Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
// SPDX-License-Identifier: GPL-2.0+
/*
 * comedi/drivers/rtd520.c
 * Comedi driver for Real Time Devices (RTD) PCI4520/DM7520
 *
 * COMEDI - Linux Control and Measurement Device Interface
 * Copyright (C) 2001 David A. Schleef <ds@schleef.org>
 */

/*
 * Driver: rtd520
 * Description: Real Time Devices PCI4520/DM7520
 * Devices: [Real Time Devices] DM7520HR-1 (DM7520), DM7520HR-8,
 *   PCI4520 (PCI4520), PCI4520-8
 * Author: Dan Christian
 * Status: Works. Only tested on DM7520-8. Not SMP safe.
 *
 * Configuration options: not applicable, uses PCI auto config
 */

/*
 * Created by Dan Christian, NASA Ames Research Center.
 *
 * The PCI4520 is a PCI card. The DM7520 is a PC/104-plus card.
 * Both have:
 *   8/16 12 bit ADC with FIFO and channel gain table
 *   8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
 *   8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
 *   2 12 bit DACs with FIFOs
 *   2 bits output
 *   2 bits input
 *   bus mastering DMA
 *   timers: ADC sample, pacer, burst, about, delay, DA1, DA2
 *   sample counter
 *   3 user timer/counters (8254)
 *   external interrupt
 *
 * The DM7520 has slightly fewer features (fewer gain steps).
 *
 * These boards can support external multiplexors and multi-board
 * synchronization, but this driver doesn't support that.
 *
 * Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
 * Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
 * Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
 * Call them and ask for the register level manual.
 * PCI chip: http://www.plxtech.com/products/io/pci9080
 *
 * Notes:
 * This board is memory mapped. There is some IO stuff, but it isn't needed.
 *
 * I use a pretty loose naming style within the driver (rtd_blah).
 * All externally visible names should be rtd520_blah.
 * I use camelCase for structures (and inside them).
 * I may also use upper CamelCase for function names (old habit).
 *
 * This board is somewhat related to the RTD PCI4400 board.
 *
 * I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
 * das1800, since they have the best documented code. Driver cb_pcidas64.c
 * uses the same DMA controller.
 *
 * As far as I can tell, the About interrupt doesn't work if Sample is
 * also enabled. It turns out that About really isn't needed, since
 * we always count down samples read.
 */

/*
 * driver status:
 *
 * Analog-In supports instruction and command mode.
 *
 * With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
 * (single channel, 64K read buffer). I get random system lockups when
 * using DMA with ALI-15xx based systems. I haven't been able to test
 * any other chipsets. The lockups happen soon after the start of an
 * acquistion, not in the middle of a long run.
 *
 * Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
 * (with a 256K read buffer).
 *
 * Digital-IO and Analog-Out only support instruction mode.
 */

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>

#include "../comedi_pci.h"

#include "comedi_8254.h"
#include "plx9080.h"

