Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
Naming and data format standards for sysfs files
================================================

The libsensors library offers an interface to the raw sensors data
through the sysfs interface. Since lm-sensors 3.0.0, libsensors is
completely chip-independent. It assumes that all the kernel drivers
implement the standard sysfs interface described in this document.
This makes adding or updating support for any given chip very easy, as
libsensors, and applications using it, do not need to be modified.
This is a major improvement compared to lm-sensors 2.

Note that motherboards vary widely in the connections to sensor chips.
There is no standard that ensures, for example, that the second
temperature sensor is connected to the CPU, or that the second fan is on
the CPU. Also, some values reported by the chips need some computation
before they make full sense. For example, most chips can only measure
voltages between 0 and +4V. Other voltages are scaled back into that
range using external resistors. Since the values of these resistors
can change from motherboard to motherboard, the conversions cannot be
hard coded into the driver and have to be done in user space.

For this reason, even if we aim at a chip-independent libsensors, it will
still require a configuration file (e.g. /etc/sensors.conf) for proper
values conversion, labeling of inputs and hiding of unused inputs.

An alternative method that some programs use is to access the sysfs
files directly. This document briefly describes the standards that the
drivers follow, so that an application program can scan for entries and
access this data in a simple and consistent way. That said, such programs
will have to implement conversion, labeling and hiding of inputs. For
this reason, it is still not recommended to bypass the library.

Each chip gets its own directory in the sysfs /sys/devices tree.  To
find all sensor chips, it is easier to follow the device symlinks from
`/sys/class/hwmon/hwmon*`.

Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes
in the "physical" device directory. Since lm-sensors 3.0.1, attributes found
in the hwmon "class" device directory are also supported. Complex drivers
(e.g. drivers for multifunction chips) may want to use this possibility to
avoid namespace pollution. The only drawback will be that older versions of
libsensors won't support the driver in question.

All sysfs values are fixed point numbers.

There is only one value per file, unlike the older /proc specification.
The common scheme for files naming is: <type><number>_<item>. Usual
types for sensor chips are "in" (voltage), "temp" (temperature) and
"fan" (fan). Usual items are "input" (measured value), "max" (high
threshold, "min" (low threshold). Numbering usually starts from 1,
except for voltages which start from 0 (because most data sheets use
this). A number is always used for elements that can be present more
than once, even if there is a single element of the given type on the
specific chip. Other files do not refer to a specific element, so
they have a simple name, and no number.

Alarms are direct indications read from the chips. The drivers do NOT
make comparisons of readings to thresholds. This allows violations
between readings to be caught and alarmed. The exact definition of an
alarm (for example, whether a threshold must be met or must be exceeded
to cause an alarm) is chip-dependent.

When setting values of hwmon sysfs attributes, the string representation of
the desired value must be written, note that strings which are not a number
are interpreted as 0! For more on how written strings are interpreted see the
"sysfs attribute writes interpretation" section at the end of this file.

-------------------------------------------------------------------------

======= ===========================================
`[0-*]`	denotes any positive number starting from 0
`[1-*]`	denotes any positive number starting from 1
RO	read only value
WO	write only value
RW	read/write value
======= ===========================================

Read/write values may be read-only for some chips, depending on the
hardware implementation.

All entries (except name) are optional, and should only be created in a
given driver if the chip has the feature.


*****************
Global attributes
*****************

`name`
		The chip name.
		This should be a short, lowercase string, not containing
		whitespace, dashes, or the wildcard character '*'.
		This attribute represents the chip name. It is the only
		mandatory attribute.
		I2C devices get this attribute created automatically.

		RO

`update_interval`
		The interval at which the chip will update readings.
		Unit: millisecond

		RW

		Some devices have a variable update rate or interval.
		This attribute can be used to change it to the desired value.


********
Voltages
********

`in[0-*]_min`
		Voltage min value.

