// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/rtd520.c
* Comedi driver for Real Time Devices (RTD) PCI4520/DM7520
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 2001 David A. Schleef <ds@schleef.org>
*/
/*
* Driver: rtd520
* Description: Real Time Devices PCI4520/DM7520
* Devices: [Real Time Devices] DM7520HR-1 (DM7520), DM7520HR-8,
* PCI4520 (PCI4520), PCI4520-8
* Author: Dan Christian
* Status: Works. Only tested on DM7520-8. Not SMP safe.
*
* Configuration options: not applicable, uses PCI auto config
*/
/*
* Created by Dan Christian, NASA Ames Research Center.
*
* The PCI4520 is a PCI card. The DM7520 is a PC/104-plus card.
* Both have:
* 8/16 12 bit ADC with FIFO and channel gain table
* 8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
* 8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
* 2 12 bit DACs with FIFOs
* 2 bits output
* 2 bits input
* bus mastering DMA
* timers: ADC sample, pacer, burst, about, delay, DA1, DA2
* sample counter
* 3 user timer/counters (8254)
* external interrupt
*
* The DM7520 has slightly fewer features (fewer gain steps).
*
* These boards can support external multiplexors and multi-board
* synchronization, but this driver doesn't support that.
*
* Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
* Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
* Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
* Call them and ask for the register level manual.
* PCI chip: http://www.plxtech.com/products/io/pci9080
*
* Notes:
* This board is memory mapped. There is some IO stuff, but it isn't needed.
*
* I use a pretty loose naming style within the driver (rtd_blah).
* All externally visible names should be rtd520_blah.
* I use camelCase for structures (and inside them).
* I may also use upper CamelCase for function names (old habit).
*
* This board is somewhat related to the RTD PCI4400 board.
*
* I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
* das1800, since they have the best documented code. Driver cb_pcidas64.c
* uses the same DMA controller.
*
* As far as I can tell, the About interrupt doesn't work if Sample is
* also enabled. It turns out that About really isn't needed, since
* we always count down samples read.
*/
/*
* driver status:
*
* Analog-In supports instruction and command mode.
*
* With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
* (single channel, 64K read buffer). I get random system lockups when
* using DMA with ALI-15xx based systems. I haven't been able to test
* any other chipsets. The lockups happen soon after the start of an
* acquistion, not in the middle of a long run.
*
* Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
* (with a 256K read buffer).
*
* Digital-IO and Analog-Out only support instruction mode.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include "../comedi_pci.h"
#include "comedi_8254.h"
#include "plx9080.h"
/*
* Local Address Space 0 Offsets
*/
#define LAS0_USER_IO 0x0008 /* User I/O */
#define LAS0_ADC 0x0010 /* FIFO Status/Software A/D Start */
#define FS_DAC1_NOT_EMPTY BIT(0) /* DAC1 FIFO not empty */
#define FS_DAC1_HEMPTY BIT(1) /* DAC1 FIFO half empty */
#define FS_DAC1_NOT_FULL BIT(2) /* DAC1 FIFO not full */
#define FS_DAC2_NOT_EMPTY BIT(4) /* DAC2 FIFO not empty */
#define FS_DAC2_HEMPTY BIT(5) /* DAC2 FIFO half empty */
#define FS_DAC2_NOT_FULL BIT(6) /* DAC2 FIFO not full */
#define FS_ADC_NOT_EMPTY BIT(8) /* ADC FIFO not empty */
#define FS_ADC_HEMPTY BIT(9) /* ADC FIFO half empty */
#define FS_ADC_NOT_FULL BIT(10) /* ADC FIFO not full */
#define FS_DIN_NOT_EMPTY BIT(12) /* DIN FIFO not empty */
#define FS_DIN_HEMPTY BIT(13) /* DIN FIFO half empty */
#define FS_DIN_NOT_FULL BIT(14) /* DIN FIFO not full */
#define LAS0_UPDATE_DAC(x) (0x0014 + ((x) * 0x4)) /* D/Ax Update (w) */
#define LAS0_DAC 0x0024 /* Software Simultaneous Update (w) */
#define LAS0_PACER 0x0028 /* Software Pacer Start/Stop */
#define LAS0_TIMER 0x002c /* Timer Status/HDIN Software Trig. */
#define LAS0_IT 0x0030 /* Interrupt Status/Enable */
#define IRQM_ADC_FIFO_WRITE BIT(0) /* ADC FIFO Write */
#define IRQM_CGT_RESET BIT(1) /* Reset CGT */
#define IRQM_CGT_PAUSE BIT(3) /* Pause CGT */
#define IRQM_ADC_ABOUT_CNT BIT(4) /* About Counter out */
#define IRQM_ADC_DELAY_CNT BIT(5) /* Delay Counter out */
#define IRQM_ADC_SAMPLE_CNT BIT(6) /* ADC Sample Counter */