/*
 * Local Address Space 0 Offsets
 */
#define LAS0_USER_IO		0x0008	/* User I/O */
#define LAS0_ADC		0x0010	/* FIFO Status/Software A/D Start */
#define FS_DAC1_NOT_EMPTY	BIT(0)	/* DAC1 FIFO not empty */
#define FS_DAC1_HEMPTY		BIT(1)	/* DAC1 FIFO half empty */
#define FS_DAC1_NOT_FULL	BIT(2)	/* DAC1 FIFO not full */
#define FS_DAC2_NOT_EMPTY	BIT(4)	/* DAC2 FIFO not empty */
#define FS_DAC2_HEMPTY		BIT(5)	/* DAC2 FIFO half empty */
#define FS_DAC2_NOT_FULL	BIT(6)	/* DAC2 FIFO not full */
#define FS_ADC_NOT_EMPTY	BIT(8)	/* ADC FIFO not empty */
#define FS_ADC_HEMPTY		BIT(9)	/* ADC FIFO half empty */
#define FS_ADC_NOT_FULL		BIT(10)	/* ADC FIFO not full */
#define FS_DIN_NOT_EMPTY	BIT(12)	/* DIN FIFO not empty */
#define FS_DIN_HEMPTY		BIT(13)	/* DIN FIFO half empty */
#define FS_DIN_NOT_FULL		BIT(14)	/* DIN FIFO not full */
#define LAS0_UPDATE_DAC(x)	(0x0014 + ((x) * 0x4))	/* D/Ax Update (w) */
#define LAS0_DAC		0x0024	/* Software Simultaneous Update (w) */
#define LAS0_PACER		0x0028	/* Software Pacer Start/Stop */
#define LAS0_TIMER		0x002c	/* Timer Status/HDIN Software Trig. */
#define LAS0_IT			0x0030	/* Interrupt Status/Enable */
#define IRQM_ADC_FIFO_WRITE	BIT(0)	/* ADC FIFO Write */
#define IRQM_CGT_RESET		BIT(1)	/* Reset CGT */
#define IRQM_CGT_PAUSE		BIT(3)	/* Pause CGT */
#define IRQM_ADC_ABOUT_CNT	BIT(4)	/* About Counter out */
#define IRQM_ADC_DELAY_CNT	BIT(5)	/* Delay Counter out */
#define IRQM_ADC_SAMPLE_CNT	BIT(6)	/* ADC Sample Counter */
#define IRQM_DAC1_UCNT		BIT(7)	/* DAC1 Update Counter */
#define IRQM_DAC2_UCNT		BIT(8)	/* DAC2 Update Counter */
#define IRQM_UTC1		BIT(9)	/* User TC1 out */
#define IRQM_UTC1_INV		BIT(10)	/* User TC1 out, inverted */
#define IRQM_UTC2		BIT(11)	/* User TC2 out */
#define IRQM_DIGITAL_IT		BIT(12)	/* Digital Interrupt */
#define IRQM_EXTERNAL_IT	BIT(13)	/* External Interrupt */
#define IRQM_ETRIG_RISING	BIT(14)	/* Ext Trigger rising-edge */
#define IRQM_ETRIG_FALLING	BIT(15)	/* Ext Trigger falling-edge */
#define LAS0_CLEAR		0x0034	/* Clear/Set Interrupt Clear Mask */
#define LAS0_OVERRUN		0x0038	/* Pending interrupts/Clear Overrun */
#define LAS0_PCLK		0x0040	/* Pacer Clock (24bit) */
#define LAS0_BCLK		0x0044	/* Burst Clock (10bit) */
#define LAS0_ADC_SCNT		0x0048	/* A/D Sample counter (10bit) */
#define LAS0_DAC1_UCNT		0x004c	/* D/A1 Update counter (10 bit) */
#define LAS0_DAC2_UCNT		0x0050	/* D/A2 Update counter (10 bit) */
#define LAS0_DCNT		0x0054	/* Delay counter (16 bit) */
#define LAS0_ACNT		0x0058	/* About counter (16 bit) */
#define LAS0_DAC_CLK		0x005c	/* DAC clock (16bit) */
#define LAS0_8254_TIMER_BASE	0x0060	/* 8254 timer/counter base */
#define LAS0_DIO0		0x0070	/* Digital I/O Port 0 */
#define LAS0_DIO1		0x0074	/* Digital I/O Port 1 */
#define LAS0_DIO0_CTRL		0x0078	/* Digital I/O Control */
#define LAS0_DIO_STATUS		0x007c	/* Digital I/O Status */
#define LAS0_BOARD_RESET	0x0100	/* Board reset */
#define LAS0_DMA0_SRC		0x0104	/* DMA 0 Sources select */
#define LAS0_DMA1_SRC		0x0108	/* DMA 1 Sources select */
#define LAS0_ADC_CONVERSION	0x010c	/* A/D Conversion Signal select */
#define LAS0_BURST_START	0x0110	/* Burst Clock Start Trigger select */
#define LAS0_PACER_START	0x0114	/* Pacer Clock Start Trigger select */
#define LAS0_PACER_STOP		0x0118	/* Pacer Clock Stop Trigger select */
#define LAS0_ACNT_STOP_ENABLE	0x011c	/* About Counter Stop Enable */
#define LAS0_PACER_REPEAT	0x0120	/* Pacer Start Trigger Mode select */
#define LAS0_DIN_START		0x0124	/* HiSpd DI Sampling Signal select */
#define LAS0_DIN_FIFO_CLEAR	0x0128	/* Digital Input FIFO Clear */
#define LAS0_ADC_FIFO_CLEAR	0x012c	/* A/D FIFO Clear */
#define LAS0_CGT_WRITE		0x0130	/* Channel Gain Table Write */
#define LAS0_CGL_WRITE		0x0134	/* Channel Gain Latch Write */
#define LAS0_CG_DATA		0x0138	/* Digital Table Write */
#define LAS0_CGT_ENABLE		0x013c	/* Channel Gain Table Enable */
#define LAS0_CG_ENABLE		0x0140	/* Digital Table Enable */
#define LAS0_CGT_PAUSE		0x0144	/* Table Pause Enable */
#define LAS0_CGT_RESET		0x0148	/* Reset Channel Gain Table */
#define LAS0_CGT_CLEAR		0x014c	/* Clear Channel Gain Table */
#define LAS0_DAC_CTRL(x)	(0x0150	+ ((x) * 0x14))	/* D/Ax type/range */
#define LAS0_DAC_SRC(x)		(0x0154 + ((x) * 0x14))	/* D/Ax update source */
#define LAS0_DAC_CYCLE(x)	(0x0158 + ((x) * 0x14))	/* D/Ax cycle mode */
#define LAS0_DAC_RESET(x)	(0x015c + ((x) * 0x14))	/* D/Ax FIFO reset */
#define LAS0_DAC_FIFO_CLEAR(x)	(0x0160 + ((x) * 0x14))	/* D/Ax FIFO clear */
#define LAS0_ADC_SCNT_SRC	0x0178	/* A/D Sample Counter Source select */
#define LAS0_PACER_SELECT	0x0180	/* Pacer Clock select */
#define LAS0_SBUS0_SRC		0x0184	/* SyncBus 0 Source select */
#define LAS0_SBUS0_ENABLE	0x0188	/* SyncBus 0 enable */
#define LAS0_SBUS1_SRC		0x018c	/* SyncBus 1 Source select */
#define LAS0_SBUS1_ENABLE	0x0190	/* SyncBus 1 enable */
#define LAS0_SBUS2_SRC		0x0198	/* SyncBus 2 Source select */
#define LAS0_SBUS2_ENABLE	0x019c	/* SyncBus 2 enable */
#define LAS0_ETRG_POLARITY	0x01a4	/* Ext. Trigger polarity select */
#define LAS0_EINT_POLARITY	0x01a8	/* Ext. Interrupt polarity select */
#define LAS0_8254_CLK_SEL(x)	(0x01ac + ((x) * 0x8))	/* 8254 clock select */
#define LAS0_8254_GATE_SEL(x)	(0x01b0 + ((x) * 0x8))	/* 8254 gate select */
#define LAS0_UOUT0_SELECT	0x01c4	/* User Output 0 source select */
#define LAS0_UOUT1_SELECT	0x01c8	/* User Output 1 source select */
#define LAS0_DMA0_RESET		0x01cc	/* DMA0 Request state machine reset */
#define LAS0_DMA1_RESET		0x01d0	/* DMA1 Request state machine reset */

/*
 * Local Address Space 1 Offsets
 */
#define LAS1_ADC_FIFO		0x0000	/* A/D FIFO (16bit) */
#define LAS1_HDIO_FIFO		0x0004	/* HiSpd DI FIFO (16bit) */
#define LAS1_DAC_FIFO(x)	(0x0008 + ((x) * 0x4))	/* D/Ax FIFO (16bit) */