		Unit: millivolt

		RW

`in[0-*]_lcrit`
		Voltage critical min value.

		Unit: millivolt

		RW

		If voltage drops to or below this limit, the system may
		take drastic action such as power down or reset. At the very
		least, it should report a fault.

`in[0-*]_max`
		Voltage max value.

		Unit: millivolt

		RW

`in[0-*]_crit`
		Voltage critical max value.

		Unit: millivolt

		RW

		If voltage reaches or exceeds this limit, the system may
		take drastic action such as power down or reset. At the very
		least, it should report a fault.

`in[0-*]_input`
		Voltage input value.

		Unit: millivolt

		RO

		Voltage measured on the chip pin.

		Actual voltage depends on the scaling resistors on the
		motherboard, as recommended in the chip datasheet.

		This varies by chip and by motherboard.
		Because of this variation, values are generally NOT scaled
		by the chip driver, and must be done by the application.
		However, some drivers (notably lm87 and via686a)
		do scale, because of internal resistors built into a chip.
		These drivers will output the actual voltage. Rule of
		thumb: drivers should report the voltage values at the
		"pins" of the chip.

`in[0-*]_average`
		Average voltage

		Unit: millivolt

		RO

`in[0-*]_lowest`
		Historical minimum voltage

		Unit: millivolt

		RO

`in[0-*]_highest`
		Historical maximum voltage

		Unit: millivolt

		RO

`in[0-*]_reset_history`
		Reset inX_lowest and inX_highest

		WO

`in_reset_history`
		Reset inX_lowest and inX_highest for all sensors

		WO

`in[0-*]_label`
		Suggested voltage channel label.

		Text string

		Should only be created if the driver has hints about what
		this voltage channel is being used for, and user-space
		doesn't. In all other cases, the label is provided by
		user-space.

		RO

`in[0-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

`cpu[0-*]_vid`
		CPU core reference voltage.

		Unit: millivolt

		RO

		Not always correct.

`vrm`
		Voltage Regulator Module version number.

		RW (but changing it should no more be necessary)

		Originally the VRM standard version multiplied by 10, but now
		an arbitrary number, as not all standards have a version
		number.

		Affects the way the driver calculates the CPU core reference
		voltage from the vid pins.

Also see the Alarms section for status flags associated with voltages.


****
Fans
****

`fan[1-*]_min`
		Fan minimum value

		Unit: revolution/min (RPM)

		RW

`fan[1-*]_max`
		Fan maximum value

		Unit: revolution/min (RPM)

		Only rarely supported by the hardware.
		RW

`fan[1-*]_input`
		Fan input value.

		Unit: revolution/min (RPM)

		RO

`fan[1-*]_div`
		Fan divisor.

		Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).

		RW

		Some chips only support values 1, 2, 4 and 8.
		Note that this is actually an internal clock divisor, which
		affects the measurable speed range, not the read value.

`fan[1-*]_pulses`
		Number of tachometer pulses per fan revolution.

		Integer value, typically between 1 and 4.

		RW

		This value is a characteristic of the fan connected to the
		device's input, so it has to be set in accordance with the fan
		model.

		Should only be created if the chip has a register to configure
		the number of pulses. In the absence of such a register (and
		thus attribute) the value assumed by all devices is 2 pulses
		per fan revolution.

`fan[1-*]_target`
		Desired fan speed

		Unit: revolution/min (RPM)

		RW

		Only makes sense if the chip supports closed-loop fan speed
		control based on the measured fan speed.

`fan[1-*]_label`
		Suggested fan channel label.

		Text string

		Should only be created if the driver has hints about what
		this fan channel is being used for, and user-space doesn't.
		In all other cases, the label is provided by user-space.

		RO

`fan[1-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

Also see the Alarms section for status flags associated with fans.


***
PWM
***

`pwm[1-*]`
		Pulse width modulation fan control.

		Integer value in the range 0 to 255

		RW

		255 is max or 100%.

