/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "atom-types.h"
#include "atombios.h"
#include "processpptables.h"
#include "cgs_common.h"
#include "smumgr.h"
#include "hwmgr.h"
#include "hardwaremanager.h"
#include "rv_ppsmc.h"
#include "smu10_hwmgr.h"
#include "power_state.h"
#include "soc15_common.h"
#include "smu10.h"
#define SMU10_MAX_DEEPSLEEP_DIVIDER_ID 5
#define SMU10_MINIMUM_ENGINE_CLOCK 800 /* 8Mhz, the low boundary of engine clock allowed on this chip */
#define SCLK_MIN_DIV_INTV_SHIFT 12
#define SMU10_DISPCLK_BYPASS_THRESHOLD 10000 /* 100Mhz */
#define SMC_RAM_END 0x40000
#define mmPWR_MISC_CNTL_STATUS 0x0183
#define mmPWR_MISC_CNTL_STATUS_BASE_IDX 0
#define PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN__SHIFT 0x0
#define PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT 0x1
#define PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN_MASK 0x00000001L
#define PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK 0x00000006L
static const unsigned long SMU10_Magic = (unsigned long) PHM_Rv_Magic;
static int smu10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
PPSMC_Msg msg;
switch (clk_type) {
case amd_pp_dcf_clock:
if (clk_freq == smu10_data->dcf_actual_hard_min_freq)
return 0;
msg = PPSMC_MSG_SetHardMinDcefclkByFreq;
smu10_data->dcf_actual_hard_min_freq = clk_freq;
break;
case amd_pp_soc_clock:
msg = PPSMC_MSG_SetHardMinSocclkByFreq;
break;
case amd_pp_f_clock:
if (clk_freq == smu10_data->f_actual_hard_min_freq)
return 0;
smu10_data->f_actual_hard_min_freq = clk_freq;
msg = PPSMC_MSG_SetHardMinFclkByFreq;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
return -EINVAL;
}
smum_send_msg_to_smc_with_parameter(hwmgr, msg, clk_freq);
return 0;
}
static struct smu10_power_state *cast_smu10_ps(struct pp_hw_power_state *hw_ps)
{
if (SMU10_Magic != hw_ps->magic)
return NULL;
return (struct smu10_power_state *)hw_ps;
}
static const struct smu10_power_state *cast_const_smu10_ps(
const struct pp_hw_power_state *hw_ps)
{
if (SMU10_Magic != hw_ps->magic)
return NULL;
return (struct smu10_power_state *)hw_ps;
}
static int smu10_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
smu10_data->dce_slow_sclk_threshold = 30000;
smu10_data->thermal_auto_throttling_treshold = 0;
smu10_data->is_nb_dpm_enabled = 1;
smu10_data->dpm_flags = 1;
smu10_data->need_min_deep_sleep_dcefclk = true;
smu10_data->num_active_display = 0;
smu10_data->deep_sleep_dcefclk = 0;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerPlaySupport);
return 0;
}
static int smu10_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *table)
{
return 0;
}
static int smu10_init_dynamic_state_adjustment_rule_settings(
struct pp_hwmgr *hwmgr)
{
struct phm_clock_voltage_dependency_table *table_clk_vlt;
table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 7),
GFP_KERNEL);
if (NULL == table_clk_vlt) {
pr_err("Can not allocate memory!\n");
return -ENOMEM;
}
table_clk_vlt->count = 8;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
table_clk_vlt->entries[1].v = 1;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
table_clk_vlt->entries[2].v = 2;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
table_clk_vlt->entries[3].v = 3;
table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
table_clk_vlt->entries[4].v = 4;
table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
table_clk_vlt->entries[5].v = 5;
table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
table_clk_vlt->entries[6].v = 6;
table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
table_clk_vlt->entries[7].v = 7;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
return 0;
}
static int smu10_get_system_info_data(struct pp_hwmgr *hwmgr)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)hwmgr->backend;
