/* Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Paul Eggert (eggert@twinsun.com). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * dgb 10/02/98: ripped this from glibc source to help convert timestamps * to unix time * 10/04/98: added new table-based lookup after seeing how ugly * the gnu code is * blf 09/27/99: ripped out all the old code and inserted new table from * John Brockmeyer (without leap second corrections) * rewrote udf_stamp_to_time and fixed timezone accounting in * udf_time_to_stamp. */ /* * We don't take into account leap seconds. This may be correct or incorrect. * For more NIST information (especially dealing with leap seconds), see: * http://www.boulder.nist.gov/timefreq/pubs/bulletin/leapsecond.htm */ #include "udfdecl.h" #include <linux/types.h> #include <linux/kernel.h> #include <linux/time.h> void udf_disk_stamp_to_time(struct timespec64 *dest, struct timestamp src) { u16 typeAndTimezone = le16_to_cpu(src.typeAndTimezone); u16 year = le16_to_cpu(src.year); uint8_t type = typeAndTimezone >> 12; int16_t offset; if (type == 1) { offset = typeAndTimezone << 4; /* sign extent offset */ offset = (offset >> 4); if (offset == -2047) /* unspecified offset */ offset = 0; } else offset = 0; dest->tv_sec = mktime64(year, src.month, src.day, src.hour, src.minute, src.second); dest->tv_sec -= offset * 60; dest->tv_nsec = 1000 * (src.centiseconds * 10000 + src.hundredsOfMicroseconds * 100 + src.microseconds); /* * Sanitize nanosecond field since reportedly some filesystems are * recorded with bogus sub-second values. */ dest->tv_nsec %= NSEC_PER_SEC; } void udf_time_to_disk_stamp(struct timestamp *dest, struct timespec64 ts) { time64_t seconds; int16_t offset; struct tm tm; offset = -sys_tz.tz_minuteswest; dest->typeAndTimezone = cpu_to_le16(0x1000 | (offset & 0x0FFF)); seconds = ts.tv_sec + offset * 60; time64_to_tm(seconds, 0, &tm); dest->year = cpu_to_le16(tm.tm_year + 1900); dest->month = tm.tm_mon + 1; dest->day = tm.tm_mday; dest->hour = tm.tm_hour; dest->minute = tm.tm_min; dest->second = tm.tm_sec; dest->centiseconds = ts.tv_nsec / 10000000; dest->hundredsOfMicroseconds = (ts.tv_nsec / 1000 - dest->centiseconds * 10000) / 100; dest->microseconds = (ts.tv_nsec / 1000 - dest->centiseconds * 10000 - dest->hundredsOfMicroseconds * 100); } /* EOF */ |