`pwm[1-*]_enable`
		Fan speed control method:

		- 0: no fan speed control (i.e. fan at full speed)
		- 1: manual fan speed control enabled (using `pwm[1-*]`)
		- 2+: automatic fan speed control enabled

		Check individual chip documentation files for automatic mode
		details.

		RW

`pwm[1-*]_mode`
		- 0: DC mode (direct current)
		- 1: PWM mode (pulse-width modulation)

		RW

`pwm[1-*]_freq`
		Base PWM frequency in Hz.

		Only possibly available when pwmN_mode is PWM, but not always
		present even then.

		RW

`pwm[1-*]_auto_channels_temp`
		Select which temperature channels affect this PWM output in
		auto mode.

		Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc...
		Which values are possible depend on the chip used.

		RW

`pwm[1-*]_auto_point[1-*]_pwm` / `pwm[1-*]_auto_point[1-*]_temp` / `pwm[1-*]_auto_point[1-*]_temp_hyst`
		Define the PWM vs temperature curve.

		Number of trip points is chip-dependent. Use this for chips
		which associate trip points to PWM output channels.

		RW

`temp[1-*]_auto_point[1-*]_pwm` / `temp[1-*]_auto_point[1-*]_temp` / `temp[1-*]_auto_point[1-*]_temp_hyst`
		Define the PWM vs temperature curve.

		Number of trip points is chip-dependent. Use this for chips
		which associate trip points to temperature channels.

		RW

There is a third case where trip points are associated to both PWM output
channels and temperature channels: the PWM values are associated to PWM
output channels while the temperature values are associated to temperature
channels. In that case, the result is determined by the mapping between
temperature inputs and PWM outputs. When several temperature inputs are
mapped to a given PWM output, this leads to several candidate PWM values.
The actual result is up to the chip, but in general the highest candidate
value (fastest fan speed) wins.


************
Temperatures
************

`temp[1-*]_type`
		Sensor type selection.

		Integers 1 to 6

		RW

		- 1: CPU embedded diode
		- 2: 3904 transistor
		- 3: thermal diode
		- 4: thermistor
		- 5: AMD AMDSI
		- 6: Intel PECI

		Not all types are supported by all chips

`temp[1-*]_max`
		Temperature max value.

		Unit: millidegree Celsius (or millivolt, see below)

		RW

`temp[1-*]_min`
		Temperature min value.

		Unit: millidegree Celsius

		RW

`temp[1-*]_max_hyst`
		Temperature hysteresis value for max limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the max value.

		RW

`temp[1-*]_min_hyst`
		Temperature hysteresis value for min limit.
		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the min value.

		RW

`temp[1-*]_input`
	 Temperature input value.

		Unit: millidegree Celsius

		RO

`temp[1-*]_crit`
		Temperature critical max value, typically greater than
		corresponding temp_max values.

		Unit: millidegree Celsius

		RW

`temp[1-*]_crit_hyst`
		Temperature hysteresis value for critical limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the critical value.

		RW

`temp[1-*]_emergency`
		Temperature emergency max value, for chips supporting more than
		two upper temperature limits. Must be equal or greater than
		corresponding temp_crit values.

		Unit: millidegree Celsius

		RW

`temp[1-*]_emergency_hyst`
		Temperature hysteresis value for emergency limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the emergency value.

		RW

`temp[1-*]_lcrit`
		Temperature critical min value, typically lower than
		corresponding temp_min values.

		Unit: millidegree Celsius

		RW

`temp[1-*]_lcrit_hyst`
		Temperature hysteresis value for critical min limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the critical min value.

		RW

`temp[1-*]_offset`
		Temperature offset which is added to the temperature reading
		by the chip.

		Unit: millidegree Celsius

		Read/Write value.

`temp[1-*]_label`
		Suggested temperature channel label.