smu10_data->sys_info.htc_hyst_lmt = 5;
smu10_data->sys_info.htc_tmp_lmt = 203;
if (smu10_data->thermal_auto_throttling_treshold == 0)
smu10_data->thermal_auto_throttling_treshold = 203;
smu10_construct_max_power_limits_table (hwmgr,
&hwmgr->dyn_state.max_clock_voltage_on_ac);
smu10_init_dynamic_state_adjustment_rule_settings(hwmgr);
return 0;
}
static int smu10_construct_boot_state(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int smu10_set_clock_limit(struct pp_hwmgr *hwmgr, const void *input)
{
struct PP_Clocks clocks = {0};
struct pp_display_clock_request clock_req;
clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
clock_req.clock_type = amd_pp_dcf_clock;
clock_req.clock_freq_in_khz = clocks.dcefClock * 10;
PP_ASSERT_WITH_CODE(!smu10_display_clock_voltage_request(hwmgr, &clock_req),
"Attempt to set DCF Clock Failed!", return -EINVAL);
return 0;
}
static int smu10_set_min_deep_sleep_dcefclk(struct pp_hwmgr *hwmgr, uint32_t clock)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
if (smu10_data->need_min_deep_sleep_dcefclk &&
smu10_data->deep_sleep_dcefclk != clock) {
smu10_data->deep_sleep_dcefclk = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinDeepSleepDcefclk,
smu10_data->deep_sleep_dcefclk);
}
return 0;
}
static int smu10_set_hard_min_dcefclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
if (smu10_data->dcf_actual_hard_min_freq &&
smu10_data->dcf_actual_hard_min_freq != clock) {
smu10_data->dcf_actual_hard_min_freq = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinDcefclkByFreq,
smu10_data->dcf_actual_hard_min_freq);
}
return 0;
}
static int smu10_set_hard_min_fclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
if (smu10_data->f_actual_hard_min_freq &&
smu10_data->f_actual_hard_min_freq != clock) {
smu10_data->f_actual_hard_min_freq = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
smu10_data->f_actual_hard_min_freq);
}
return 0;
}
static int smu10_set_active_display_count(struct pp_hwmgr *hwmgr, uint32_t count)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
if (smu10_data->num_active_display != count) {
smu10_data->num_active_display = count;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetDisplayCount,
smu10_data->num_active_display);
}
return 0;
}
static int smu10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
{
return smu10_set_clock_limit(hwmgr, input);
}
static int smu10_init_power_gate_state(struct pp_hwmgr *hwmgr)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
smu10_data->vcn_power_gated = true;
smu10_data->isp_tileA_power_gated = true;
smu10_data->isp_tileB_power_gated = true;
if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetGfxCGPG,
true);
else
return 0;
}
static int smu10_setup_asic_task(struct pp_hwmgr *hwmgr)
{
return smu10_init_power_gate_state(hwmgr);
}
static int smu10_reset_cc6_data(struct pp_hwmgr *hwmgr)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
smu10_data->separation_time = 0;
smu10_data->cc6_disable = false;
smu10_data->pstate_disable = false;
smu10_data->cc6_setting_changed = false;
return 0;
}
static int smu10_power_off_asic(struct pp_hwmgr *hwmgr)
{
return smu10_reset_cc6_data(hwmgr);
}
static bool smu10_is_gfx_on(struct pp_hwmgr *hwmgr)
{
uint32_t reg;
struct amdgpu_device *adev = hwmgr->adev;
reg = RREG32_SOC15(PWR, 0, mmPWR_MISC_CNTL_STATUS);
if ((reg & PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK) ==
(0x2 << PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT))
return true;
return false;
}
static int smu10_disable_gfx_off(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
if (adev->pm.pp_feature & PP_GFXOFF_MASK) {
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableGfxOff);
/* confirm gfx is back to "on" state */