#define IRQM_DAC1_UCNT BIT(7) /* DAC1 Update Counter */
#define IRQM_DAC2_UCNT BIT(8) /* DAC2 Update Counter */
#define IRQM_UTC1 BIT(9) /* User TC1 out */
#define IRQM_UTC1_INV BIT(10) /* User TC1 out, inverted */
#define IRQM_UTC2 BIT(11) /* User TC2 out */
#define IRQM_DIGITAL_IT BIT(12) /* Digital Interrupt */
#define IRQM_EXTERNAL_IT BIT(13) /* External Interrupt */
#define IRQM_ETRIG_RISING BIT(14) /* Ext Trigger rising-edge */
#define IRQM_ETRIG_FALLING BIT(15) /* Ext Trigger falling-edge */
#define LAS0_CLEAR 0x0034 /* Clear/Set Interrupt Clear Mask */
#define LAS0_OVERRUN 0x0038 /* Pending interrupts/Clear Overrun */
#define LAS0_PCLK 0x0040 /* Pacer Clock (24bit) */
#define LAS0_BCLK 0x0044 /* Burst Clock (10bit) */
#define LAS0_ADC_SCNT 0x0048 /* A/D Sample counter (10bit) */
#define LAS0_DAC1_UCNT 0x004c /* D/A1 Update counter (10 bit) */
#define LAS0_DAC2_UCNT 0x0050 /* D/A2 Update counter (10 bit) */
#define LAS0_DCNT 0x0054 /* Delay counter (16 bit) */
#define LAS0_ACNT 0x0058 /* About counter (16 bit) */
#define LAS0_DAC_CLK 0x005c /* DAC clock (16bit) */
#define LAS0_8254_TIMER_BASE 0x0060 /* 8254 timer/counter base */
#define LAS0_DIO0 0x0070 /* Digital I/O Port 0 */
#define LAS0_DIO1 0x0074 /* Digital I/O Port 1 */
#define LAS0_DIO0_CTRL 0x0078 /* Digital I/O Control */
#define LAS0_DIO_STATUS 0x007c /* Digital I/O Status */
#define LAS0_BOARD_RESET 0x0100 /* Board reset */
#define LAS0_DMA0_SRC 0x0104 /* DMA 0 Sources select */
#define LAS0_DMA1_SRC 0x0108 /* DMA 1 Sources select */
#define LAS0_ADC_CONVERSION 0x010c /* A/D Conversion Signal select */
#define LAS0_BURST_START 0x0110 /* Burst Clock Start Trigger select */
#define LAS0_PACER_START 0x0114 /* Pacer Clock Start Trigger select */
#define LAS0_PACER_STOP 0x0118 /* Pacer Clock Stop Trigger select */
#define LAS0_ACNT_STOP_ENABLE 0x011c /* About Counter Stop Enable */
#define LAS0_PACER_REPEAT 0x0120 /* Pacer Start Trigger Mode select */
#define LAS0_DIN_START 0x0124 /* HiSpd DI Sampling Signal select */
#define LAS0_DIN_FIFO_CLEAR 0x0128 /* Digital Input FIFO Clear */
#define LAS0_ADC_FIFO_CLEAR 0x012c /* A/D FIFO Clear */
#define LAS0_CGT_WRITE 0x0130 /* Channel Gain Table Write */
#define LAS0_CGL_WRITE 0x0134 /* Channel Gain Latch Write */
#define LAS0_CG_DATA 0x0138 /* Digital Table Write */
#define LAS0_CGT_ENABLE 0x013c /* Channel Gain Table Enable */
#define LAS0_CG_ENABLE 0x0140 /* Digital Table Enable */
#define LAS0_CGT_PAUSE 0x0144 /* Table Pause Enable */
#define LAS0_CGT_RESET 0x0148 /* Reset Channel Gain Table */
#define LAS0_CGT_CLEAR 0x014c /* Clear Channel Gain Table */
#define LAS0_DAC_CTRL(x) (0x0150 + ((x) * 0x14)) /* D/Ax type/range */
#define LAS0_DAC_SRC(x) (0x0154 + ((x) * 0x14)) /* D/Ax update source */
#define LAS0_DAC_CYCLE(x) (0x0158 + ((x) * 0x14)) /* D/Ax cycle mode */
#define LAS0_DAC_RESET(x) (0x015c + ((x) * 0x14)) /* D/Ax FIFO reset */
#define LAS0_DAC_FIFO_CLEAR(x) (0x0160 + ((x) * 0x14)) /* D/Ax FIFO clear */
#define LAS0_ADC_SCNT_SRC 0x0178 /* A/D Sample Counter Source select */
#define LAS0_PACER_SELECT 0x0180 /* Pacer Clock select */
#define LAS0_SBUS0_SRC 0x0184 /* SyncBus 0 Source select */
#define LAS0_SBUS0_ENABLE 0x0188 /* SyncBus 0 enable */
#define LAS0_SBUS1_SRC 0x018c /* SyncBus 1 Source select */
#define LAS0_SBUS1_ENABLE 0x0190 /* SyncBus 1 enable */
#define LAS0_SBUS2_SRC 0x0198 /* SyncBus 2 Source select */
#define LAS0_SBUS2_ENABLE 0x019c /* SyncBus 2 enable */
#define LAS0_ETRG_POLARITY 0x01a4 /* Ext. Trigger polarity select */
#define LAS0_EINT_POLARITY 0x01a8 /* Ext. Interrupt polarity select */
#define LAS0_8254_CLK_SEL(x) (0x01ac + ((x) * 0x8)) /* 8254 clock select */
#define LAS0_8254_GATE_SEL(x) (0x01b0 + ((x) * 0x8)) /* 8254 gate select */
#define LAS0_UOUT0_SELECT 0x01c4 /* User Output 0 source select */
#define LAS0_UOUT1_SELECT 0x01c8 /* User Output 1 source select */
#define LAS0_DMA0_RESET 0x01cc /* DMA0 Request state machine reset */
#define LAS0_DMA1_RESET 0x01d0 /* DMA1 Request state machine reset */
/*
* Local Address Space 1 Offsets
*/
#define LAS1_ADC_FIFO 0x0000 /* A/D FIFO (16bit) */
#define LAS1_HDIO_FIFO 0x0004 /* HiSpd DI FIFO (16bit) */
#define LAS1_DAC_FIFO(x) (0x0008 + ((x) * 0x4)) /* D/Ax FIFO (16bit) */
/*
* Driver specific stuff (tunable)
*/
/*
* We really only need 2 buffers. More than that means being much
* smarter about knowing which ones are full.