		Text string

		Should only be created if the driver has hints about what
		this temperature channel is being used for, and user-space
		doesn't. In all other cases, the label is provided by
		user-space.

		RO

`temp[1-*]_lowest`
		Historical minimum temperature

		Unit: millidegree Celsius

		RO

`temp[1-*]_highest`
		Historical maximum temperature

		Unit: millidegree Celsius

		RO

`temp[1-*]_reset_history`
		Reset temp_lowest and temp_highest

		WO

`temp_reset_history`
		Reset temp_lowest and temp_highest for all sensors

		WO

`temp[1-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

Some chips measure temperature using external thermistors and an ADC, and
report the temperature measurement as a voltage. Converting this voltage
back to a temperature (or the other way around for limits) requires
mathematical functions not available in the kernel, so the conversion
must occur in user space. For these chips, all temp* files described
above should contain values expressed in millivolt instead of millidegree
Celsius. In other words, such temperature channels are handled as voltage
channels by the driver.

Also see the Alarms section for status flags associated with temperatures.


********
Currents
********

`curr[1-*]_max`
		Current max value

		Unit: milliampere

		RW

`curr[1-*]_min`
		Current min value.

		Unit: milliampere

		RW

`curr[1-*]_lcrit`
		Current critical low value

		Unit: milliampere

		RW

`curr[1-*]_crit`
		Current critical high value.

		Unit: milliampere

		RW

`curr[1-*]_input`
		Current input value

		Unit: milliampere

		RO

`curr[1-*]_average`
		Average current use

		Unit: milliampere

		RO

`curr[1-*]_lowest`
		Historical minimum current

		Unit: milliampere

		RO

`curr[1-*]_highest`
		Historical maximum current
		Unit: milliampere
		RO

`curr[1-*]_reset_history`
		Reset currX_lowest and currX_highest

		WO

`curr_reset_history`
		Reset currX_lowest and currX_highest for all sensors

		WO

`curr[1-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

Also see the Alarms section for status flags associated with currents.

*****
Power
*****

`power[1-*]_average`
				Average power use

				Unit: microWatt

				RO

`power[1-*]_average_interval`
				Power use averaging interval.  A poll
				notification is sent to this file if the
				hardware changes the averaging interval.

				Unit: milliseconds

				RW

`power[1-*]_average_interval_max`
				Maximum power use averaging interval

				Unit: milliseconds

				RO

`power[1-*]_average_interval_min`
				Minimum power use averaging interval

				Unit: milliseconds

				RO

`power[1-*]_average_highest`
				Historical average maximum power use

				Unit: microWatt

				RO

`power[1-*]_average_lowest`
				Historical average minimum power use

				Unit: microWatt

				RO

`power[1-*]_average_max`
				A poll notification is sent to
				`power[1-*]_average` when power use
				rises above this value.

				Unit: microWatt

				RW

`power[1-*]_average_min`
				A poll notification is sent to
				`power[1-*]_average` when power use
				sinks below this value.

				Unit: microWatt

				RW

`power[1-*]_input`
				Instantaneous power use

				Unit: microWatt

				RO

`power[1-*]_input_highest`
				Historical maximum power use

				Unit: microWatt

				RO

`power[1-*]_input_lowest`
				Historical minimum power use

				Unit: microWatt

				RO

`power[1-*]_reset_history`
				Reset input_highest, input_lowest,
				average_highest and average_lowest.

				WO

`power[1-*]_accuracy`
				Accuracy of the power meter.

				Unit: Percent

				RO

`power[1-*]_cap`
				If power use rises above this limit, the
				system should take action to reduce power use.
				A poll notification is sent to this file if the
				cap is changed by the hardware.  The `*_cap`
				files only appear if the cap is known to be
				enforced by hardware.

				Unit: microWatt

				RW

`power[1-*]_cap_hyst`
				Margin of hysteresis built around capping and
				notification.

