/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*/
#include <linux/string.h>
#include <linux/acpi.h>
#include <drm/drm_probe_helper.h>
#include <drm/amdgpu_drm.h>
#include "dm_services.h"
#include "amdgpu.h"
#include "amdgpu_dm.h"
#include "amdgpu_dm_irq.h"
#include "amdgpu_pm.h"
#include "dm_pp_smu.h"
#include "amdgpu_smu.h"
bool dm_pp_apply_display_requirements(
const struct dc_context *ctx,
const struct dm_pp_display_configuration *pp_display_cfg)
{
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
int i;
if (adev->pm.dpm_enabled) {
memset(&adev->pm.pm_display_cfg, 0,
sizeof(adev->pm.pm_display_cfg));
adev->pm.pm_display_cfg.cpu_cc6_disable =
pp_display_cfg->cpu_cc6_disable;
adev->pm.pm_display_cfg.cpu_pstate_disable =
pp_display_cfg->cpu_pstate_disable;
adev->pm.pm_display_cfg.cpu_pstate_separation_time =
pp_display_cfg->cpu_pstate_separation_time;
adev->pm.pm_display_cfg.nb_pstate_switch_disable =
pp_display_cfg->nb_pstate_switch_disable;
adev->pm.pm_display_cfg.num_display =
pp_display_cfg->display_count;
adev->pm.pm_display_cfg.num_path_including_non_display =
pp_display_cfg->display_count;
adev->pm.pm_display_cfg.min_core_set_clock =
pp_display_cfg->min_engine_clock_khz/10;
adev->pm.pm_display_cfg.min_core_set_clock_in_sr =
pp_display_cfg->min_engine_clock_deep_sleep_khz/10;
adev->pm.pm_display_cfg.min_mem_set_clock =
pp_display_cfg->min_memory_clock_khz/10;
adev->pm.pm_display_cfg.min_dcef_deep_sleep_set_clk =
pp_display_cfg->min_engine_clock_deep_sleep_khz/10;
adev->pm.pm_display_cfg.min_dcef_set_clk =
pp_display_cfg->min_dcfclock_khz/10;
adev->pm.pm_display_cfg.multi_monitor_in_sync =
pp_display_cfg->all_displays_in_sync;
adev->pm.pm_display_cfg.min_vblank_time =
pp_display_cfg->avail_mclk_switch_time_us;
adev->pm.pm_display_cfg.display_clk =
pp_display_cfg->disp_clk_khz/10;
adev->pm.pm_display_cfg.dce_tolerable_mclk_in_active_latency =
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us;
adev->pm.pm_display_cfg.crtc_index = pp_display_cfg->crtc_index;
adev->pm.pm_display_cfg.line_time_in_us =
pp_display_cfg->line_time_in_us;
adev->pm.pm_display_cfg.vrefresh = pp_display_cfg->disp_configs[0].v_refresh;
adev->pm.pm_display_cfg.crossfire_display_index = -1;
adev->pm.pm_display_cfg.min_bus_bandwidth = 0;
for (i = 0; i < pp_display_cfg->display_count; i++) {
const struct dm_pp_single_disp_config *dc_cfg =
&pp_display_cfg->disp_configs[i];
adev->pm.pm_display_cfg.displays[i].controller_id = dc_cfg->pipe_idx + 1;
}
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->display_configuration_change)
adev->powerplay.pp_funcs->display_configuration_change(
adev->powerplay.pp_handle,
&adev->pm.pm_display_cfg);
else
smu_display_configuration_change(smu,
&adev->pm.pm_display_cfg);
amdgpu_pm_compute_clocks(adev);
}
return true;
}
static void get_default_clock_levels(
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels *clks)
{
uint32_t disp_clks_in_khz[6] = {
300000, 400000, 496560, 626090, 685720, 757900 };
uint32_t sclks_in_khz[6] = {
300000, 360000, 423530, 514290, 626090, 720000 };
uint32_t mclks_in_khz[2] = { 333000, 800000 };
switch (clk_type) {
case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
clks->num_levels = 6;
memmove(clks->clocks_in_khz, disp_clks_in_khz,
sizeof(disp_clks_in_khz));
break;
case DM_PP_CLOCK_TYPE_ENGINE_CLK:
clks->num_levels = 6;
memmove(clks->clocks_in_khz, sclks_in_khz,
sizeof(sclks_in_khz));
break;
case DM_PP_CLOCK_TYPE_MEMORY_CLK:
clks->num_levels = 2;
memmove(clks->clocks_in_khz, mclks_in_khz,