while (!smu10_is_gfx_on(hwmgr))
msleep(1);
}
return 0;
}
static int smu10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int smu10_enable_gfx_off(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
if (adev->pm.pp_feature & PP_GFXOFF_MASK)
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableGfxOff);
return 0;
}
static int smu10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int smu10_gfx_off_control(struct pp_hwmgr *hwmgr, bool enable)
{
if (enable)
return smu10_enable_gfx_off(hwmgr);
else
return smu10_disable_gfx_off(hwmgr);
}
static int smu10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *prequest_ps,
const struct pp_power_state *pcurrent_ps)
{
return 0;
}
/* temporary hardcoded clock voltage breakdown tables */
static const DpmClock_t VddDcfClk[]= {
{ 300, 2600},
{ 600, 3200},
{ 600, 3600},
};
static const DpmClock_t VddSocClk[]= {
{ 478, 2600},
{ 722, 3200},
{ 722, 3600},
};
static const DpmClock_t VddFClk[]= {
{ 400, 2600},
{1200, 3200},
{1200, 3600},
};
static const DpmClock_t VddDispClk[]= {
{ 435, 2600},
{ 661, 3200},
{1086, 3600},
};
static const DpmClock_t VddDppClk[]= {
{ 435, 2600},
{ 661, 3200},
{ 661, 3600},
};
static const DpmClock_t VddPhyClk[]= {
{ 540, 2600},
{ 810, 3200},
{ 810, 3600},
};
static int smu10_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
struct smu10_voltage_dependency_table **pptable,
uint32_t num_entry, const DpmClock_t *pclk_dependency_table)
{
uint32_t table_size, i;
struct smu10_voltage_dependency_table *ptable;
table_size = sizeof(uint32_t) + sizeof(struct smu10_voltage_dependency_table) * num_entry;
ptable = kzalloc(table_size, GFP_KERNEL);
if (NULL == ptable)
return -ENOMEM;
ptable->count = num_entry;
for (i = 0; i < ptable->count; i++) {
ptable->entries[i].clk = pclk_dependency_table->Freq * 100;
ptable->entries[i].vol = pclk_dependency_table->Vol;
pclk_dependency_table++;
}
*pptable = ptable;
return 0;
}
static int smu10_populate_clock_table(struct pp_hwmgr *hwmgr)
{
uint32_t result;
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
DpmClocks_t *table = &(smu10_data->clock_table);
struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
result = smum_smc_table_manager(hwmgr, (uint8_t *)table, SMU10_CLOCKTABLE, true);
PP_ASSERT_WITH_CODE((0 == result),
"Attempt to copy clock table from smc failed",
return result);
if (0 == result && table->DcefClocks[0].Freq != 0) {
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
NUM_DCEFCLK_DPM_LEVELS,
&smu10_data->clock_table.DcefClocks[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
NUM_SOCCLK_DPM_LEVELS,
&smu10_data->clock_table.SocClocks[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
NUM_FCLK_DPM_LEVELS,
&smu10_data->clock_table.FClocks[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk,
NUM_MEMCLK_DPM_LEVELS,
&smu10_data->clock_table.MemClocks[0]);
} else {
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
ARRAY_SIZE(VddDcfClk),
&VddDcfClk[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
ARRAY_SIZE(VddSocClk),
&VddSocClk[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
ARRAY_SIZE(VddFClk),
&VddFClk[0]);
}
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk,
ARRAY_SIZE(VddDispClk),
&VddDispClk[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk,
ARRAY_SIZE(VddDppClk), &VddDppClk[0]);
smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk,
ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency);
result = smum_get_argument(hwmgr);
smu10_data->gfx_min_freq_limit = result / 10 * 1000;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency);
result = smum_get_argument(hwmgr);
smu10_data->gfx_max_freq_limit = result / 10 * 1000;
return 0;
}
static int smu10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct smu10_hwmgr *data;