/*
 * Driver specific stuff (tunable)
 */

/*
 * We really only need 2 buffers.  More than that means being much
 * smarter about knowing which ones are full.
 */
#define DMA_CHAIN_COUNT 2	/* max DMA segments/buffers in a ring (min 2) */

/* Target period for periodic transfers.  This sets the user read latency. */
/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
/* If this is too low, efficiency is poor */
#define TRANS_TARGET_PERIOD 10000000	/* 10 ms (in nanoseconds) */

/* Set a practical limit on how long a list to support (affects memory use) */
/* The board support a channel list up to the FIFO length (1K or 8K) */
#define RTD_MAX_CHANLIST	128	/* max channel list that we allow */

/*
 * Board specific stuff
 */

#define RTD_CLOCK_RATE	8000000	/* 8Mhz onboard clock */
#define RTD_CLOCK_BASE	125	/* clock period in ns */

/* Note: these speed are slower than the spec, but fit the counter resolution*/
#define RTD_MAX_SPEED	1625	/* when sampling, in nanoseconds */
/* max speed if we don't have to wait for settling */
#define RTD_MAX_SPEED_1	875	/* if single channel, in nanoseconds */

#define RTD_MIN_SPEED	2097151875	/* (24bit counter) in nanoseconds */
/* min speed when only 1 channel (no burst counter) */
#define RTD_MIN_SPEED_1	5000000	/* 200Hz, in nanoseconds */

/* Setup continuous ring of 1/2 FIFO transfers.  See RTD manual p91 */
#define DMA_MODE_BITS (\
		       PLX_LOCAL_BUS_16_WIDE_BITS \
		       | PLX_DMA_EN_READYIN_BIT \
		       | PLX_DMA_LOCAL_BURST_EN_BIT \
		       | PLX_EN_CHAIN_BIT \
		       | PLX_DMA_INTR_PCI_BIT \
		       | PLX_LOCAL_ADDR_CONST_BIT \
		       | PLX_DEMAND_MODE_BIT)

#define DMA_TRANSFER_BITS (\
/* descriptors in PCI memory*/  PLX_DESC_IN_PCI_BIT \
/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
/* from board to PCI */		| PLX_XFER_LOCAL_TO_PCI)

/*
 * Comedi specific stuff
 */

/*
 * The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
 */
static const struct comedi_lrange rtd_ai_7520_range = {
	18, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
	}
};

/* PCI4520 has two more gains (6 more entries) */
static const struct comedi_lrange rtd_ai_4520_range = {
	24, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		BIP_RANGE(5.0 / 64),
		BIP_RANGE(5.0 / 128),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		BIP_RANGE(10.0 / 64),
		BIP_RANGE(10.0 / 128),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
		UNI_RANGE(10.0 / 64),
		UNI_RANGE(10.0 / 128),
	}
};

/* Table order matches range values */
static const struct comedi_lrange rtd_ao_range = {
	4, {
		UNI_RANGE(5),
		UNI_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(10),
	}
};

enum rtd_boardid {
	BOARD_DM7520,
	BOARD_PCI4520,
};

struct rtd_boardinfo {
	const char *name;
	int range_bip10;	/* start of +-10V range */
	int range_uni10;	/* start of +10V range */
	const struct comedi_lrange *ai_range;
};

static const struct rtd_boardinfo rtd520_boards[] = {
	[BOARD_DM7520] = {
		.name		= "DM7520",
		.range_bip10	= 6,
		.range_uni10	= 12,
		.ai_range	= &rtd_ai_7520_range,
	},
	[BOARD_PCI4520] = {
		.name		= "PCI4520",
		.range_bip10	= 8,
		.range_uni10	= 16,
		.ai_range	= &rtd_ai_4520_range,
	},
};

struct rtd_private {
	/* memory mapped board structures */
	void __iomem *las1;
	void __iomem *lcfg;

	long ai_count;		/* total transfer size (samples) */
	int xfer_count;		/* # to transfer data. 0->1/2FIFO */
	int flags;		/* flag event modes */
	unsigned int fifosz;

	/* 8254 Timer/Counter gate and clock sources */
	unsigned char timer_gate_src[3];
	unsigned char timer_clk_src[3];
};

/* bit defines for "flags" */
#define SEND_EOS	0x01	/* send End Of Scan events */
#define DMA0_ACTIVE	0x02	/* DMA0 is active */
#define DMA1_ACTIVE	0x04	/* DMA1 is active */

/*
 * Given a desired period and the clock period (both in ns), return the
 * proper counter value (divider-1). Sets the original period to be the
 * true value.
 * Note: you have to check if the value is larger than the counter range!
 */
static int rtd_ns_to_timer_base(unsigned int *nanosec,
				unsigned int flags, int base)
{
	int divider;

	switch (flags & CMDF_ROUND_MASK) {
	case CMDF_ROUND_NEAREST:
	default:
		divider = DIV_ROUND_CLOSEST(*nanosec, base);
		break;
	case CMDF_ROUND_DOWN:
		divider = (*nanosec) / base;
		break;
	case CMDF_ROUND_UP:
		divider = DIV_ROUND_UP(*nanosec, base);
		break;
	}
	if (divider < 2)
		divider = 2;	/* min is divide by 2 */

	/*
	 * Note: we don't check for max, because different timers
	 * have different ranges
	 */

	*nanosec = base * divider;
	return divider - 1;	/* countdown is divisor+1 */
}

/*
 * Given a desired period (in ns), return the proper counter value
 * (divider-1) for the internal clock. Sets the original period to
 * be the true value.
 */
static int rtd_ns_to_timer(unsigned int *ns, unsigned int flags)
{
	return rtd_ns_to_timer_base(ns, flags, RTD_CLOCK_BASE);
}

/* Convert a single comedi channel-gain entry to a RTD520 table entry */
static unsigned short rtd_convert_chan_gain(struct comedi_device *dev,
					    unsigned int chanspec, int index)
{
	const struct rtd_boardinfo *board = dev->board_ptr;
	unsigned int chan = CR_CHAN(chanspec);
	unsigned int range = CR_RANGE(chanspec);
	unsigned int aref = CR_AREF(chanspec);
	unsigned short r = 0;

	r |= chan & 0xf;