sizeof(mclks_in_khz));
break;
default:
clks->num_levels = 0;
break;
}
}
static enum smu_clk_type dc_to_smu_clock_type(
enum dm_pp_clock_type dm_pp_clk_type)
{
enum smu_clk_type smu_clk_type = SMU_CLK_COUNT;
switch (dm_pp_clk_type) {
case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
smu_clk_type = SMU_DISPCLK;
break;
case DM_PP_CLOCK_TYPE_ENGINE_CLK:
smu_clk_type = SMU_GFXCLK;
break;
case DM_PP_CLOCK_TYPE_MEMORY_CLK:
smu_clk_type = SMU_MCLK;
break;
case DM_PP_CLOCK_TYPE_DCEFCLK:
smu_clk_type = SMU_DCEFCLK;
break;
case DM_PP_CLOCK_TYPE_SOCCLK:
smu_clk_type = SMU_SOCCLK;
break;
default:
DRM_ERROR("DM_PPLIB: invalid clock type: %d!\n",
dm_pp_clk_type);
break;
}
return smu_clk_type;
}
static enum amd_pp_clock_type dc_to_pp_clock_type(
enum dm_pp_clock_type dm_pp_clk_type)
{
enum amd_pp_clock_type amd_pp_clk_type = 0;
switch (dm_pp_clk_type) {
case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
amd_pp_clk_type = amd_pp_disp_clock;
break;
case DM_PP_CLOCK_TYPE_ENGINE_CLK:
amd_pp_clk_type = amd_pp_sys_clock;
break;
case DM_PP_CLOCK_TYPE_MEMORY_CLK:
amd_pp_clk_type = amd_pp_mem_clock;
break;
case DM_PP_CLOCK_TYPE_DCEFCLK:
amd_pp_clk_type = amd_pp_dcef_clock;
break;
case DM_PP_CLOCK_TYPE_DCFCLK:
amd_pp_clk_type = amd_pp_dcf_clock;
break;
case DM_PP_CLOCK_TYPE_PIXELCLK:
amd_pp_clk_type = amd_pp_pixel_clock;
break;
case DM_PP_CLOCK_TYPE_FCLK:
amd_pp_clk_type = amd_pp_f_clock;
break;
case DM_PP_CLOCK_TYPE_DISPLAYPHYCLK:
amd_pp_clk_type = amd_pp_phy_clock;
break;
case DM_PP_CLOCK_TYPE_DPPCLK:
amd_pp_clk_type = amd_pp_dpp_clock;
break;
default:
DRM_ERROR("DM_PPLIB: invalid clock type: %d!\n",
dm_pp_clk_type);
break;
}
return amd_pp_clk_type;
}
static enum dm_pp_clocks_state pp_to_dc_powerlevel_state(
enum PP_DAL_POWERLEVEL max_clocks_state)
{
switch (max_clocks_state) {
case PP_DAL_POWERLEVEL_0:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_0;
case PP_DAL_POWERLEVEL_1:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_1;
case PP_DAL_POWERLEVEL_2:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_2;
case PP_DAL_POWERLEVEL_3:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_3;
case PP_DAL_POWERLEVEL_4:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_4;
case PP_DAL_POWERLEVEL_5:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_5;
case PP_DAL_POWERLEVEL_6:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_6;
case PP_DAL_POWERLEVEL_7:
return DM_PP_CLOCKS_DPM_STATE_LEVEL_7;
default:
DRM_ERROR("DM_PPLIB: invalid powerlevel state: %d!\n",
max_clocks_state);
return DM_PP_CLOCKS_STATE_INVALID;
}
}
static void pp_to_dc_clock_levels(
const struct amd_pp_clocks *pp_clks,
struct dm_pp_clock_levels *dc_clks,
enum dm_pp_clock_type dc_clk_type)
{
uint32_t i;
if (pp_clks->count > DM_PP_MAX_CLOCK_LEVELS) {
DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
pp_clks->count,
DM_PP_MAX_CLOCK_LEVELS);
dc_clks->num_levels = DM_PP_MAX_CLOCK_LEVELS;
} else
dc_clks->num_levels = pp_clks->count;
DRM_INFO("DM_PPLIB: values for %s clock\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));
for (i = 0; i < dc_clks->num_levels; i++) {
DRM_INFO("DM_PPLIB:\t %d\n", pp_clks->clock[i]);
dc_clks->clocks_in_khz[i] = pp_clks->clock[i];
}
}
static void pp_to_dc_clock_levels_with_latency(
const struct pp_clock_levels_with_latency *pp_clks,
struct dm_pp_clock_levels_with_latency *clk_level_info,
enum dm_pp_clock_type dc_clk_type)
{
uint32_t i;
if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) {
DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
pp_clks->num_levels,