data = kzalloc(sizeof(struct smu10_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
result = smu10_initialize_dpm_defaults(hwmgr);
if (result != 0) {
pr_err("smu10_initialize_dpm_defaults failed\n");
return result;
}
smu10_populate_clock_table(hwmgr);
result = smu10_get_system_info_data(hwmgr);
if (result != 0) {
pr_err("smu10_get_system_info_data failed\n");
return result;
}
smu10_construct_boot_state(hwmgr);
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
SMU10_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels =
SMU10_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.vbiosInterruptId = 0;
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
hwmgr->pstate_sclk = SMU10_UMD_PSTATE_GFXCLK * 100;
hwmgr->pstate_mclk = SMU10_UMD_PSTATE_FCLK * 100;
return result;
}
static int smu10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
kfree(pinfo->vdd_dep_on_dcefclk);
pinfo->vdd_dep_on_dcefclk = NULL;
kfree(pinfo->vdd_dep_on_socclk);
pinfo->vdd_dep_on_socclk = NULL;
kfree(pinfo->vdd_dep_on_fclk);
pinfo->vdd_dep_on_fclk = NULL;
kfree(pinfo->vdd_dep_on_dispclk);
pinfo->vdd_dep_on_dispclk = NULL;
kfree(pinfo->vdd_dep_on_dppclk);
pinfo->vdd_dep_on_dppclk = NULL;
kfree(pinfo->vdd_dep_on_phyclk);
pinfo->vdd_dep_on_phyclk = NULL;
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int smu10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
struct smu10_hwmgr *data = hwmgr->backend;
uint32_t min_sclk = hwmgr->display_config->min_core_set_clock;
uint32_t min_mclk = hwmgr->display_config->min_mem_set_clock/100;
if (hwmgr->smu_version < 0x1E3700) {
pr_info("smu firmware version too old, can not set dpm level\n");
return 0;
}
if (min_sclk < data->gfx_min_freq_limit)
min_sclk = data->gfx_min_freq_limit;
min_sclk /= 100; /* transfer 10KHz to MHz */
if (min_mclk < data->clock_table.FClocks[0].Freq)
min_mclk = data->clock_table.FClocks[0].Freq;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinGfxClk,
data->gfx_max_freq_limit/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
SMU10_UMD_PSTATE_PEAK_FCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinSocclkByFreq,
SMU10_UMD_PSTATE_PEAK_SOCCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinVcn,
SMU10_UMD_PSTATE_VCE);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxClk,
data->gfx_max_freq_limit/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxFclkByFreq,
SMU10_UMD_PSTATE_PEAK_FCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxSocclkByFreq,
SMU10_UMD_PSTATE_PEAK_SOCCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxVcn,
SMU10_UMD_PSTATE_VCE);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinGfxClk,
min_sclk);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxClk,
min_sclk);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
min_mclk);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxFclkByFreq,
min_mclk);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinGfxClk,
SMU10_UMD_PSTATE_GFXCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
SMU10_UMD_PSTATE_FCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinSocclkByFreq,
SMU10_UMD_PSTATE_SOCCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinVcn,
SMU10_UMD_PSTATE_VCE);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxClk,
SMU10_UMD_PSTATE_GFXCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxFclkByFreq,
SMU10_UMD_PSTATE_FCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxSocclkByFreq,
SMU10_UMD_PSTATE_SOCCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxVcn,
SMU10_UMD_PSTATE_VCE);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinGfxClk,
min_sclk);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
hwmgr->display_config->num_display > 3 ?