	/* Note: we also setup the channel list bipolar flag array */
	if (range < board->range_bip10) {
		/* +-5 range */
		r |= 0x000;
		r |= (range & 0x7) << 4;
	} else if (range < board->range_uni10) {
		/* +-10 range */
		r |= 0x100;
		r |= ((range - board->range_bip10) & 0x7) << 4;
	} else {
		/* +10 range */
		r |= 0x200;
		r |= ((range - board->range_uni10) & 0x7) << 4;
	}

	switch (aref) {
	case AREF_GROUND:	/* on-board ground */
		break;

	case AREF_COMMON:
		r |= 0x80;	/* ref external analog common */
		break;

	case AREF_DIFF:
		r |= 0x400;	/* differential inputs */
		break;

	case AREF_OTHER:	/* ??? */
		break;
	}
	return r;
}

/* Setup the channel-gain table from a comedi list */
static void rtd_load_channelgain_list(struct comedi_device *dev,
				      unsigned int n_chan, unsigned int *list)
{
	if (n_chan > 1) {	/* setup channel gain table */
		int ii;

		writel(0, dev->mmio + LAS0_CGT_CLEAR);
		writel(1, dev->mmio + LAS0_CGT_ENABLE);
		for (ii = 0; ii < n_chan; ii++) {
			writel(rtd_convert_chan_gain(dev, list[ii], ii),
			       dev->mmio + LAS0_CGT_WRITE);
		}
	} else {		/* just use the channel gain latch */
		writel(0, dev->mmio + LAS0_CGT_ENABLE);
		writel(rtd_convert_chan_gain(dev, list[0], 0),
		       dev->mmio + LAS0_CGL_WRITE);
	}
}

/*
 * Determine fifo size by doing adc conversions until the fifo half
 * empty status flag clears.
 */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
	unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
	unsigned int i;
	static const unsigned int limit = 0x2000;
	unsigned int fifo_size = 0;

	writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
	rtd_load_channelgain_list(dev, 1, &chanspec);
	/* ADC conversion trigger source: SOFTWARE */
	writel(0, dev->mmio + LAS0_ADC_CONVERSION);
	/* convert  samples */
	for (i = 0; i < limit; ++i) {
		unsigned int fifo_status;
		/* trigger conversion */
		writew(0, dev->mmio + LAS0_ADC);
		usleep_range(1, 1000);
		fifo_status = readl(dev->mmio + LAS0_ADC);
		if ((fifo_status & FS_ADC_HEMPTY) == 0) {
			fifo_size = 2 * i;
			break;
		}
	}
	if (i == limit) {
		dev_info(dev->class_dev, "failed to probe fifo size.\n");
		return -EIO;
	}
	writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
	if (fifo_size != 0x400 && fifo_size != 0x2000) {
		dev_info(dev->class_dev,
			 "unexpected fifo size of %i, expected 1024 or 8192.\n",
			 fifo_size);
		return -EIO;
	}
	return fifo_size;
}

static int rtd_ai_eoc(struct comedi_device *dev,
		      struct comedi_subdevice *s,
		      struct comedi_insn *insn,
		      unsigned long context)
{
	unsigned int status;

	status = readl(dev->mmio + LAS0_ADC);
	if (status & FS_ADC_NOT_EMPTY)
		return 0;
	return -EBUSY;
}

static int rtd_ai_rinsn(struct comedi_device *dev,
			struct comedi_subdevice *s, struct comedi_insn *insn,
			unsigned int *data)
{
	struct rtd_private *devpriv = dev->private;
	unsigned int range = CR_RANGE(insn->chanspec);
	int ret;
	int n;

	/* clear any old fifo data */
	writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);

	/* write channel to multiplexer and clear channel gain table */
	rtd_load_channelgain_list(dev, 1, &insn->chanspec);

	/* ADC conversion trigger source: SOFTWARE */
	writel(0, dev->mmio + LAS0_ADC_CONVERSION);

	/* convert n samples */
	for (n = 0; n < insn->n; n++) {
		unsigned short d;
		/* trigger conversion */
		writew(0, dev->mmio + LAS0_ADC);

		ret = comedi_timeout(dev, s, insn, rtd_ai_eoc, 0);
		if (ret)
			return ret;

		/* read data */
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
		d >>= 3;	/* low 3 bits are marker lines */

		/* convert bipolar data to comedi unsigned data */
		if (comedi_range_is_bipolar(s, range))
			d = comedi_offset_munge(s, d);

		data[n] = d & s->maxdata;
	}

	/* return the number of samples read/written */
	return n;
}

static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
		     int count)
{
	struct rtd_private *devpriv = dev->private;
	struct comedi_async *async = s->async;
	struct comedi_cmd *cmd = &async->cmd;
	int ii;

	for (ii = 0; ii < count; ii++) {
		unsigned int range = CR_RANGE(cmd->chanlist[async->cur_chan]);
		unsigned short d;

		if (devpriv->ai_count == 0) {	/* done */
			d = readw(devpriv->las1 + LAS1_ADC_FIFO);
			continue;
		}

		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
		d >>= 3;	/* low 3 bits are marker lines */