*/
#define DMA_CHAIN_COUNT 2 /* max DMA segments/buffers in a ring (min 2) */
/* Target period for periodic transfers. This sets the user read latency. */
/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
/* If this is too low, efficiency is poor */
#define TRANS_TARGET_PERIOD 10000000 /* 10 ms (in nanoseconds) */
/* Set a practical limit on how long a list to support (affects memory use) */
/* The board support a channel list up to the FIFO length (1K or 8K) */
#define RTD_MAX_CHANLIST 128 /* max channel list that we allow */
/*
* Board specific stuff
*/
#define RTD_CLOCK_RATE 8000000 /* 8Mhz onboard clock */
#define RTD_CLOCK_BASE 125 /* clock period in ns */
/* Note: these speed are slower than the spec, but fit the counter resolution*/
#define RTD_MAX_SPEED 1625 /* when sampling, in nanoseconds */
/* max speed if we don't have to wait for settling */
#define RTD_MAX_SPEED_1 875 /* if single channel, in nanoseconds */
#define RTD_MIN_SPEED 2097151875 /* (24bit counter) in nanoseconds */
/* min speed when only 1 channel (no burst counter) */
#define RTD_MIN_SPEED_1 5000000 /* 200Hz, in nanoseconds */
/* Setup continuous ring of 1/2 FIFO transfers. See RTD manual p91 */
#define DMA_MODE_BITS (\
PLX_LOCAL_BUS_16_WIDE_BITS \
| PLX_DMA_EN_READYIN_BIT \
| PLX_DMA_LOCAL_BURST_EN_BIT \
| PLX_EN_CHAIN_BIT \
| PLX_DMA_INTR_PCI_BIT \
| PLX_LOCAL_ADDR_CONST_BIT \
| PLX_DEMAND_MODE_BIT)
#define DMA_TRANSFER_BITS (\
/* descriptors in PCI memory*/ PLX_DESC_IN_PCI_BIT \
/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
/* from board to PCI */ | PLX_XFER_LOCAL_TO_PCI)
/*
* Comedi specific stuff
*/
/*
* The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
*/
static const struct comedi_lrange rtd_ai_7520_range = {
18, {
/* +-5V input range gain steps */
BIP_RANGE(5.0),
BIP_RANGE(5.0 / 2),
BIP_RANGE(5.0 / 4),
BIP_RANGE(5.0 / 8),
BIP_RANGE(5.0 / 16),
BIP_RANGE(5.0 / 32),
/* +-10V input range gain steps */
BIP_RANGE(10.0),
BIP_RANGE(10.0 / 2),
BIP_RANGE(10.0 / 4),
BIP_RANGE(10.0 / 8),
BIP_RANGE(10.0 / 16),
BIP_RANGE(10.0 / 32),
/* +10V input range gain steps */
UNI_RANGE(10.0),
UNI_RANGE(10.0 / 2),
UNI_RANGE(10.0 / 4),
UNI_RANGE(10.0 / 8),
UNI_RANGE(10.0 / 16),
UNI_RANGE(10.0 / 32),
}
};
/* PCI4520 has two more gains (6 more entries) */
static const struct comedi_lrange rtd_ai_4520_range = {
24, {
/* +-5V input range gain steps */
BIP_RANGE(5.0),
BIP_RANGE(5.0 / 2),
BIP_RANGE(5.0 / 4),
BIP_RANGE(5.0 / 8),
BIP_RANGE(5.0 / 16),
BIP_RANGE(5.0 / 32),
BIP_RANGE(5.0 / 64),
BIP_RANGE(5.0 / 128),
/* +-10V input range gain steps */
BIP_RANGE(10.0),
BIP_RANGE(10.0 / 2),
BIP_RANGE(10.0 / 4),
BIP_RANGE(10.0 / 8),
BIP_RANGE(10.0 / 16),
BIP_RANGE(10.0 / 32),
BIP_RANGE(10.0 / 64),
BIP_RANGE(10.0 / 128),
/* +10V input range gain steps */
UNI_RANGE(10.0),
UNI_RANGE(10.0 / 2),
UNI_RANGE(10.0 / 4),
UNI_RANGE(10.0 / 8),
UNI_RANGE(10.0 / 16),
UNI_RANGE(10.0 / 32),
UNI_RANGE(10.0 / 64),
UNI_RANGE(10.0 / 128),
}
};
/* Table order matches range values */
static const struct comedi_lrange rtd_ao_range = {
4, {
UNI_RANGE(5),
UNI_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(10),
}
};
enum rtd_boardid {
BOARD_DM7520,
BOARD_PCI4520,
};
struct rtd_boardinfo {
const char *name;
int range_bip10; /* start of +-10V range */
int range_uni10; /* start of +10V range */
const struct comedi_lrange *ai_range;
};
static const struct rtd_boardinfo rtd520_boards[] = {
[BOARD_DM7520] = {
.name = "DM7520",
.range_bip10 = 6,
.range_uni10 = 12,
.ai_range = &rtd_ai_7520_range,
},
[BOARD_PCI4520] = {
.name = "PCI4520",
.range_bip10 = 8,
.range_uni10 = 16,
.ai_range = &rtd_ai_4520_range,
},
};
struct rtd_private {
/* memory mapped board structures */
void __iomem *las1;
void __iomem *lcfg;
long ai_count; /* total transfer size (samples) */
int xfer_count; /* # to transfer data. 0->1/2FIFO */
int flags; /* flag event modes */
unsigned int fifosz;
/* 8254 Timer/Counter gate and clock sources */
unsigned char timer_gate_src[3];
unsigned char timer_clk_src[3];
};
/* bit defines for "flags" */
#define SEND_EOS 0x01 /* send End Of Scan events */
#define DMA0_ACTIVE 0x02 /* DMA0 is active */
#define DMA1_ACTIVE 0x04 /* DMA1 is active */
/*
* Given a desired period and the clock period (both in ns), return the
* proper counter value (divider-1). Sets the original period to be the
* true value.