SMU10_UMD_PSTATE_PEAK_FCLK :
min_mclk);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinSocclkByFreq,
SMU10_UMD_PSTATE_MIN_SOCCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinVcn,
SMU10_UMD_PSTATE_MIN_VCE);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxClk,
data->gfx_max_freq_limit/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxFclkByFreq,
SMU10_UMD_PSTATE_PEAK_FCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxSocclkByFreq,
SMU10_UMD_PSTATE_PEAK_SOCCLK);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxVcn,
SMU10_UMD_PSTATE_VCE);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinGfxClk,
data->gfx_min_freq_limit/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxClk,
data->gfx_min_freq_limit/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
min_mclk);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxFclkByFreq,
min_mclk);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return 0;
}
static uint32_t smu10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct smu10_hwmgr *data;
if (hwmgr == NULL)
return -EINVAL;
data = (struct smu10_hwmgr *)(hwmgr->backend);
if (low)
return data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;
else
return data->clock_vol_info.vdd_dep_on_fclk->entries[
data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk;
}
static uint32_t smu10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct smu10_hwmgr *data;
if (hwmgr == NULL)
return -EINVAL;
data = (struct smu10_hwmgr *)(hwmgr->backend);
if (low)
return data->gfx_min_freq_limit;
else
return data->gfx_max_freq_limit;
}
static int smu10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
return 0;
}
static int smu10_dpm_get_pp_table_entry_callback(
struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps,
unsigned int index,
const void *clock_info)
{
struct smu10_power_state *smu10_ps = cast_smu10_ps(hw_ps);
smu10_ps->levels[index].engine_clock = 0;
smu10_ps->levels[index].vddc_index = 0;
smu10_ps->level = index + 1;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
smu10_ps->levels[index].ds_divider_index = 5;
smu10_ps->levels[index].ss_divider_index = 5;
}
return 0;
}
static int smu10_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
{
int result;
unsigned long ret = 0;
result = pp_tables_get_num_of_entries(hwmgr, &ret);
return result ? 0 : ret;
}
static int smu10_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry, struct pp_power_state *ps)
{
int result;
struct smu10_power_state *smu10_ps;
ps->hardware.magic = SMU10_Magic;
smu10_ps = cast_smu10_ps(&(ps->hardware));
result = pp_tables_get_entry(hwmgr, entry, ps,
smu10_dpm_get_pp_table_entry_callback);
smu10_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
smu10_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;
return result;
}
static int smu10_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct smu10_power_state);
}
static int smu10_set_cpu_power_state(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int smu10_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
{
struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend);
if (separation_time != data->separation_time ||
cc6_disable != data->cc6_disable ||
pstate_disable != data->pstate_disable) {
data->separation_time = separation_time;
data->cc6_disable = cc6_disable;
data->pstate_disable = pstate_disable;
data->cc6_setting_changed = true;
}
return 0;
}
static int smu10_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
return -EINVAL;
}
static int smu10_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
struct smu10_hwmgr *data = hwmgr->backend;
struct smu10_voltage_dependency_table *mclk_table =
data->clock_vol_info.vdd_dep_on_fclk;
uint32_t low, high;
low = mask ? (ffs(mask) - 1) : 0;
high = mask ? (fls(mask) - 1) : 0;
switch (type) {
case PP_SCLK:
if (low > 2 || high > 2) {
pr_info("Currently sclk only support 3 levels on RV\n");
return -EINVAL;
}
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinGfxClk,
low == 2 ? data->gfx_max_freq_limit/100 :