		/* convert bipolar data to comedi unsigned data */
		if (comedi_range_is_bipolar(s, range))
			d = comedi_offset_munge(s, d);
		d &= s->maxdata;

		if (!comedi_buf_write_samples(s, &d, 1))
			return -1;

		if (devpriv->ai_count > 0)	/* < 0, means read forever */
			devpriv->ai_count--;
	}
	return 0;
}

static irqreturn_t rtd_interrupt(int irq, void *d)
{
	struct comedi_device *dev = d;
	struct comedi_subdevice *s = dev->read_subdev;
	struct rtd_private *devpriv = dev->private;
	u32 overrun;
	u16 status;
	u16 fifo_status;

	if (!dev->attached)
		return IRQ_NONE;

	fifo_status = readl(dev->mmio + LAS0_ADC);
	/* check for FIFO full, this automatically halts the ADC! */
	if (!(fifo_status & FS_ADC_NOT_FULL))	/* 0 -> full */
		goto xfer_abort;

	status = readw(dev->mmio + LAS0_IT);
	/* if interrupt was not caused by our board, or handled above */
	if (status == 0)
		return IRQ_HANDLED;

	if (status & IRQM_ADC_ABOUT_CNT) {	/* sample count -> read FIFO */
		/*
		 * since the priority interrupt controller may have queued
		 * a sample counter interrupt, even though we have already
		 * finished, we must handle the possibility that there is
		 * no data here
		 */
		if (!(fifo_status & FS_ADC_HEMPTY)) {
			/* FIFO half full */
			if (ai_read_n(dev, s, devpriv->fifosz / 2) < 0)
				goto xfer_abort;

			if (devpriv->ai_count == 0)
				goto xfer_done;
		} else if (devpriv->xfer_count > 0) {
			if (fifo_status & FS_ADC_NOT_EMPTY) {
				/* FIFO not empty */
				if (ai_read_n(dev, s, devpriv->xfer_count) < 0)
					goto xfer_abort;

				if (devpriv->ai_count == 0)
					goto xfer_done;
			}
		}
	}

	overrun = readl(dev->mmio + LAS0_OVERRUN) & 0xffff;
	if (overrun)
		goto xfer_abort;

	/* clear the interrupt */
	writew(status, dev->mmio + LAS0_CLEAR);
	readw(dev->mmio + LAS0_CLEAR);

	comedi_handle_events(dev, s);

	return IRQ_HANDLED;

xfer_abort:
	s->async->events |= COMEDI_CB_ERROR;

xfer_done:
	s->async->events |= COMEDI_CB_EOA;

	/* clear the interrupt */
	status = readw(dev->mmio + LAS0_IT);
	writew(status, dev->mmio + LAS0_CLEAR);
	readw(dev->mmio + LAS0_CLEAR);

	fifo_status = readl(dev->mmio + LAS0_ADC);
	overrun = readl(dev->mmio + LAS0_OVERRUN) & 0xffff;

	comedi_handle_events(dev, s);

	return IRQ_HANDLED;
}

static int rtd_ai_cmdtest(struct comedi_device *dev,
			  struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
	int err = 0;
	unsigned int arg;

	/* Step 1 : check if triggers are trivially valid */

	err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER | TRIG_EXT);
	err |= comedi_check_trigger_src(&cmd->convert_src,
					TRIG_TIMER | TRIG_EXT);
	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);

	if (err)
		return 1;

	/* Step 2a : make sure trigger sources are unique */

	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
	err |= comedi_check_trigger_is_unique(cmd->convert_src);
	err |= comedi_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */

	if (err)
		return 2;

	/* Step 3: check if arguments are trivially valid */

	err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);

	if (cmd->scan_begin_src == TRIG_TIMER) {
		/* Note: these are time periods, not actual rates */
		if (cmd->chanlist_len == 1) {	/* no scanning */
			if (comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
							 RTD_MAX_SPEED_1)) {
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						CMDF_ROUND_UP);
				err |= -EINVAL;
			}
			if (comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
							 RTD_MIN_SPEED_1)) {
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						CMDF_ROUND_DOWN);
				err |= -EINVAL;
			}
		} else {
			if (comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
							 RTD_MAX_SPEED)) {
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						CMDF_ROUND_UP);
				err |= -EINVAL;
			}
			if (comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
							 RTD_MIN_SPEED)) {
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						CMDF_ROUND_DOWN);
				err |= -EINVAL;
			}
		}
	} else {
		/* external trigger */
		/* should be level/edge, hi/lo specification here */
		/* should specify multiple external triggers */
		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
	}

	if (cmd->convert_src == TRIG_TIMER) {
		if (cmd->chanlist_len == 1) {	/* no scanning */
			if (comedi_check_trigger_arg_min(&cmd->convert_arg,
							 RTD_MAX_SPEED_1)) {
				rtd_ns_to_timer(&cmd->convert_arg,
						CMDF_ROUND_UP);
				err |= -EINVAL;
			}
			if (comedi_check_trigger_arg_max(&cmd->convert_arg,
							 RTD_MIN_SPEED_1)) {
				rtd_ns_to_timer(&cmd->convert_arg,
						CMDF_ROUND_DOWN);
				err |= -EINVAL;
			}
		} else {
			if (comedi_check_trigger_arg_min(&cmd->convert_arg,
							 RTD_MAX_SPEED)) {
				rtd_ns_to_timer(&cmd->convert_arg,
						CMDF_ROUND_UP);
				err |= -EINVAL;
			}
			if (comedi_check_trigger_arg_max(&cmd->convert_arg,
							 RTD_MIN_SPEED)) {
				rtd_ns_to_timer(&cmd->convert_arg,
						CMDF_ROUND_DOWN);
				err |= -EINVAL;
			}
		}
	} else {
		/* external trigger */
		/* see above */
		err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 9);
	}

	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
					   cmd->chanlist_len);

	if (cmd->stop_src == TRIG_COUNT)
		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
	else	/* TRIG_NONE */
		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		arg = cmd->scan_begin_arg;
		rtd_ns_to_timer(&arg, cmd->flags);
		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
	}

	if (cmd->convert_src == TRIG_TIMER) {
		arg = cmd->convert_arg;
		rtd_ns_to_timer(&arg, cmd->flags);
		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);

		if (cmd->scan_begin_src == TRIG_TIMER) {
			arg = cmd->convert_arg * cmd->scan_end_arg;
			err |= comedi_check_trigger_arg_min(&cmd->
							    scan_begin_arg,
							    arg);
		}
	}

	if (err)
		return 4;

	return 0;
}

static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct rtd_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	int timer;