DM_PP_MAX_CLOCK_LEVELS);
clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS;
} else
clk_level_info->num_levels = pp_clks->num_levels;
DRM_DEBUG("DM_PPLIB: values for %s clock\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));
for (i = 0; i < clk_level_info->num_levels; i++) {
DRM_DEBUG("DM_PPLIB:\t %d in kHz\n", pp_clks->data[i].clocks_in_khz);
clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz;
clk_level_info->data[i].latency_in_us = pp_clks->data[i].latency_in_us;
}
}
static void pp_to_dc_clock_levels_with_voltage(
const struct pp_clock_levels_with_voltage *pp_clks,
struct dm_pp_clock_levels_with_voltage *clk_level_info,
enum dm_pp_clock_type dc_clk_type)
{
uint32_t i;
if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) {
DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
pp_clks->num_levels,
DM_PP_MAX_CLOCK_LEVELS);
clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS;
} else
clk_level_info->num_levels = pp_clks->num_levels;
DRM_INFO("DM_PPLIB: values for %s clock\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));
for (i = 0; i < clk_level_info->num_levels; i++) {
DRM_INFO("DM_PPLIB:\t %d in kHz, %d in mV\n", pp_clks->data[i].clocks_in_khz,
pp_clks->data[i].voltage_in_mv);
clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz;
clk_level_info->data[i].voltage_in_mv = pp_clks->data[i].voltage_in_mv;
}
}
bool dm_pp_get_clock_levels_by_type(
const struct dc_context *ctx,
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels *dc_clks)
{
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
struct amd_pp_clocks pp_clks = { 0 };
struct amd_pp_simple_clock_info validation_clks = { 0 };
uint32_t i;
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_clock_by_type) {
if (adev->powerplay.pp_funcs->get_clock_by_type(pp_handle,
dc_to_pp_clock_type(clk_type), &pp_clks)) {
/* Error in pplib. Provide default values. */
return true;
}
} else if (adev->smu.funcs && adev->smu.funcs->get_clock_by_type) {
if (smu_get_clock_by_type(&adev->smu,
dc_to_pp_clock_type(clk_type),
&pp_clks)) {
get_default_clock_levels(clk_type, dc_clks);
return true;
}
}
pp_to_dc_clock_levels(&pp_clks, dc_clks, clk_type);
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_display_mode_validation_clocks) {
if (adev->powerplay.pp_funcs->get_display_mode_validation_clocks(
pp_handle, &validation_clks)) {
/* Error in pplib. Provide default values. */
DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n");
validation_clks.engine_max_clock = 72000;
validation_clks.memory_max_clock = 80000;
validation_clks.level = 0;
}
} else if (adev->smu.funcs && adev->smu.funcs->get_max_high_clocks) {
if (smu_get_max_high_clocks(&adev->smu, &validation_clks)) {
DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n");
validation_clks.engine_max_clock = 72000;
validation_clks.memory_max_clock = 80000;
validation_clks.level = 0;
}
}
DRM_INFO("DM_PPLIB: Validation clocks:\n");
DRM_INFO("DM_PPLIB: engine_max_clock: %d\n",
validation_clks.engine_max_clock);
DRM_INFO("DM_PPLIB: memory_max_clock: %d\n",
validation_clks.memory_max_clock);
DRM_INFO("DM_PPLIB: level : %d\n",
validation_clks.level);
/* Translate 10 kHz to kHz. */
validation_clks.engine_max_clock *= 10;
validation_clks.memory_max_clock *= 10;
/* Determine the highest non-boosted level from the Validation Clocks */
if (clk_type == DM_PP_CLOCK_TYPE_ENGINE_CLK) {
for (i = 0; i < dc_clks->num_levels; i++) {
if (dc_clks->clocks_in_khz[i] > validation_clks.engine_max_clock) {
/* This clock is higher the validation clock.