low == 1 ? SMU10_UMD_PSTATE_GFXCLK :
data->gfx_min_freq_limit/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxClk,
high == 0 ? data->gfx_min_freq_limit/100 :
high == 1 ? SMU10_UMD_PSTATE_GFXCLK :
data->gfx_max_freq_limit/100);
break;
case PP_MCLK:
if (low > mclk_table->count - 1 || high > mclk_table->count - 1)
return -EINVAL;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinFclkByFreq,
mclk_table->entries[low].clk/100);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxFclkByFreq,
mclk_table->entries[high].clk/100);
break;
case PP_PCIE:
default:
break;
}
return 0;
}
static int smu10_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend);
struct smu10_voltage_dependency_table *mclk_table =
data->clock_vol_info.vdd_dep_on_fclk;
uint32_t i, now, size = 0;
switch (type) {
case PP_SCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency);
now = smum_get_argument(hwmgr);
/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
if (now == data->gfx_max_freq_limit/100)
i = 2;
else if (now == data->gfx_min_freq_limit/100)
i = 0;
else
i = 1;
size += sprintf(buf + size, "0: %uMhz %s\n",
data->gfx_min_freq_limit/100,
i == 0 ? "*" : "");
size += sprintf(buf + size, "1: %uMhz %s\n",
i == 1 ? now : SMU10_UMD_PSTATE_GFXCLK,
i == 1 ? "*" : "");
size += sprintf(buf + size, "2: %uMhz %s\n",
data->gfx_max_freq_limit/100,
i == 2 ? "*" : "");
break;
case PP_MCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency);
now = smum_get_argument(hwmgr);
for (i = 0; i < mclk_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i,
mclk_table->entries[i].clk / 100,
((mclk_table->entries[i].clk / 100)
== now) ? "*" : "");
break;
default:
break;
}
return size;
}
static int smu10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
struct smu10_hwmgr *data;
if (level == NULL || hwmgr == NULL || state == NULL)
return -EINVAL;
data = (struct smu10_hwmgr *)(hwmgr->backend);
if (index == 0) {
level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;
level->coreClock = data->gfx_min_freq_limit;
} else {
level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[
data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk;
level->coreClock = data->gfx_max_freq_limit;
}
level->nonLocalMemoryFreq = 0;
level->nonLocalMemoryWidth = 0;
return 0;
}
static int smu10_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
{
const struct smu10_power_state *ps = cast_const_smu10_ps(state);
clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index));
clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index));
return 0;
}
#define MEM_FREQ_LOW_LATENCY 25000
#define MEM_FREQ_HIGH_LATENCY 80000
#define MEM_LATENCY_HIGH 245
#define MEM_LATENCY_LOW 35
#define MEM_LATENCY_ERR 0xFFFF
static uint32_t smu10_get_mem_latency(struct pp_hwmgr *hwmgr,
uint32_t clock)
{
if (clock >= MEM_FREQ_LOW_LATENCY &&
clock < MEM_FREQ_HIGH_LATENCY)
return MEM_LATENCY_HIGH;
else if (clock >= MEM_FREQ_HIGH_LATENCY)
return MEM_LATENCY_LOW;
else
return MEM_LATENCY_ERR;
}
static int smu10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
uint32_t i;
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
struct smu10_voltage_dependency_table *pclk_vol_table;
bool latency_required = false;
if (pinfo == NULL)
return -EINVAL;
switch (type) {
case amd_pp_mem_clock:
pclk_vol_table = pinfo->vdd_dep_on_mclk;
latency_required = true;
break;
case amd_pp_f_clock:
pclk_vol_table = pinfo->vdd_dep_on_fclk;
latency_required = true;
break;
case amd_pp_dcf_clock:
pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
break;
case amd_pp_disp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dispclk;
break;
case amd_pp_phy_clock:
pclk_vol_table = pinfo->vdd_dep_on_phyclk;
break;
case amd_pp_dpp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dppclk;
break;
default:
return -EINVAL;
}
if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
return -EINVAL;
clocks->num_levels = 0;
for (i = 0; i < pclk_vol_table->count; i++) {
clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk * 10;
clocks->data[i].latency_in_us = latency_required ?