	/* stop anything currently running */
	/* pacer stop source: SOFTWARE */
	writel(0, dev->mmio + LAS0_PACER_STOP);
	writel(0, dev->mmio + LAS0_PACER);	/* stop pacer */
	writel(0, dev->mmio + LAS0_ADC_CONVERSION);
	writew(0, dev->mmio + LAS0_IT);
	writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
	writel(0, dev->mmio + LAS0_OVERRUN);

	/* start configuration */
	/* load channel list and reset CGT */
	rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);

	/* setup the common case and override if needed */
	if (cmd->chanlist_len > 1) {
		/* pacer start source: SOFTWARE */
		writel(0, dev->mmio + LAS0_PACER_START);
		/* burst trigger source: PACER */
		writel(1, dev->mmio + LAS0_BURST_START);
		/* ADC conversion trigger source: BURST */
		writel(2, dev->mmio + LAS0_ADC_CONVERSION);
	} else {		/* single channel */
		/* pacer start source: SOFTWARE */
		writel(0, dev->mmio + LAS0_PACER_START);
		/* ADC conversion trigger source: PACER */
		writel(1, dev->mmio + LAS0_ADC_CONVERSION);
	}
	writel((devpriv->fifosz / 2 - 1) & 0xffff, dev->mmio + LAS0_ACNT);

	if (cmd->scan_begin_src == TRIG_TIMER) {
		/* scan_begin_arg is in nanoseconds */
		/* find out how many samples to wait before transferring */
		if (cmd->flags & CMDF_WAKE_EOS) {
			/*
			 * this may generate un-sustainable interrupt rates
			 * the application is responsible for doing the
			 * right thing
			 */
			devpriv->xfer_count = cmd->chanlist_len;
			devpriv->flags |= SEND_EOS;
		} else {
			/* arrange to transfer data periodically */
			devpriv->xfer_count =
			    (TRANS_TARGET_PERIOD * cmd->chanlist_len) /
			    cmd->scan_begin_arg;
			if (devpriv->xfer_count < cmd->chanlist_len) {
				/* transfer after each scan (and avoid 0) */
				devpriv->xfer_count = cmd->chanlist_len;
			} else {	/* make a multiple of scan length */
				devpriv->xfer_count =
				    DIV_ROUND_UP(devpriv->xfer_count,
						 cmd->chanlist_len);
				devpriv->xfer_count *= cmd->chanlist_len;
			}
			devpriv->flags |= SEND_EOS;
		}
		if (devpriv->xfer_count >= (devpriv->fifosz / 2)) {
			/* out of counter range, use 1/2 fifo instead */
			devpriv->xfer_count = 0;
			devpriv->flags &= ~SEND_EOS;
		} else {
			/* interrupt for each transfer */
			writel((devpriv->xfer_count - 1) & 0xffff,
			       dev->mmio + LAS0_ACNT);
		}
	} else {		/* unknown timing, just use 1/2 FIFO */
		devpriv->xfer_count = 0;
		devpriv->flags &= ~SEND_EOS;
	}
	/* pacer clock source: INTERNAL 8MHz */
	writel(1, dev->mmio + LAS0_PACER_SELECT);
	/* just interrupt, don't stop */
	writel(1, dev->mmio + LAS0_ACNT_STOP_ENABLE);

	/* BUG??? these look like enumerated values, but they are bit fields */

	/* First, setup when to stop */
	switch (cmd->stop_src) {
	case TRIG_COUNT:	/* stop after N scans */
		devpriv->ai_count = cmd->stop_arg * cmd->chanlist_len;
		if ((devpriv->xfer_count > 0) &&
		    (devpriv->xfer_count > devpriv->ai_count)) {
			devpriv->xfer_count = devpriv->ai_count;
		}
		break;

	case TRIG_NONE:	/* stop when cancel is called */
		devpriv->ai_count = -1;	/* read forever */
		break;
	}

	/* Scan timing */
	switch (cmd->scan_begin_src) {
	case TRIG_TIMER:	/* periodic scanning */
		timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
					CMDF_ROUND_NEAREST);
		/* set PACER clock */
		writel(timer & 0xffffff, dev->mmio + LAS0_PCLK);

		break;

	case TRIG_EXT:
		/* pacer start source: EXTERNAL */
		writel(1, dev->mmio + LAS0_PACER_START);
		break;
	}

	/* Sample timing within a scan */
	switch (cmd->convert_src) {
	case TRIG_TIMER:	/* periodic */
		if (cmd->chanlist_len > 1) {
			/* only needed for multi-channel */
			timer = rtd_ns_to_timer(&cmd->convert_arg,
						CMDF_ROUND_NEAREST);
			/* setup BURST clock */
			writel(timer & 0x3ff, dev->mmio + LAS0_BCLK);
		}

		break;

	case TRIG_EXT:		/* external */
		/* burst trigger source: EXTERNAL */
		writel(2, dev->mmio + LAS0_BURST_START);
		break;
	}
	/* end configuration */

	/*
	 * This doesn't seem to work.  There is no way to clear an interrupt
	 * that the priority controller has queued!
	 */
	writew(~0, dev->mmio + LAS0_CLEAR);
	readw(dev->mmio + LAS0_CLEAR);

	/* TODO: allow multiple interrupt sources */
	/* transfer every N samples */
	writew(IRQM_ADC_ABOUT_CNT, dev->mmio + LAS0_IT);

	/* BUG: start_src is ASSUMED to be TRIG_NOW */
	/* BUG? it seems like things are running before the "start" */
	readl(dev->mmio + LAS0_PACER);	/* start pacer */
	return 0;
}

static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct rtd_private *devpriv = dev->private;