* Note: you have to check if the value is larger than the counter range!
*/
static int rtd_ns_to_timer_base(unsigned int *nanosec,
unsigned int flags, int base)
{
int divider;
switch (flags & CMDF_ROUND_MASK) {
case CMDF_ROUND_NEAREST:
default:
divider = DIV_ROUND_CLOSEST(*nanosec, base);
break;
case CMDF_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case CMDF_ROUND_UP:
divider = DIV_ROUND_UP(*nanosec, base);
break;
}
if (divider < 2)
divider = 2; /* min is divide by 2 */
/*
* Note: we don't check for max, because different timers
* have different ranges
*/
*nanosec = base * divider;
return divider - 1; /* countdown is divisor+1 */
}
/*
* Given a desired period (in ns), return the proper counter value
* (divider-1) for the internal clock. Sets the original period to
* be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, unsigned int flags)
{
return rtd_ns_to_timer_base(ns, flags, RTD_CLOCK_BASE);
}
/* Convert a single comedi channel-gain entry to a RTD520 table entry */
static unsigned short rtd_convert_chan_gain(struct comedi_device *dev,
unsigned int chanspec, int index)
{
const struct rtd_boardinfo *board = dev->board_ptr;
unsigned int chan = CR_CHAN(chanspec);
unsigned int range = CR_RANGE(chanspec);
unsigned int aref = CR_AREF(chanspec);
unsigned short r = 0;
r |= chan & 0xf;
/* Note: we also setup the channel list bipolar flag array */
if (range < board->range_bip10) {
/* +-5 range */
r |= 0x000;
r |= (range & 0x7) << 4;
} else if (range < board->range_uni10) {
/* +-10 range */
r |= 0x100;
r |= ((range - board->range_bip10) & 0x7) << 4;
} else {
/* +10 range */
r |= 0x200;
r |= ((range - board->range_uni10) & 0x7) << 4;
}
switch (aref) {
case AREF_GROUND: /* on-board ground */
break;
case AREF_COMMON:
r |= 0x80; /* ref external analog common */
break;
case AREF_DIFF:
r |= 0x400; /* differential inputs */
break;
case AREF_OTHER: /* ??? */
break;
}
return r;
}
/* Setup the channel-gain table from a comedi list */
static void rtd_load_channelgain_list(struct comedi_device *dev,
unsigned int n_chan, unsigned int *list)
{
if (n_chan > 1) { /* setup channel gain table */
int ii;
writel(0, dev->mmio + LAS0_CGT_CLEAR);
writel(1, dev->mmio + LAS0_CGT_ENABLE);
for (ii = 0; ii < n_chan; ii++) {
writel(rtd_convert_chan_gain(dev, list[ii], ii),
dev->mmio + LAS0_CGT_WRITE);
}
} else { /* just use the channel gain latch */
writel(0, dev->mmio + LAS0_CGT_ENABLE);
writel(rtd_convert_chan_gain(dev, list[0], 0),
dev->mmio + LAS0_CGL_WRITE);
}
}
/*
* Determine fifo size by doing adc conversions until the fifo half
* empty status flag clears.