* Than means the previous one is the highest
* non-boosted one. */
DRM_INFO("DM_PPLIB: reducing engine clock level from %d to %d\n",
dc_clks->num_levels, i);
dc_clks->num_levels = i > 0 ? i : 1;
break;
}
}
} else if (clk_type == DM_PP_CLOCK_TYPE_MEMORY_CLK) {
for (i = 0; i < dc_clks->num_levels; i++) {
if (dc_clks->clocks_in_khz[i] > validation_clks.memory_max_clock) {
DRM_INFO("DM_PPLIB: reducing memory clock level from %d to %d\n",
dc_clks->num_levels, i);
dc_clks->num_levels = i > 0 ? i : 1;
break;
}
}
}
return true;
}
bool dm_pp_get_clock_levels_by_type_with_latency(
const struct dc_context *ctx,
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels_with_latency *clk_level_info)
{
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
struct pp_clock_levels_with_latency pp_clks = { 0 };
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
int ret;
if (pp_funcs && pp_funcs->get_clock_by_type_with_latency) {
ret = pp_funcs->get_clock_by_type_with_latency(pp_handle,
dc_to_pp_clock_type(clk_type),
&pp_clks);
if (ret)
return false;
} else if (adev->smu.ppt_funcs && adev->smu.ppt_funcs->get_clock_by_type_with_latency) {
if (smu_get_clock_by_type_with_latency(&adev->smu,
dc_to_smu_clock_type(clk_type),
&pp_clks))
return false;
}
pp_to_dc_clock_levels_with_latency(&pp_clks, clk_level_info, clk_type);
return true;
}
bool dm_pp_get_clock_levels_by_type_with_voltage(
const struct dc_context *ctx,
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels_with_voltage *clk_level_info)
{
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
struct pp_clock_levels_with_voltage pp_clk_info = {0};
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
int ret;
if (pp_funcs && pp_funcs->get_clock_by_type_with_voltage) {
ret = pp_funcs->get_clock_by_type_with_voltage(pp_handle,
dc_to_pp_clock_type(clk_type),
&pp_clk_info);
if (ret)
return false;
} else if (adev->smu.ppt_funcs && adev->smu.ppt_funcs->get_clock_by_type_with_voltage) {
if (smu_get_clock_by_type_with_voltage(&adev->smu,
dc_to_pp_clock_type(clk_type),
&pp_clk_info))
return false;
}
pp_to_dc_clock_levels_with_voltage(&pp_clk_info, clk_level_info, clk_type);
return true;
}
bool dm_pp_notify_wm_clock_changes(
const struct dc_context *ctx,
struct dm_pp_wm_sets_with_clock_ranges *wm_with_clock_ranges)
{
/* TODO: to be implemented */
return false;
}
bool dm_pp_apply_power_level_change_request(
const struct dc_context *ctx,
struct dm_pp_power_level_change_request *level_change_req)
{
/* TODO: to be implemented */
return false;
}
bool dm_pp_apply_clock_for_voltage_request(
const struct dc_context *ctx,
struct dm_pp_clock_for_voltage_req *clock_for_voltage_req)
{
struct amdgpu_device *adev = ctx->driver_context;
struct pp_display_clock_request pp_clock_request = {0};
int ret = 0;
pp_clock_request.clock_type = dc_to_pp_clock_type(clock_for_voltage_req->clk_type);
pp_clock_request.clock_freq_in_khz = clock_for_voltage_req->clocks_in_khz;