	/* pacer stop source: SOFTWARE */
	writel(0, dev->mmio + LAS0_PACER_STOP);
	writel(0, dev->mmio + LAS0_PACER);	/* stop pacer */
	writel(0, dev->mmio + LAS0_ADC_CONVERSION);
	writew(0, dev->mmio + LAS0_IT);
	devpriv->ai_count = 0;	/* stop and don't transfer any more */
	writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
	return 0;
}

static int rtd_ao_eoc(struct comedi_device *dev,
		      struct comedi_subdevice *s,
		      struct comedi_insn *insn,
		      unsigned long context)
{
	unsigned int chan = CR_CHAN(insn->chanspec);
	unsigned int bit = (chan == 0) ? FS_DAC1_NOT_EMPTY : FS_DAC2_NOT_EMPTY;
	unsigned int status;

	status = readl(dev->mmio + LAS0_ADC);
	if (status & bit)
		return 0;
	return -EBUSY;
}

static int rtd_ao_insn_write(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned int *data)
{
	struct rtd_private *devpriv = dev->private;
	unsigned int chan = CR_CHAN(insn->chanspec);
	unsigned int range = CR_RANGE(insn->chanspec);
	int ret;
	int i;

	/* Configure the output range (table index matches the range values) */
	writew(range & 7, dev->mmio + LAS0_DAC_CTRL(chan));

	for (i = 0; i < insn->n; ++i) {
		unsigned int val = data[i];

		/* bipolar uses 2's complement values with an extended sign */
		if (comedi_range_is_bipolar(s, range)) {
			val = comedi_offset_munge(s, val);
			val |= (val & ((s->maxdata + 1) >> 1)) << 1;
		}

		/* shift the 12-bit data (+ sign) to match the register */
		val <<= 3;

		writew(val, devpriv->las1 + LAS1_DAC_FIFO(chan));
		writew(0, dev->mmio + LAS0_UPDATE_DAC(chan));

		ret = comedi_timeout(dev, s, insn, rtd_ao_eoc, 0);
		if (ret)
			return ret;

		s->readback[chan] = data[i];
	}

	return insn->n;
}

static int rtd_dio_insn_bits(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned int *data)
{
	if (comedi_dio_update_state(s, data))
		writew(s->state & 0xff, dev->mmio + LAS0_DIO0);

	data[1] = readw(dev->mmio + LAS0_DIO0) & 0xff;

	return insn->n;
}

static int rtd_dio_insn_config(struct comedi_device *dev,
			       struct comedi_subdevice *s,
			       struct comedi_insn *insn,
			       unsigned int *data)
{
	int ret;

	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
	if (ret)
		return ret;

	/* TODO support digital match interrupts and strobes */

	/* set direction */
	writew(0x01, dev->mmio + LAS0_DIO_STATUS);
	writew(s->io_bits & 0xff, dev->mmio + LAS0_DIO0_CTRL);

	/* clear interrupts */
	writew(0x00, dev->mmio + LAS0_DIO_STATUS);

	/* port1 can only be all input or all output */

	/* there are also 2 user input lines and 2 user output lines */

	return insn->n;
}

static int rtd_counter_insn_config(struct comedi_device *dev,
				   struct comedi_subdevice *s,
				   struct comedi_insn *insn,
				   unsigned int *data)
{
	struct rtd_private *devpriv = dev->private;
	unsigned int chan = CR_CHAN(insn->chanspec);
	unsigned int max_src;
	unsigned int src;

	switch (data[0]) {
	case INSN_CONFIG_SET_GATE_SRC:
		/*
		 * 8254 Timer/Counter gate sources:
		 *
		 * 0 = Not gated, free running (reset state)
		 * 1 = Gated, off
		 * 2 = Ext. TC Gate 1
		 * 3 = Ext. TC Gate 2
		 * 4 = Previous TC out (chan 1 and 2 only)
		 */
		src = data[2];
		max_src = (chan == 0) ? 3 : 4;
		if (src > max_src)
			return -EINVAL;

		devpriv->timer_gate_src[chan] = src;
		writeb(src, dev->mmio + LAS0_8254_GATE_SEL(chan));
		break;
	case INSN_CONFIG_GET_GATE_SRC:
		data[2] = devpriv->timer_gate_src[chan];
		break;
	case INSN_CONFIG_SET_CLOCK_SRC:
		/*
		 * 8254 Timer/Counter clock sources:
		 *
		 * 0 = 8 MHz (reset state)
		 * 1 = Ext. TC Clock 1
		 * 2 = Ext. TX Clock 2
		 * 3 = Ext. Pacer Clock
		 * 4 = Previous TC out (chan 1 and 2 only)
		 * 5 = High-Speed Digital Input Sampling signal (chan 1 only)
		 */
		src = data[1];
		switch (chan) {
		case 0:
			max_src = 3;
			break;
		case 1:
			max_src = 5;
			break;
		case 2:
			max_src = 4;
			break;
		default:
			return -EINVAL;
		}
		if (src > max_src)
			return -EINVAL;

		devpriv->timer_clk_src[chan] = src;
		writeb(src, dev->mmio + LAS0_8254_CLK_SEL(chan));
		break;
	case INSN_CONFIG_GET_CLOCK_SRC:
		src = devpriv->timer_clk_src[chan];
		data[1] = devpriv->timer_clk_src[chan];
		data[2] = (src == 0) ? RTD_CLOCK_BASE : 0;
		break;
	default:
		return -EINVAL;
	}

	return insn->n;
}

static void rtd_reset(struct comedi_device *dev)
{
	struct rtd_private *devpriv = dev->private;

	writel(0, dev->mmio + LAS0_BOARD_RESET);
	usleep_range(100, 1000);	/* needed? */
	writel(0, devpriv->lcfg + PLX_REG_INTCSR);
	writew(0, dev->mmio + LAS0_IT);
	writew(~0, dev->mmio + LAS0_CLEAR);
	readw(dev->mmio + LAS0_CLEAR);
}

/*
 * initialize board, per RTD spec
 * also, initialize shadow registers
 */
static void rtd_init_board(struct comedi_device *dev)
{
	rtd_reset(dev);

	writel(0, dev->mmio + LAS0_OVERRUN);
	writel(0, dev->mmio + LAS0_CGT_CLEAR);
	writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
	writel(0, dev->mmio + LAS0_DAC_RESET(0));
	writel(0, dev->mmio + LAS0_DAC_RESET(1));
	/* clear digital IO fifo */
	writew(0, dev->mmio + LAS0_DIO_STATUS);
	/* TODO: set user out source ??? */
}