				Unit: microWatt

				RW

`power[1-*]_cap_max`
				Maximum cap that can be set.

				Unit: microWatt

				RO

`power[1-*]_cap_min`
				Minimum cap that can be set.

				Unit: microWatt

				RO

`power[1-*]_max`
				Maximum power.

				Unit: microWatt

				RW

`power[1-*]_crit`
				Critical maximum power.

				If power rises to or above this limit, the
				system is expected take drastic action to reduce
				power consumption, such as a system shutdown or
				a forced powerdown of some devices.

				Unit: microWatt

				RW

`power[1-*]_enable`
				Enable or disable the sensors.

				When disabled the sensor read will return
				-ENODATA.

				- 1: Enable
				- 0: Disable

				RW

Also see the Alarms section for status flags associated with power readings.

******
Energy
******

`energy[1-*]_input`
				Cumulative energy use

				Unit: microJoule

				RO

`energy[1-*]_enable`
				Enable or disable the sensors.

				When disabled the sensor read will return
				-ENODATA.

				- 1: Enable
				- 0: Disable

				RW

********
Humidity
********

`humidity[1-*]_input`
				Humidity

				Unit: milli-percent (per cent mille, pcm)

				RO


`humidity[1-*]_enable`
				Enable or disable the sensors

				When disabled the sensor read will return
				-ENODATA.

				- 1: Enable
				- 0: Disable

				RW

******
Alarms
******

Each channel or limit may have an associated alarm file, containing a
boolean value. 1 means than an alarm condition exists, 0 means no alarm.

Usually a given chip will either use channel-related alarms, or
limit-related alarms, not both. The driver should just reflect the hardware
implementation.

+-------------------------------+-----------------------+
| **`in[0-*]_alarm`,		| Channel alarm		|
| `curr[1-*]_alarm`,		|			|
| `power[1-*]_alarm`,		|   - 0: no alarm	|
| `fan[1-*]_alarm`,		|   - 1: alarm		|
| `temp[1-*]_alarm`**		|			|
|				|   RO			|
+-------------------------------+-----------------------+

**OR**

+-------------------------------+-----------------------+
| **`in[0-*]_min_alarm`,	| Limit alarm		|
| `in[0-*]_max_alarm`,		|			|
| `in[0-*]_lcrit_alarm`,	|   - 0: no alarm	|
| `in[0-*]_crit_alarm`,		|   - 1: alarm		|
| `curr[1-*]_min_alarm`,	|			|
| `curr[1-*]_max_alarm`,	| RO			|
| `curr[1-*]_lcrit_alarm`,	|			|
| `curr[1-*]_crit_alarm`,	|			|
| `power[1-*]_cap_alarm`,	|			|
| `power[1-*]_max_alarm`,	|			|
| `power[1-*]_crit_alarm`,	|			|
| `fan[1-*]_min_alarm`,		|			|
| `fan[1-*]_max_alarm`,		|			|
| `temp[1-*]_min_alarm`,	|			|
| `temp[1-*]_max_alarm`,	|			|
| `temp[1-*]_lcrit_alarm`,	|			|
| `temp[1-*]_crit_alarm`,	|			|
| `temp[1-*]_emergency_alarm`**	|			|
+-------------------------------+-----------------------+

Each input channel may have an associated fault file. This can be used
to notify open diodes, unconnected fans etc. where the hardware
supports it. When this boolean has value 1, the measurement for that
channel should not be trusted.

`fan[1-*]_fault` / `temp[1-*]_fault`
		Input fault condition

		- 0: no fault occurred
		- 1: fault condition

		RO

Some chips also offer the possibility to get beeped when an alarm occurs:

`beep_enable`
		Master beep enable

		- 0: no beeps
		- 1: beeps

		RW

`in[0-*]_beep`, `curr[1-*]_beep`, `fan[1-*]_beep`, `temp[1-*]_beep`,
		Channel beep

		- 0: disable
		- 1: enable

		RW

In theory, a chip could provide per-limit beep masking, but no such chip
was seen so far.