if (!pp_clock_request.clock_type)
return false;
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->display_clock_voltage_request)
ret = adev->powerplay.pp_funcs->display_clock_voltage_request(
adev->powerplay.pp_handle,
&pp_clock_request);
else if (adev->smu.funcs &&
adev->smu.funcs->display_clock_voltage_request)
ret = smu_display_clock_voltage_request(&adev->smu,
&pp_clock_request);
if (ret)
return false;
return true;
}
bool dm_pp_get_static_clocks(
const struct dc_context *ctx,
struct dm_pp_static_clock_info *static_clk_info)
{
struct amdgpu_device *adev = ctx->driver_context;
struct amd_pp_clock_info pp_clk_info = {0};
int ret = 0;
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_current_clocks)
ret = adev->powerplay.pp_funcs->get_current_clocks(
adev->powerplay.pp_handle,
&pp_clk_info);
else if (adev->smu.funcs)
ret = smu_get_current_clocks(&adev->smu, &pp_clk_info);
if (ret)
return false;
static_clk_info->max_clocks_state = pp_to_dc_powerlevel_state(pp_clk_info.max_clocks_state);
static_clk_info->max_mclk_khz = pp_clk_info.max_memory_clock * 10;
static_clk_info->max_sclk_khz = pp_clk_info.max_engine_clock * 10;
return true;
}
void pp_rv_set_wm_ranges(struct pp_smu *pp,
struct pp_smu_wm_range_sets *ranges)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
struct dm_pp_wm_sets_with_clock_ranges_soc15 wm_with_clock_ranges;
struct dm_pp_clock_range_for_dmif_wm_set_soc15 *wm_dce_clocks = wm_with_clock_ranges.wm_dmif_clocks_ranges;
struct dm_pp_clock_range_for_mcif_wm_set_soc15 *wm_soc_clocks = wm_with_clock_ranges.wm_mcif_clocks_ranges;
int32_t i;
wm_with_clock_ranges.num_wm_dmif_sets = ranges->num_reader_wm_sets;
wm_with_clock_ranges.num_wm_mcif_sets = ranges->num_writer_wm_sets;
for (i = 0; i < wm_with_clock_ranges.num_wm_dmif_sets; i++) {
if (ranges->reader_wm_sets[i].wm_inst > 3)
wm_dce_clocks[i].wm_set_id = WM_SET_A;
else
wm_dce_clocks[i].wm_set_id =
ranges->reader_wm_sets[i].wm_inst;
wm_dce_clocks[i].wm_max_dcfclk_clk_in_khz =
ranges->reader_wm_sets[i].max_drain_clk_mhz * 1000;
wm_dce_clocks[i].wm_min_dcfclk_clk_in_khz =
ranges->reader_wm_sets[i].min_drain_clk_mhz * 1000;
wm_dce_clocks[i].wm_max_mem_clk_in_khz =
ranges->reader_wm_sets[i].max_fill_clk_mhz * 1000;
wm_dce_clocks[i].wm_min_mem_clk_in_khz =
ranges->reader_wm_sets[i].min_fill_clk_mhz * 1000;
}
for (i = 0; i < wm_with_clock_ranges.num_wm_mcif_sets; i++) {
if (ranges->writer_wm_sets[i].wm_inst > 3)
wm_soc_clocks[i].wm_set_id = WM_SET_A;
else
wm_soc_clocks[i].wm_set_id =
ranges->writer_wm_sets[i].wm_inst;
wm_soc_clocks[i].wm_max_socclk_clk_in_khz =
ranges->writer_wm_sets[i].max_fill_clk_mhz * 1000;
wm_soc_clocks[i].wm_min_socclk_clk_in_khz =
ranges->writer_wm_sets[i].min_fill_clk_mhz * 1000;
wm_soc_clocks[i].wm_max_mem_clk_in_khz =
ranges->writer_wm_sets[i].max_drain_clk_mhz * 1000;
wm_soc_clocks[i].wm_min_mem_clk_in_khz =
ranges->writer_wm_sets[i].min_drain_clk_mhz * 1000;
}
if (pp_funcs && pp_funcs->set_watermarks_for_clocks_ranges)