/* The RTD driver does this */
static void rtd_pci_latency_quirk(struct comedi_device *dev,
				  struct pci_dev *pcidev)
{
	unsigned char pci_latency;

	pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency);
	if (pci_latency < 32) {
		dev_info(dev->class_dev,
			 "PCI latency changed from %d to %d\n",
			 pci_latency, 32);
		pci_write_config_byte(pcidev, PCI_LATENCY_TIMER, 32);
	}
}

static int rtd_auto_attach(struct comedi_device *dev,
			   unsigned long context)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	const struct rtd_boardinfo *board = NULL;
	struct rtd_private *devpriv;
	struct comedi_subdevice *s;
	int ret;

	if (context < ARRAY_SIZE(rtd520_boards))
		board = &rtd520_boards[context];
	if (!board)
		return -ENODEV;
	dev->board_ptr = board;
	dev->board_name = board->name;

	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
	if (!devpriv)
		return -ENOMEM;

	ret = comedi_pci_enable(dev);
	if (ret)
		return ret;

	dev->mmio = pci_ioremap_bar(pcidev, 2);
	devpriv->las1 = pci_ioremap_bar(pcidev, 3);
	devpriv->lcfg = pci_ioremap_bar(pcidev, 0);
	if (!dev->mmio || !devpriv->las1 || !devpriv->lcfg)
		return -ENOMEM;

	rtd_pci_latency_quirk(dev, pcidev);

	if (pcidev->irq) {
		ret = request_irq(pcidev->irq, rtd_interrupt, IRQF_SHARED,
				  dev->board_name, dev);
		if (ret == 0)
			dev->irq = pcidev->irq;
	}

	ret = comedi_alloc_subdevices(dev, 4);
	if (ret)
		return ret;

	s = &dev->subdevices[0];
	/* analog input subdevice */
	s->type		= COMEDI_SUBD_AI;
	s->subdev_flags	= SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF;
	s->n_chan	= 16;
	s->maxdata	= 0x0fff;
	s->range_table	= board->ai_range;
	s->len_chanlist	= RTD_MAX_CHANLIST;
	s->insn_read	= rtd_ai_rinsn;
	if (dev->irq) {
		dev->read_subdev = s;
		s->subdev_flags	|= SDF_CMD_READ;
		s->do_cmd	= rtd_ai_cmd;
		s->do_cmdtest	= rtd_ai_cmdtest;
		s->cancel	= rtd_ai_cancel;
	}

	s = &dev->subdevices[1];
	/* analog output subdevice */
	s->type		= COMEDI_SUBD_AO;
	s->subdev_flags	= SDF_WRITABLE;
	s->n_chan	= 2;
	s->maxdata	= 0x0fff;
	s->range_table	= &rtd_ao_range;
	s->insn_write	= rtd_ao_insn_write;

	ret = comedi_alloc_subdev_readback(s);
	if (ret)
		return ret;

	s = &dev->subdevices[2];
	/* digital i/o subdevice */
	s->type		= COMEDI_SUBD_DIO;
	s->subdev_flags	= SDF_READABLE | SDF_WRITABLE;
	/* we only support port 0 right now.  Ignoring port 1 and user IO */
	s->n_chan	= 8;
	s->maxdata	= 1;
	s->range_table	= &range_digital;
	s->insn_bits	= rtd_dio_insn_bits;
	s->insn_config	= rtd_dio_insn_config;

	/* 8254 Timer/Counter subdevice */
	s = &dev->subdevices[3];
	dev->pacer = comedi_8254_mm_init(dev->mmio + LAS0_8254_TIMER_BASE,
					 RTD_CLOCK_BASE, I8254_IO8, 2);
	if (!dev->pacer)
		return -ENOMEM;

	comedi_8254_subdevice_init(s, dev->pacer);
	dev->pacer->insn_config = rtd_counter_insn_config;

	rtd_init_board(dev);

	ret = rtd520_probe_fifo_depth(dev);
	if (ret < 0)
		return ret;
	devpriv->fifosz = ret;

	if (dev->irq)
		writel(PLX_INTCSR_PIEN | PLX_INTCSR_PLIEN,
		       devpriv->lcfg + PLX_REG_INTCSR);

	return 0;
}

static void rtd_detach(struct comedi_device *dev)
{
	struct rtd_private *devpriv = dev->private;

	if (devpriv) {
		/* Shut down any board ops by resetting it */
		if (dev->mmio && devpriv->lcfg)
			rtd_reset(dev);
		if (dev->irq)
			free_irq(dev->irq, dev);
		if (dev->mmio)
			iounmap(dev->mmio);
		if (devpriv->las1)
			iounmap(devpriv->las1);
		if (devpriv->lcfg)
			iounmap(devpriv->lcfg);
	}
	comedi_pci_disable(dev);
}

static struct comedi_driver rtd520_driver = {
	.driver_name	= "rtd520",
	.module		= THIS_MODULE,
	.auto_attach	= rtd_auto_attach,
	.detach		= rtd_detach,
};

static int rtd520_pci_probe(struct pci_dev *dev,
			    const struct pci_device_id *id)
{
	return comedi_pci_auto_config(dev, &rtd520_driver, id->driver_data);
}

static const struct pci_device_id rtd520_pci_table[] = {
	{ PCI_VDEVICE(RTD, 0x7520), BOARD_DM7520 },
	{ PCI_VDEVICE(RTD, 0x4520), BOARD_PCI4520 },
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, rtd520_pci_table);

static struct pci_driver rtd520_pci_driver = {
	.name		= "rtd520",
	.id_table	= rtd520_pci_table,
	.probe		= rtd520_pci_probe,
	.remove		= comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(rtd520_driver, rtd520_pci_driver);

MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");