*/
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
unsigned int i;
static const unsigned int limit = 0x2000;
unsigned int fifo_size = 0;
writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
rtd_load_channelgain_list(dev, 1, &chanspec);
/* ADC conversion trigger source: SOFTWARE */
writel(0, dev->mmio + LAS0_ADC_CONVERSION);
/* convert samples */
for (i = 0; i < limit; ++i) {
unsigned int fifo_status;
/* trigger conversion */
writew(0, dev->mmio + LAS0_ADC);
usleep_range(1, 1000);
fifo_status = readl(dev->mmio + LAS0_ADC);
if ((fifo_status & FS_ADC_HEMPTY) == 0) {
fifo_size = 2 * i;
break;
}
}
if (i == limit) {
dev_info(dev->class_dev, "failed to probe fifo size.\n");
return -EIO;
}
writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
if (fifo_size != 0x400 && fifo_size != 0x2000) {
dev_info(dev->class_dev,
"unexpected fifo size of %i, expected 1024 or 8192.\n",
fifo_size);
return -EIO;
}
return fifo_size;
}
static int rtd_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = readl(dev->mmio + LAS0_ADC);
if (status & FS_ADC_NOT_EMPTY)
return 0;
return -EBUSY;
}
static int rtd_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
struct rtd_private *devpriv = dev->private;
unsigned int range = CR_RANGE(insn->chanspec);
int ret;
int n;
/* clear any old fifo data */
writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
/* write channel to multiplexer and clear channel gain table */
rtd_load_channelgain_list(dev, 1, &insn->chanspec);
/* ADC conversion trigger source: SOFTWARE */
writel(0, dev->mmio + LAS0_ADC_CONVERSION);
/* convert n samples */
for (n = 0; n < insn->n; n++) {
unsigned short d;
/* trigger conversion */
writew(0, dev->mmio + LAS0_ADC);
ret = comedi_timeout(dev, s, insn, rtd_ai_eoc, 0);
if (ret)
return ret;
/* read data */
d = readw(devpriv->las1 + LAS1_ADC_FIFO);
d >>= 3; /* low 3 bits are marker lines */
/* convert bipolar data to comedi unsigned data */
if (comedi_range_is_bipolar(s, range))
d = comedi_offset_munge(s, d);
data[n] = d & s->maxdata;
}
/* return the number of samples read/written */
return n;
}
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
int count)
{
struct rtd_private *devpriv = dev->private;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
int ii;
for (ii = 0; ii < count; ii++) {
unsigned int range = CR_RANGE(cmd->chanlist[async->cur_chan]);
unsigned short d;
if (devpriv->ai_count == 0) { /* done */
d = readw(devpriv->las1 + LAS1_ADC_FIFO);
continue;
}
d = readw(devpriv->las1 + LAS1_ADC_FIFO);
d >>= 3; /* low 3 bits are marker lines */
/* convert bipolar data to comedi unsigned data */
if (comedi_range_is_bipolar(s, range))
d = comedi_offset_munge(s, d);
d &= s->maxdata;
if (!comedi_buf_write_samples(s, &d, 1))
return -1;
if (devpriv->ai_count > 0) /* < 0, means read forever */
devpriv->ai_count--;
}
return 0;
}
static irqreturn_t rtd_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
struct comedi_subdevice *s = dev->read_subdev;
struct rtd_private *devpriv = dev->private;
u32 overrun;
u16 status;
u16 fifo_status;
if (!dev->attached)
return IRQ_NONE;
fifo_status = readl(dev->mmio + LAS0_ADC);
/* check for FIFO full, this automatically halts the ADC! */
if (!(fifo_status & FS_ADC_NOT_FULL)) /* 0 -> full */
goto xfer_abort;
status = readw(dev->mmio + LAS0_IT);
/* if interrupt was not caused by our board, or handled above */
if (status == 0)
return IRQ_HANDLED;
if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
/*
* since the priority interrupt controller may have queued
* a sample counter interrupt, even though we have already
* finished, we must handle the possibility that there is
* no data here
*/
if (!(fifo_status & FS_ADC_HEMPTY)) {
/* FIFO half full */
if (ai_read_n(dev, s, devpriv->fifosz / 2) < 0)
goto xfer_abort;
if (devpriv->ai_count == 0)
goto xfer_done;
} else if (devpriv->xfer_count > 0) {
if (fifo_status & FS_ADC_NOT_EMPTY) {
/* FIFO not empty */
if (ai_read_n(dev, s, devpriv->xfer_count) < 0)
goto xfer_abort;
if (devpriv->ai_count == 0)
goto xfer_done;
}
}
}
overrun = readl(dev->mmio + LAS0_OVERRUN) & 0xffff;
if (overrun)
goto xfer_abort;
/* clear the interrupt */
writew(status, dev->mmio + LAS0_CLEAR);
readw(dev->mmio + LAS0_CLEAR);
comedi_handle_events(dev, s);
return IRQ_HANDLED;
xfer_abort:
s->async->events |= COMEDI_CB_ERROR;
xfer_done:
s->async->events |= COMEDI_CB_EOA;
/* clear the interrupt */
status = readw(dev->mmio + LAS0_IT);
writew(status, dev->mmio + LAS0_CLEAR);
readw(dev->mmio + LAS0_CLEAR);
fifo_status = readl(dev->mmio + LAS0_ADC);
overrun = readl(dev->mmio + LAS0_OVERRUN) & 0xffff;
comedi_handle_events(dev, s);
return IRQ_HANDLED;
}
static int rtd_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
int err = 0;
unsigned int arg;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_TIMER | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->convert_src,
TRIG_TIMER | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->convert_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Note: these are time periods, not actual rates */
if (cmd->chanlist_len == 1) { /* no scanning */
if (comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
RTD_MAX_SPEED_1)) {
rtd_ns_to_timer(&cmd->scan_begin_arg,
CMDF_ROUND_UP);
err |= -EINVAL;
}
if (comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
RTD_MIN_SPEED_1)) {
rtd_ns_to_timer(&cmd->scan_begin_arg,
CMDF_ROUND_DOWN);
err |= -EINVAL;
}
} else {
if (comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
RTD_MAX_SPEED)) {
rtd_ns_to_timer(&cmd->scan_begin_arg,
CMDF_ROUND_UP);
