpath);
			break;
		case RF90_PATH_B:
			rtstatus =
			    rtl92d_phy_config_rf_with_headerfile(hw, radiob_txt,
						(enum radio_path) rfpath);
			break;
		case RF90_PATH_C:
			break;
		case RF90_PATH_D:
			break;
		}
		switch (rfpath) {
		case RF90_PATH_A:
		case RF90_PATH_C:
			rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV,
				      u4_regvalue);
			break;
		case RF90_PATH_B:
		case RF90_PATH_D:
			rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
				      u4_regvalue);
			break;
		}
		if (!rtstatus) {
			RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
				 "Radio[%d] Fail!!\n", rfpath);
			goto phy_rf_cfg_fail;
		}

	}

	/* check MAC0 enable or not again, if enabled,
	 * not power down radio A. */
	/* check MAC1 enable or not again, if enabled,
	 * not power down radio B. */
	if (need_pwrdown_radioa)
		rtl92d_phy_powerdown_anotherphy(hw, false);
	else if (need_pwrdown_radiob)
		rtl92d_phy_powerdown_anotherphy(hw, true);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "<---\n");
	return rtstatus;

phy_rf_cfg_fail:
	return rtstatus;
}