Old drivers provided a different, non-standard interface to alarms and
beeps. These interface files are deprecated, but will be kept around
for compatibility reasons:

`alarms`
		Alarm bitmask.

		RO

		Integer representation of one to four bytes.

		A '1' bit means an alarm.

		Chips should be programmed for 'comparator' mode so that
		the alarm will 'come back' after you read the register
		if it is still valid.

		Generally a direct representation of a chip's internal
		alarm registers; there is no standard for the position
		of individual bits. For this reason, the use of this
		interface file for new drivers is discouraged. Use
		`individual *_alarm` and `*_fault` files instead.
		Bits are defined in kernel/include/sensors.h.

`beep_mask`
		Bitmask for beep.
		Same format as 'alarms' with the same bit locations,
		use discouraged for the same reason. Use individual
		`*_beep` files instead.
		RW


*******************
Intrusion detection
*******************

`intrusion[0-*]_alarm`
		Chassis intrusion detection

		- 0: OK
		- 1: intrusion detected

		RW

		Contrary to regular alarm flags which clear themselves
		automatically when read, this one sticks until cleared by
		the user. This is done by writing 0 to the file. Writing
		other values is unsupported.

`intrusion[0-*]_beep`
		Chassis intrusion beep

		0: disable
		1: enable

		RW

****************************
Average sample configuration
****************************

Devices allowing for reading {in,power,curr,temp}_average values may export
attributes for controlling number of samples used to compute average.

+--------------+---------------------------------------------------------------+
| samples      | Sets number of average samples for all types of measurements. |
|	       |							       |
|	       | RW							       |
+--------------+---------------------------------------------------------------+
| in_samples   | Sets number of average samples for specific type of	       |
| power_samples| measurements.						       |
| curr_samples |							       |
| temp_samples | Note that on some devices it won't be possible to set all of  |
|	       | them to different values so changing one might also change    |
|	       | some others.						       |
|	       |							       |
|	       | RW							       |
+--------------+---------------------------------------------------------------+

sysfs attribute writes interpretation
-------------------------------------

hwmon sysfs attributes always contain numbers, so the first thing to do is to
convert the input to a number, there are 2 ways todo this depending whether
the number can be negative or not::

	unsigned long u = simple_strtoul(buf, NULL, 10);
	long s = simple_strtol(buf, NULL, 10);

With buf being the buffer with the user input being passed by the kernel.
Notice that we do not use the second argument of strto[u]l, and thus cannot
tell when 0 is returned, if this was really 0 or is caused by invalid input.
This is done deliberately as checking this everywhere would add a lot of
code to the kernel.

Notice that it is important to always store the converted value in an
unsigned long or long, so that no wrap around can happen before any further
checking.

After the input string is converted to an (unsigned) long, the value should be
checked if its acceptable. Be careful with further conversions on the value
before checking it for validity, as these conversions could still cause a wrap
around before the check. For example do not multiply the result, and only
add/subtract if it has been divided before the add/subtract.

What to do if a value is found to be invalid, depends on the type of the
sysfs attribute that is being set. If it is a continuous setting like a
tempX_max or inX_max attribute, then the value should be clamped to its
limits using clamp_val(value, min_limit, max_limit). If it is not continuous
like for example a tempX_type, then when an invalid value is written,
-EINVAL should be returned.

Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees)::

	long v = simple_strtol(buf, NULL, 10) / 1000;
	v = clamp_val(v, -128, 127);
	/* write v to register */

Example2, fan divider setting, valid values 2, 4 and 8::

	unsigned long v = simple_strtoul(buf, NULL, 10);

	switch (v) {
	case 2: v = 1; break;
	case 4: v = 2; break;
	case 8: v = 3; break;
	default:
		return -EINVAL;
	}
	/* write v to register */