err |= -EINVAL;
}
if (comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
RTD_MIN_SPEED)) {
rtd_ns_to_timer(&cmd->scan_begin_arg,
CMDF_ROUND_DOWN);
err |= -EINVAL;
}
}
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
}
if (cmd->convert_src == TRIG_TIMER) {
if (cmd->chanlist_len == 1) { /* no scanning */
if (comedi_check_trigger_arg_min(&cmd->convert_arg,
RTD_MAX_SPEED_1)) {
rtd_ns_to_timer(&cmd->convert_arg,
CMDF_ROUND_UP);
err |= -EINVAL;
}
if (comedi_check_trigger_arg_max(&cmd->convert_arg,
RTD_MIN_SPEED_1)) {
rtd_ns_to_timer(&cmd->convert_arg,
CMDF_ROUND_DOWN);
err |= -EINVAL;
}
} else {
if (comedi_check_trigger_arg_min(&cmd->convert_arg,
RTD_MAX_SPEED)) {
rtd_ns_to_timer(&cmd->convert_arg,
CMDF_ROUND_UP);
err |= -EINVAL;
}
if (comedi_check_trigger_arg_max(&cmd->convert_arg,
RTD_MIN_SPEED)) {
rtd_ns_to_timer(&cmd->convert_arg,
CMDF_ROUND_DOWN);
err |= -EINVAL;
}
}
} else {
/* external trigger */
/* see above */
err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 9);
}
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (cmd->stop_src == TRIG_COUNT)
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
else /* TRIG_NONE */
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
arg = cmd->scan_begin_arg;
rtd_ns_to_timer(&arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
}
if (cmd->convert_src == TRIG_TIMER) {
arg = cmd->convert_arg;
rtd_ns_to_timer(&arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
if (cmd->scan_begin_src == TRIG_TIMER) {
arg = cmd->convert_arg * cmd->scan_end_arg;
err |= comedi_check_trigger_arg_min(&cmd->
scan_begin_arg,
arg);
}
}
if (err)
return 4;
return 0;
}
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct rtd_private *devpriv = dev->private;
struct comedi_cmd *cmd = &s->async->cmd;
int timer;
/* stop anything currently running */
/* pacer stop source: SOFTWARE */
writel(0, dev->mmio + LAS0_PACER_STOP);
writel(0, dev->mmio + LAS0_PACER); /* stop pacer */
writel(0, dev->mmio + LAS0_ADC_CONVERSION);
writew(0, dev->mmio + LAS0_IT);
writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
writel(0, dev->mmio + LAS0_OVERRUN);
/* start configuration */
/* load channel list and reset CGT */
rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
/* setup the common case and override if needed */
if (cmd->chanlist_len > 1) {
/* pacer start source: SOFTWARE */
writel(0, dev->mmio + LAS0_PACER_START);
/* burst trigger source: PACER */
writel(1, dev->mmio + LAS0_BURST_START);
/* ADC conversion trigger source: BURST */
writel(2, dev->mmio + LAS0_ADC_CONVERSION);
} else { /* single channel */
/* pacer start source: SOFTWARE */
writel(0, dev->mmio + LAS0_PACER_START);
/* ADC conversion trigger source: PACER */
writel(1, dev->mmio + LAS0_ADC_CONVERSION);
}
writel((devpriv->fifosz / 2 - 1) & 0xffff, dev->mmio + LAS0_ACNT);
if (cmd->scan_begin_src == TRIG_TIMER) {
/* scan_begin_arg is in nanoseconds */
/* find out how many samples to wait before transferring */
if (cmd->flags & CMDF_WAKE_EOS) {
/*
* this may generate un-sustainable interrupt rates
* the application is responsible for doing the
* right thing
*/
devpriv->xfer_count = cmd->chanlist_len;
devpriv->flags |= SEND_EOS;
} else {
/* arrange to transfer data periodically */
devpriv->xfer_count =
(TRANS_TARGET_PERIOD * cmd->chanlist_len) /
cmd->scan_begin_arg;
if (devpriv->xfer_count < cmd->chanlist_len) {
/* transfer after each scan (and avoid 0) */
devpriv->xfer_count = cmd->chanlist_len;
} else { /* make a multiple of scan length */
devpriv->xfer_count =
DIV_ROUND_UP(devpriv->xfer_count,
cmd->chanlist_len);
devpriv->xfer_count *= cmd->chanlist_len;
}
devpriv->flags |= SEND_EOS;
}
if (devpriv->xfer_count >= (devpriv->fifosz / 2)) {
/* out of counter range, use 1/2 fifo instead */
devpriv->xfer_count = 0;
devpriv->flags &= ~SEND_EOS;
} else {
/* interrupt for each transfer */
writel((devpriv->xfer_count - 1) & 0xffff,
dev->mmio + LAS0_ACNT);
}
} else { /* unknown timing, just use 1/2 FIFO */
devpriv->xfer_count = 0;
devpriv->flags &= ~SEND_EOS;
}
/* pacer clock source: INTERNAL 8MHz */
writel(1, dev->mmio + LAS0_PACER_SELECT);
/* just interrupt, don't stop */
writel(1, dev->mmio + LAS0_ACNT_STOP_ENABLE);
/* BUG??? these look like enumerated values, but they are bit fields */
/* First, setup when to stop */
switch (cmd->stop_src) {
case TRIG_COUNT: /* stop after N scans */
devpriv->ai_count = cmd->stop_arg * cmd->chanlist_len;
if ((devpriv->xfer_count > 0) &&
(devpriv->xfer_count > devpriv->ai_count)) {
devpriv->xfer_count = devpriv->ai_count;
}
break;
case TRIG_NONE: /* stop when cancel is called */
devpriv->ai_count = -1; /* read forever */
break;
}
/* Scan timing */
switch (cmd->scan_begin_src) {
case TRIG_TIMER: /* periodic scanning */
timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
CMDF_ROUND_NEAREST);
/* set PACER clock */
writel(timer & 0xffffff, dev->mmio + LAS0_PCLK);
break;
case TRIG_EXT:
/* pacer start source: EXTERNAL */
writel(1, dev->mmio + LAS0_PACER_START);
break;
}
/* Sample timing within a scan */
switch (cmd->convert_src) {
case TRIG_TIMER: /* periodic */
if (cmd->chanlist_len > 1) {
/* only needed for multi-channel */
timer = rtd_ns_to_timer(&cmd->convert_arg,
CMDF_ROUND_NEAREST);
/* setup BURST clock */
writel(timer & 0x3ff, dev->mmio + LAS0_BCLK);
}
break;
case TRIG_EXT: /* external */
/* burst trigger source: EXTERNAL */
writel(2, dev->mmio + LAS0_BURST_START);
break;
}
/* end configuration */
/*
* This doesn't seem to work. There is no way to clear an interrupt
* that the priority controller has queued!
