Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */

#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/memblock.h>

#include <asm/fpu.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>

#include <linux/kvm_host.h>

#include "interrupt.h"
#include "commpage.h"

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
#ifdef CONFIG_KVM_MIPS_VZ
	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU },
	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU },
	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU },
	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU },
	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU },
	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU },
	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU },
	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU },
#endif
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
	{NULL}
};

bool kvm_trace_guest_mode_change;

int kvm_guest_mode_change_trace_reg(void)
{
	kvm_trace_guest_mode_change = 1;
	return 0;
}

void kvm_guest_mode_change_trace_unreg(void)
{
	kvm_trace_guest_mode_change = 0;
}

/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

int kvm_arch_hardware_enable(void)
{
	return kvm_mips_callbacks->hardware_enable();
}

void kvm_arch_hardware_disable(void)
{
	kvm_mips_callbacks->hardware_disable();
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

int kvm_arch_check_processor_compat(void)
{
	return 0;
}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	switch (type) {
#ifdef CONFIG_KVM_MIPS_VZ
	case KVM_VM_MIPS_VZ:
#else
	case KVM_VM_MIPS_TE:
#endif
		break;
	default:
		/* Unsupported KVM type */
		return -EINVAL;
	};

	/* Allocate page table to map GPA -> RPA */
	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
	if (!kvm->arch.gpa_mm.pgd)
		return -ENOMEM;

	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

static void kvm_mips_free_gpa_pt(struct kvm *kvm)
{
	/* It should always be safe to remove after flushing the whole range */
	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);
	kvm_mips_free_gpa_pt(kvm);
}

long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
{
	return -ENOIOCTLCMD;
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
	/* Flush whole GPA */
	kvm_mips_flush_gpa_pt(kvm, 0, ~0);

	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_all(kvm);
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
	/*
	 * The slot has been made invalid (ready for moving or deletion), so we
	 * need to ensure that it can no longer be accessed by any guest VCPUs.
	 */

	spin_lock(&kvm->mmu_lock);
	/* Flush slot from GPA */
	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
			      slot->base_gfn + slot->npages - 1);
	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
	spin_unlock(&kvm->mmu_lock);
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
				   const struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				   const struct kvm_userspace_memory_region *mem,
				   const struct kvm_memory_slot *old,
				   const struct kvm_memory_slot *new,
				   enum kvm_mr_change change)
{
	int needs_flush;

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/*
	 * If dirty page logging is enabled, write protect all pages in the slot
	 * ready for dirty logging.
	 *
	 * There is no need to do this in any of the following cases:
	 * CREATE:	No dirty mappings will already exist.
	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
	 *		kvm_arch_flush_shadow_memslot()
	 */
	if (change == KVM_MR_FLAGS_ONLY &&
	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
		spin_lock(&kvm->mmu_lock);
		/* Write protect GPA page table entries */
		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
					new->base_gfn + new->npages - 1);
		/* Let implementation do the rest */
		if (needs_flush)
			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
		spin_unlock(&kvm->mmu_lock);
	}
}

static inline void dump_handler(const char *symbol, void *start, void *end)
{
	u32 *p;

	pr_debug("LEAF(%s)\n", symbol);

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");

	for (p = start; p < (u32 *)end; ++p)
		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);

	pr_debug("\t.set\tpop\n");

	pr_debug("\tEND(%s)\n", symbol);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err, size;
	void *gebase, *p, *handler, *refill_start, *refill_end;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);

	/*
	 * Allocate space for host mode exception handlers that handle
	 * guest mode exits
	 */
	if (cpu_has_veic || cpu_has_vint)
		size = 0x200 + VECTORSPACING * 64;
	else
		size = 0x4000;

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
		goto out_uninit_cpu;
	}
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);

	/*
	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
	 * limits us to the low 512MB of physical address space. If the memory
	 * we allocate is out of range, just give up now.
	 */
	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
			gebase);
		err = -ENOMEM;
		goto out_free_gebase;
	}

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Build guest exception vectors dynamically in unmapped memory */
	handler = gebase + 0x2000;

	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
	refill_start = gebase;
	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
		refill_start += 0x080;
	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);

	/* General Exception Entry point */
	kvm_mips_build_exception(gebase + 0x180, handler);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
					 handler);
	}

	/* General exit handler */
	p = handler;
	p = kvm_mips_build_exit(p);

	/* Guest entry routine */
	vcpu->arch.vcpu_run = p;
	p = kvm_mips_build_vcpu_run(p);

	/* Dump the generated code */
	pr_debug("#include <asm/asm.h>\n");
	pr_debug("#include <asm/regdef.h>\n");
	pr_debug("\n");
	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
	dump_handler("kvm_tlb_refill", refill_start, refill_end);
	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);