pp_funcs->set_watermarks_for_clocks_ranges(pp_handle,
&wm_with_clock_ranges);
else if (adev->smu.funcs &&
adev->smu.funcs->set_watermarks_for_clock_ranges)
smu_set_watermarks_for_clock_ranges(&adev->smu,
&wm_with_clock_ranges);
}
void pp_rv_set_pme_wa_enable(struct pp_smu *pp)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
if (pp_funcs && pp_funcs->notify_smu_enable_pwe)
pp_funcs->notify_smu_enable_pwe(pp_handle);
else if (adev->smu.funcs)
smu_notify_smu_enable_pwe(&adev->smu);
}
void pp_rv_set_active_display_count(struct pp_smu *pp, int count)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
if (!pp_funcs || !pp_funcs->set_active_display_count)
return;
pp_funcs->set_active_display_count(pp_handle, count);
}
void pp_rv_set_min_deep_sleep_dcfclk(struct pp_smu *pp, int clock)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
if (!pp_funcs || !pp_funcs->set_min_deep_sleep_dcefclk)
return;
pp_funcs->set_min_deep_sleep_dcefclk(pp_handle, clock);
}
void pp_rv_set_hard_min_dcefclk_by_freq(struct pp_smu *pp, int clock)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
if (!pp_funcs || !pp_funcs->set_hard_min_dcefclk_by_freq)
return;
pp_funcs->set_hard_min_dcefclk_by_freq(pp_handle, clock);
}
void pp_rv_set_hard_min_fclk_by_freq(struct pp_smu *pp, int mhz)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
if (!pp_funcs || !pp_funcs->set_hard_min_fclk_by_freq)
return;
pp_funcs->set_hard_min_fclk_by_freq(pp_handle, mhz);
}
enum pp_smu_status pp_nv_set_wm_ranges(struct pp_smu *pp,
struct pp_smu_wm_range_sets *ranges)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
struct dm_pp_wm_sets_with_clock_ranges_soc15 wm_with_clock_ranges;
struct dm_pp_clock_range_for_dmif_wm_set_soc15 *wm_dce_clocks =
wm_with_clock_ranges.wm_dmif_clocks_ranges;
struct dm_pp_clock_range_for_mcif_wm_set_soc15 *wm_soc_clocks =
wm_with_clock_ranges.wm_mcif_clocks_ranges;
int32_t i;
wm_with_clock_ranges.num_wm_dmif_sets = ranges->num_reader_wm_sets;
wm_with_clock_ranges.num_wm_mcif_sets = ranges->num_writer_wm_sets;
for (i = 0; i < wm_with_clock_ranges.num_wm_dmif_sets; i++) {
if (ranges->reader_wm_sets[i].wm_inst > 3)
wm_dce_clocks[i].wm_set_id = WM_SET_A;
else
wm_dce_clocks[i].wm_set_id =
ranges->reader_wm_sets[i].wm_inst;
wm_dce_clocks[i].wm_max_dcfclk_clk_in_khz =
ranges->reader_wm_sets[i].max_drain_clk_mhz * 1000;
wm_dce_clocks[i].wm_min_dcfclk_clk_in_khz =
ranges->reader_wm_sets[i].min_drain_clk_mhz * 1000;
wm_dce_clocks[i].wm_max_mem_clk_in_khz =
ranges->reader_wm_sets[i].max_fill_clk_mhz * 1000;
wm_dce_clocks[i].wm_min_mem_clk_in_khz =
ranges->reader_wm_sets[i].min_fill_clk_mhz * 1000;
}
for (i = 0; i < wm_with_clock_ranges.num_wm_mcif_sets; i++) {
if (ranges->writer_wm_sets[i].wm_inst > 3)
wm_soc_clocks[i].wm_set_id = WM_SET_A;
else
wm_soc_clocks[i].wm_set_id =
ranges->writer_wm_sets[i].wm_inst;
wm_soc_clocks[i].wm_max_socclk_clk_in_khz =
ranges->writer_wm_sets[i].max_fill_clk_mhz * 1000;