*/
writew(~0, dev->mmio + LAS0_CLEAR);
readw(dev->mmio + LAS0_CLEAR);
/* TODO: allow multiple interrupt sources */
/* transfer every N samples */
writew(IRQM_ADC_ABOUT_CNT, dev->mmio + LAS0_IT);
/* BUG: start_src is ASSUMED to be TRIG_NOW */
/* BUG? it seems like things are running before the "start" */
readl(dev->mmio + LAS0_PACER); /* start pacer */
return 0;
}
static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct rtd_private *devpriv = dev->private;
/* pacer stop source: SOFTWARE */
writel(0, dev->mmio + LAS0_PACER_STOP);
writel(0, dev->mmio + LAS0_PACER); /* stop pacer */
writel(0, dev->mmio + LAS0_ADC_CONVERSION);
writew(0, dev->mmio + LAS0_IT);
devpriv->ai_count = 0; /* stop and don't transfer any more */
writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
return 0;
}
static int rtd_ao_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int bit = (chan == 0) ? FS_DAC1_NOT_EMPTY : FS_DAC2_NOT_EMPTY;
unsigned int status;
status = readl(dev->mmio + LAS0_ADC);
if (status & bit)
return 0;
return -EBUSY;
}
static int rtd_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct rtd_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
int ret;
int i;
/* Configure the output range (table index matches the range values) */
writew(range & 7, dev->mmio + LAS0_DAC_CTRL(chan));
for (i = 0; i < insn->n; ++i) {
unsigned int val = data[i];
/* bipolar uses 2's complement values with an extended sign */
if (comedi_range_is_bipolar(s, range)) {
val = comedi_offset_munge(s, val);
val |= (val & ((s->maxdata + 1) >> 1)) << 1;
}
/* shift the 12-bit data (+ sign) to match the register */
val <<= 3;
writew(val, devpriv->las1 + LAS1_DAC_FIFO(chan));
writew(0, dev->mmio + LAS0_UPDATE_DAC(chan));
ret = comedi_timeout(dev, s, insn, rtd_ao_eoc, 0);
if (ret)
return ret;
s->readback[chan] = data[i];
}
return insn->n;
}
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
if (comedi_dio_update_state(s, data))
writew(s->state & 0xff, dev->mmio + LAS0_DIO0);
data[1] = readw(dev->mmio + LAS0_DIO0) & 0xff;
return insn->n;
}
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
int ret;
ret = comedi_dio_insn_config(dev, s, insn, data, 0);
if (ret)
return ret;
/* TODO support digital match interrupts and strobes */
/* set direction */
writew(0x01, dev->mmio + LAS0_DIO_STATUS);
writew(s->io_bits & 0xff, dev->mmio + LAS0_DIO0_CTRL);
/* clear interrupts */
writew(0x00, dev->mmio + LAS0_DIO_STATUS);
/* port1 can only be all input or all output */
/* there are also 2 user input lines and 2 user output lines */
return insn->n;
}
static int rtd_counter_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct rtd_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int max_src;
unsigned int src;
switch (data[0]) {
case INSN_CONFIG_SET_GATE_SRC:
/*
* 8254 Timer/Counter gate sources:
*
* 0 = Not gated, free running (reset state)
* 1 = Gated, off
* 2 = Ext. TC Gate 1
* 3 = Ext. TC Gate 2
* 4 = Previous TC out (chan 1 and 2 only)
*/
src = data[2];
max_src = (chan == 0) ? 3 : 4;
if (src > max_src)
return -EINVAL;
devpriv->timer_gate_src[chan] = src;
writeb(src, dev->mmio + LAS0_8254_GATE_SEL(chan));
break;
case INSN_CONFIG_GET_GATE_SRC:
data[2] = devpriv->timer_gate_src[chan];
break;
case INSN_CONFIG_SET_CLOCK_SRC:
/*
* 8254 Timer/Counter clock sources:
*
* 0 = 8 MHz (reset state)
* 1 = Ext. TC Clock 1
* 2 = Ext. TX Clock 2
* 3 = Ext. Pacer Clock
* 4 = Previous TC out (chan 1 and 2 only)
* 5 = High-Speed Digital Input Sampling signal (chan 1 only)
*/
src = data[1];
switch (chan) {
case 0:
max_src = 3;
break;
case 1:
max_src = 5;
break;
case 2:
max_src = 4;
break;
default:
return -EINVAL;
}
if (src > max_src)
return -EINVAL;
devpriv->timer_clk_src[chan] = src;
writeb(src, dev->mmio + LAS0_8254_CLK_SEL(chan));
break;
case INSN_CONFIG_GET_CLOCK_SRC:
src = devpriv->timer_clk_src[chan];
data[1] = devpriv->timer_clk_src[chan];
data[2] = (src == 0) ? RTD_CLOCK_BASE : 0;
break;
default:
return -EINVAL;
}
return insn->n;
}
static void rtd_reset(struct comedi_device *dev)
{
struct rtd_private *devpriv = dev->private;
writel(0, dev->mmio + LAS0_BOARD_RESET);
usleep_range(100, 1000); /* needed? */
writel(0, devpriv->lcfg + PLX_REG_INTCSR);
writew(0, dev->mmio + LAS0_IT);
writew(~0, dev->mmio + LAS0_CLEAR);
readw(dev->mmio + LAS0_CLEAR);