smu10_get_mem_latency(hwmgr,
pclk_vol_table->entries[i].clk) :
0;
clocks->num_levels++;
}
return 0;
}
static int smu10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
uint32_t i;
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
struct smu10_voltage_dependency_table *pclk_vol_table = NULL;
if (pinfo == NULL)
return -EINVAL;
switch (type) {
case amd_pp_mem_clock:
pclk_vol_table = pinfo->vdd_dep_on_mclk;
break;
case amd_pp_f_clock:
pclk_vol_table = pinfo->vdd_dep_on_fclk;
break;
case amd_pp_dcf_clock:
pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
break;
case amd_pp_soc_clock:
pclk_vol_table = pinfo->vdd_dep_on_socclk;
break;
case amd_pp_disp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dispclk;
break;
case amd_pp_phy_clock:
pclk_vol_table = pinfo->vdd_dep_on_phyclk;
break;
default:
return -EINVAL;
}
if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
return -EINVAL;
clocks->num_levels = 0;
for (i = 0; i < pclk_vol_table->count; i++) {
clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk * 10;
clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol;
clocks->num_levels++;
}
return 0;
}
static int smu10_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
{
clocks->engine_max_clock = 80000; /* driver can't get engine clock, temp hard code to 800MHz */
return 0;
}
static int smu10_thermal_get_temperature(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
uint32_t reg_value = RREG32_SOC15(THM, 0, mmTHM_TCON_CUR_TMP);
int cur_temp =
(reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT;
if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK)
cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
else
cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return cur_temp;
}
static int smu10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
uint32_t sclk, mclk;
int ret = 0;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency);
sclk = smum_get_argument(hwmgr);
/* in units of 10KHZ */
*((uint32_t *)value) = sclk * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency);
mclk = smum_get_argument(hwmgr);
/* in units of 10KHZ */
*((uint32_t *)value) = mclk * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = smu10_thermal_get_temperature(hwmgr);
break;
case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
*(uint32_t *)value = smu10_data->vcn_power_gated ? 0 : 1;
*size = 4;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int smu10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
void *clock_ranges)
{
struct smu10_hwmgr *data = hwmgr->backend;
struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges;
Watermarks_t *table = &(data->water_marks_table);
int result = 0;
smu_set_watermarks_for_clocks_ranges(table,wm_with_clock_ranges);
smum_smc_table_manager(hwmgr, (uint8_t *)table, (uint16_t)SMU10_WMTABLE, false);
data->water_marks_exist = true;
return result;
}
static int smu10_smus_notify_pwe(struct pp_hwmgr *hwmgr)
{
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SetRccPfcPmeRestoreRegister);
}
static int smu10_powergate_mmhub(struct pp_hwmgr *hwmgr)
{
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerGateMmHub);
}
static int smu10_powergate_sdma(struct pp_hwmgr *hwmgr, bool gate)
{
if (gate)
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerDownSdma);
else
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerUpSdma);
}
static void smu10_powergate_vcn(struct pp_hwmgr *hwmgr, bool bgate)
{
struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
if (bgate) {
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCN,
AMD_PG_STATE_GATE);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_PowerDownVcn, 0);
smu10_data->vcn_power_gated = true;
} else {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_PowerUpVcn, 0);
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCN,
AMD_PG_STATE_UNGATE);
smu10_data->vcn_power_gated = false;
}
}
static int conv_power_profile_to_pplib_workload(int power_profile)
{
int pplib_workload = 0;
switch (power_profile) {
case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT:
pplib_workload = WORKLOAD_DEFAULT_BIT;
break;
case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
break;
case PP_SMC_POWER_PROFILE_POWERSAVING:
pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT;
break;
case PP_SMC_POWER_PROFILE_VIDEO:
pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
break;
case PP_SMC_POWER_PROFILE_VR:
pplib_workload = WORKLOAD_PPLIB_VR_BIT;
break;
case PP_SMC_POWER_PROFILE_COMPUTE:
pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