wm_soc_clocks[i].wm_min_socclk_clk_in_khz =
ranges->writer_wm_sets[i].min_fill_clk_mhz * 1000;
wm_soc_clocks[i].wm_max_mem_clk_in_khz =
ranges->writer_wm_sets[i].max_drain_clk_mhz * 1000;
wm_soc_clocks[i].wm_min_mem_clk_in_khz =
ranges->writer_wm_sets[i].min_drain_clk_mhz * 1000;
}
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
/* 0: successful or smu.funcs->set_watermarks_for_clock_ranges = NULL;
* 1: fail
*/
if (smu_set_watermarks_for_clock_ranges(&adev->smu,
&wm_with_clock_ranges))
return PP_SMU_RESULT_UNSUPPORTED;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_pme_wa_enable(struct pp_smu *pp)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
/* 0: successful or smu.funcs->set_azalia_d3_pme = NULL; 1: fail */
if (smu_set_azalia_d3_pme(smu))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_display_count(struct pp_smu *pp, int count)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
/* 0: successful or smu.funcs->set_display_count = NULL; 1: fail */
if (smu_set_display_count(smu, count))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_min_deep_sleep_dcfclk(struct pp_smu *pp, int mhz)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
/* 0: successful or smu.funcs->set_deep_sleep_dcefclk = NULL;1: fail */
if (smu_set_deep_sleep_dcefclk(smu, mhz))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_hard_min_dcefclk_by_freq(
struct pp_smu *pp, int mhz)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
struct pp_display_clock_request clock_req;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = mhz * 1000;
/* 0: successful or smu.funcs->display_clock_voltage_request = NULL
* 1: fail
*/
if (smu_display_clock_voltage_request(smu, &clock_req))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_hard_min_uclk_by_freq(struct pp_smu *pp, int mhz)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
struct pp_display_clock_request clock_req;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
clock_req.clock_type = amd_pp_mem_clock;
clock_req.clock_freq_in_khz = mhz * 1000;
/* 0: successful or smu.funcs->display_clock_voltage_request = NULL
* 1: fail
*/
if (smu_display_clock_voltage_request(smu, &clock_req))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_pstate_handshake_support(
struct pp_smu *pp, BOOLEAN pstate_handshake_supported)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
if (smu_display_disable_memory_clock_switch(smu, !pstate_handshake_supported))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_set_voltage_by_freq(struct pp_smu *pp,
enum pp_smu_nv_clock_id clock_id, int mhz)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
struct pp_display_clock_request clock_req;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
switch (clock_id) {
case PP_SMU_NV_DISPCLK:
clock_req.clock_type = amd_pp_disp_clock;
break;
case PP_SMU_NV_PHYCLK:
clock_req.clock_type = amd_pp_phy_clock;
break;
case PP_SMU_NV_PIXELCLK:
clock_req.clock_type = amd_pp_pixel_clock;