}
/*
* initialize board, per RTD spec
* also, initialize shadow registers
*/
static void rtd_init_board(struct comedi_device *dev)
{
rtd_reset(dev);
writel(0, dev->mmio + LAS0_OVERRUN);
writel(0, dev->mmio + LAS0_CGT_CLEAR);
writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
writel(0, dev->mmio + LAS0_DAC_RESET(0));
writel(0, dev->mmio + LAS0_DAC_RESET(1));
/* clear digital IO fifo */
writew(0, dev->mmio + LAS0_DIO_STATUS);
/* TODO: set user out source ??? */
}
/* The RTD driver does this */
static void rtd_pci_latency_quirk(struct comedi_device *dev,
struct pci_dev *pcidev)
{
unsigned char pci_latency;
pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency < 32) {
dev_info(dev->class_dev,
"PCI latency changed from %d to %d\n",
pci_latency, 32);
pci_write_config_byte(pcidev, PCI_LATENCY_TIMER, 32);
}
}
static int rtd_auto_attach(struct comedi_device *dev,
unsigned long context)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
const struct rtd_boardinfo *board = NULL;
struct rtd_private *devpriv;
struct comedi_subdevice *s;
int ret;
if (context < ARRAY_SIZE(rtd520_boards))
board = &rtd520_boards[context];
if (!board)
return -ENODEV;
dev->board_ptr = board;
dev->board_name = board->name;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
ret = comedi_pci_enable(dev);
if (ret)
return ret;
dev->mmio = pci_ioremap_bar(pcidev, 2);
devpriv->las1 = pci_ioremap_bar(pcidev, 3);
devpriv->lcfg = pci_ioremap_bar(pcidev, 0);
if (!dev->mmio || !devpriv->las1 || !devpriv->lcfg)
return -ENOMEM;
rtd_pci_latency_quirk(dev, pcidev);
if (pcidev->irq) {
ret = request_irq(pcidev->irq, rtd_interrupt, IRQF_SHARED,
dev->board_name, dev);
if (ret == 0)
dev->irq = pcidev->irq;
}
ret = comedi_alloc_subdevices(dev, 4);
if (ret)
return ret;
s = &dev->subdevices[0];
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF;
s->n_chan = 16;
s->maxdata = 0x0fff;
s->range_table = board->ai_range;
s->len_chanlist = RTD_MAX_CHANLIST;
s->insn_read = rtd_ai_rinsn;
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->do_cmd = rtd_ai_cmd;
s->do_cmdtest = rtd_ai_cmdtest;
s->cancel = rtd_ai_cancel;
}
s = &dev->subdevices[1];
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = 0x0fff;
s->range_table = &rtd_ao_range;
s->insn_write = rtd_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
s = &dev->subdevices[2];
/* digital i/o subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
/* we only support port 0 right now. Ignoring port 1 and user IO */
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = rtd_dio_insn_bits;
s->insn_config = rtd_dio_insn_config;
/* 8254 Timer/Counter subdevice */
s = &dev->subdevices[3];
dev->pacer = comedi_8254_mm_init(dev->mmio + LAS0_8254_TIMER_BASE,
RTD_CLOCK_BASE, I8254_IO8, 2);
if (!dev->pacer)
return -ENOMEM;
comedi_8254_subdevice_init(s, dev->pacer);
dev->pacer->insn_config = rtd_counter_insn_config;
rtd_init_board(dev);
ret = rtd520_probe_fifo_depth(dev);
if (ret < 0)
return ret;
devpriv->fifosz = ret;
if (dev->irq)
writel(PLX_INTCSR_PIEN | PLX_INTCSR_PLIEN,
devpriv->lcfg + PLX_REG_INTCSR);
return 0;
}
static void rtd_detach(struct comedi_device *dev)
{
struct rtd_private *devpriv = dev->private;
if (devpriv) {
/* Shut down any board ops by resetting it */
if (dev->mmio && devpriv->lcfg)
rtd_reset(dev);
if (dev->irq)
free_irq(dev->irq, dev);
if (dev->mmio)
iounmap(dev->mmio);
if (devpriv->las1)
iounmap(devpriv->las1);
if (devpriv->lcfg)
iounmap(devpriv->lcfg);
}
comedi_pci_disable(dev);
}
static struct comedi_driver rtd520_driver = {
.driver_name = "rtd520",
.module = THIS_MODULE,
.auto_attach = rtd_auto_attach,
.detach = rtd_detach,
};
static int rtd520_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
return comedi_pci_auto_config(dev, &rtd520_driver, id->driver_data);
}
static const struct pci_device_id rtd520_pci_table[] = {
{ PCI_VDEVICE(RTD, 0x7520), BOARD_DM7520 },
{ PCI_VDEVICE(RTD, 0x4520), BOARD_PCI4520 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, rtd520_pci_table);
static struct pci_driver rtd520_pci_driver = {
.name = "rtd520",
.id_table = rtd520_pci_table,
.probe = rtd520_pci_probe,
.remove = comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(rtd520_driver, rtd520_pci_driver);
MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");