break;
}
return pplib_workload;
}
static int smu10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
uint32_t i, size = 0;
static const uint8_t
profile_mode_setting[6][4] = {{70, 60, 0, 0,},
{70, 60, 1, 3,},
{90, 60, 0, 0,},
{70, 60, 0, 0,},
{70, 90, 0, 0,},
{30, 60, 0, 6,},
};
static const char *profile_name[6] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE"};
static const char *title[6] = {"NUM",
"MODE_NAME",
"BUSY_SET_POINT",
"FPS",
"USE_RLC_BUSY",
"MIN_ACTIVE_LEVEL"};
if (!buf)
return -EINVAL;
size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
title[1], title[2], title[3], title[4], title[5]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_COMPUTE; i++)
size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
profile_mode_setting[i][0], profile_mode_setting[i][1],
profile_mode_setting[i][2], profile_mode_setting[i][3]);
return size;
}
static bool smu10_is_raven1_refresh(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
if ((adev->asic_type == CHIP_RAVEN) &&
(adev->rev_id != 0x15d8) &&
(hwmgr->smu_version >= 0x41e2b))
return true;
else
return false;
}
static int smu10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
int workload_type = 0;
int result = 0;
if (input[size] > PP_SMC_POWER_PROFILE_COMPUTE) {
pr_err("Invalid power profile mode %ld\n", input[size]);
return -EINVAL;
}
if (hwmgr->power_profile_mode == input[size])
return 0;
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type =
conv_power_profile_to_pplib_workload(input[size]);
if (workload_type &&
smu10_is_raven1_refresh(hwmgr) &&
!hwmgr->gfxoff_state_changed_by_workload) {
smu10_gfx_off_control(hwmgr, false);
hwmgr->gfxoff_state_changed_by_workload = true;
}
result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_ActiveProcessNotify,
1 << workload_type);
if (!result)
hwmgr->power_profile_mode = input[size];
if (workload_type && hwmgr->gfxoff_state_changed_by_workload) {
smu10_gfx_off_control(hwmgr, true);
hwmgr->gfxoff_state_changed_by_workload = false;
}
return 0;
}
static int smu10_asic_reset(struct pp_hwmgr *hwmgr, enum SMU_ASIC_RESET_MODE mode)
{
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DeviceDriverReset,
mode);
}
static const struct pp_hwmgr_func smu10_hwmgr_funcs = {
.backend_init = smu10_hwmgr_backend_init,
.backend_fini = smu10_hwmgr_backend_fini,
.asic_setup = NULL,
.apply_state_adjust_rules = smu10_apply_state_adjust_rules,
.force_dpm_level = smu10_dpm_force_dpm_level,
.get_power_state_size = smu10_get_power_state_size,
.powerdown_uvd = NULL,
.powergate_uvd = smu10_powergate_vcn,
.powergate_vce = NULL,
.get_mclk = smu10_dpm_get_mclk,
.get_sclk = smu10_dpm_get_sclk,
.patch_boot_state = smu10_dpm_patch_boot_state,
.get_pp_table_entry = smu10_dpm_get_pp_table_entry,
.get_num_of_pp_table_entries = smu10_dpm_get_num_of_pp_table_entries,
.set_cpu_power_state = smu10_set_cpu_power_state,
.store_cc6_data = smu10_store_cc6_data,
.force_clock_level = smu10_force_clock_level,
.print_clock_levels = smu10_print_clock_levels,
.get_dal_power_level = smu10_get_dal_power_level,
.get_performance_level = smu10_get_performance_level,
.get_current_shallow_sleep_clocks = smu10_get_current_shallow_sleep_clocks,
.get_clock_by_type_with_latency = smu10_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = smu10_get_clock_by_type_with_voltage,
.set_watermarks_for_clocks_ranges = smu10_set_watermarks_for_clocks_ranges,
.get_max_high_clocks = smu10_get_max_high_clocks,
.read_sensor = smu10_read_sensor,
.set_active_display_count = smu10_set_active_display_count,
.set_min_deep_sleep_dcefclk = smu10_set_min_deep_sleep_dcefclk,
.dynamic_state_management_enable = smu10_enable_dpm_tasks,
.power_off_asic = smu10_power_off_asic,
.asic_setup = smu10_setup_asic_task,
.power_state_set = smu10_set_power_state_tasks,
.dynamic_state_management_disable = smu10_disable_dpm_tasks,
.powergate_mmhub = smu10_powergate_mmhub,
.smus_notify_pwe = smu10_smus_notify_pwe,
.display_clock_voltage_request = smu10_display_clock_voltage_request,
.powergate_gfx = smu10_gfx_off_control,
.powergate_sdma = smu10_powergate_sdma,
.set_hard_min_dcefclk_by_freq = smu10_set_hard_min_dcefclk_by_freq,
.set_hard_min_fclk_by_freq = smu10_set_hard_min_fclk_by_freq,
.get_power_profile_mode = smu10_get_power_profile_mode,
.set_power_profile_mode = smu10_set_power_profile_mode,
.asic_reset = smu10_asic_reset,
};
int smu10_init_function_pointers(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &smu10_hwmgr_funcs;
hwmgr->pptable_func = &pptable_funcs;
return 0;
}