break;
default:
break;
}
clock_req.clock_freq_in_khz = mhz * 1000;
/* 0: successful or smu.funcs->display_clock_voltage_request = NULL
* 1: fail
*/
if (smu_display_clock_voltage_request(smu, &clock_req))
return PP_SMU_RESULT_FAIL;
return PP_SMU_RESULT_OK;
}
enum pp_smu_status pp_nv_get_maximum_sustainable_clocks(
struct pp_smu *pp, struct pp_smu_nv_clock_table *max_clocks)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
if (!smu->funcs)
return PP_SMU_RESULT_UNSUPPORTED;
if (!smu->funcs->get_max_sustainable_clocks_by_dc)
return PP_SMU_RESULT_UNSUPPORTED;
if (!smu->funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks))
return PP_SMU_RESULT_OK;
return PP_SMU_RESULT_FAIL;
}
enum pp_smu_status pp_nv_get_uclk_dpm_states(struct pp_smu *pp,
unsigned int *clock_values_in_khz, unsigned int *num_states)
{
const struct dc_context *ctx = pp->dm;
struct amdgpu_device *adev = ctx->driver_context;
struct smu_context *smu = &adev->smu;
if (!smu->ppt_funcs)
return PP_SMU_RESULT_UNSUPPORTED;
if (!smu->ppt_funcs->get_uclk_dpm_states)
return PP_SMU_RESULT_UNSUPPORTED;
if (!smu->ppt_funcs->get_uclk_dpm_states(smu,
clock_values_in_khz, num_states))
return PP_SMU_RESULT_OK;
return PP_SMU_RESULT_FAIL;
}
void dm_pp_get_funcs(
struct dc_context *ctx,
struct pp_smu_funcs *funcs)
{
switch (ctx->dce_version) {
case DCN_VERSION_1_0:
case DCN_VERSION_1_01:
funcs->ctx.ver = PP_SMU_VER_RV;
funcs->rv_funcs.pp_smu.dm = ctx;
funcs->rv_funcs.set_wm_ranges = pp_rv_set_wm_ranges;
funcs->rv_funcs.set_pme_wa_enable = pp_rv_set_pme_wa_enable;
funcs->rv_funcs.set_display_count =
pp_rv_set_active_display_count;
funcs->rv_funcs.set_min_deep_sleep_dcfclk =
pp_rv_set_min_deep_sleep_dcfclk;
funcs->rv_funcs.set_hard_min_dcfclk_by_freq =
pp_rv_set_hard_min_dcefclk_by_freq;
funcs->rv_funcs.set_hard_min_fclk_by_freq =
pp_rv_set_hard_min_fclk_by_freq;
break;
#ifdef [31mCONFIG_DRM_AMD_DC_DCN2_0[0m
case DCN_VERSION_2_0:
funcs->ctx.ver = PP_SMU_VER_NV;
funcs->nv_funcs.pp_smu.dm = ctx;
funcs->nv_funcs.set_display_count = pp_nv_set_display_count;
funcs->nv_funcs.set_hard_min_dcfclk_by_freq =
pp_nv_set_hard_min_dcefclk_by_freq;
funcs->nv_funcs.set_min_deep_sleep_dcfclk =
pp_nv_set_min_deep_sleep_dcfclk;
funcs->nv_funcs.set_voltage_by_freq =
pp_nv_set_voltage_by_freq;
funcs->nv_funcs.set_wm_ranges = pp_nv_set_wm_ranges;
/* todo set_pme_wa_enable cause 4k@6ohz display not light up */
funcs->nv_funcs.set_pme_wa_enable = NULL;
/* todo debug waring message */
funcs->nv_funcs.set_hard_min_uclk_by_freq = pp_nv_set_hard_min_uclk_by_freq;
/* todo compare data with window driver*/
funcs->nv_funcs.get_maximum_sustainable_clocks = pp_nv_get_maximum_sustainable_clocks;
/*todo compare data with window driver */
funcs->nv_funcs.get_uclk_dpm_states = pp_nv_get_uclk_dpm_states;
funcs->nv_funcs.set_pstate_handshake_support = pp_nv_set_pstate_handshake_support;
break;
#endif
default:
DRM_ERROR("smu version is not supported !\n");
break;
}
}