	/* Invalidate the icache for these ranges */
	flush_icache_range((unsigned long)gebase,
			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));

	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;
	vcpu->arch.last_exec_cpu = -1;

	return vcpu;

out_free_gebase:
	kfree(gebase);

out_uninit_cpu:
	kvm_vcpu_uninit(vcpu);

out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

	kvm_mmu_free_memory_caches(vcpu);
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
	kfree(vcpu);
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
	return -ENOIOCTLCMD;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = -EINTR;

	vcpu_load(vcpu);

	kvm_sigset_activate(vcpu);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

	if (run->immediate_exit)
		goto out;

	lose_fpu(1);

	local_irq_disable();
	guest_enter_irqoff();
	trace_kvm_enter(vcpu);

	/*
	 * Make sure the read of VCPU requests in vcpu_run() callback is not
	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
	 * flush request while the requester sees the VCPU as outside of guest
	 * mode and not needing an IPI.
	 */
	smp_store_mb(vcpu->mode, IN_GUEST_MODE);

	r = kvm_mips_callbacks->vcpu_run(run, vcpu);

	trace_kvm_out(vcpu);
	guest_exit_irqoff();
	local_irq_enable();

out:
	kvm_sigset_deactivate(vcpu);

	vcpu_put(vcpu);
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

	if (swq_has_sleeper(&dvcpu->wq))
		swake_up_one(&dvcpu->wq);

	return 0;
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -ENOIOCTLCMD;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -ENOIOCTLCMD;
}

static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

#ifndef CONFIG_CPU_MIPSR6
	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
#endif
	KVM_REG_MIPS_PC,
};

static u64 kvm_mips_get_one_regs_fpu[] = {
	KVM_REG_MIPS_FCR_IR,
	KVM_REG_MIPS_FCR_CSR,
};

static u64 kvm_mips_get_one_regs_msa[] = {
	KVM_REG_MIPS_MSA_IR,
	KVM_REG_MIPS_MSA_CSR,
};

static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
{
	unsigned long ret;

	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
		/* odd doubles */
		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
			ret += 16;
	}
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
	ret += kvm_mips_callbacks->num_regs(vcpu);

	return ret;
}

static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
{
	u64 index;
	unsigned int i;

	if (copy_to_user(indices, kvm_mips_get_one_regs,
			 sizeof(kvm_mips_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_mips_get_one_regs);

	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
				 sizeof(kvm_mips_get_one_regs_fpu)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_FPR_32(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;

			/* skip odd doubles if no F64 */
			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
				continue;

			index = KVM_REG_MIPS_FPR_64(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
				 sizeof(kvm_mips_get_one_regs_msa)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_VEC_128(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
}

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	int ret;
	s64 v;
	s64 vs[2];
	unsigned int idx;

	switch (reg->id) {
	/* General purpose registers */
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
#ifndef CONFIG_CPU_MIPSR6
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
#endif
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Can't access MSA registers in FR=0 mode */
		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
#else
		/* most significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.msa_id;
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = fpu->msacsr;
		break;

	/* registers to be handled specially */
	default:
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
	}
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;

		return put_user(v32, uaddr32);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
	} else {
		return -EINVAL;
	}
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
	s64 vs[2];
	unsigned int idx;

	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
	} else {
		return -EINVAL;
	}

	switch (reg->id) {
	/* General purpose registers */
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
#ifndef CONFIG_CPU_MIPSR6
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
#endif
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
#else
		/* most significant byte first */
		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		fpu->msacsr = v;
		break;

	/* registers to be handled specially */
	default:
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
	}
	return 0;
}

static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
	case KVM_CAP_MIPS_MSA:
		vcpu->arch.msa_enabled = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
			       unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	if (ioctl == KVM_INTERRUPT) {
		struct kvm_mips_interrupt irq;

		if (copy_from_user(&irq, argp, sizeof(irq)))
			return -EFAULT;
		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
			  irq.irq);

		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
	}

	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	vcpu_load(vcpu);

	switch (ioctl) {
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;

		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_mips_set_reg(vcpu, &reg);
		else
			r = kvm_mips_get_reg(vcpu, &reg);
		break;
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			break;
		n = reg_list.n;
		reg_list.n = kvm_mips_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			break;
		r = -E2BIG;
		if (n < reg_list.n)
			break;
		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
		break;
	}
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
	default:
		r = -ENOIOCTLCMD;
	}

	vcpu_put(vcpu);
	return r;
}

/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	bool flush = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &flush);

	if (flush) {
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);

		/* Let implementation handle TLB/GVA invalidation */
		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
	}

	mutex_unlock(&kvm->slots_lock);
	return r;
}

int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	bool flush = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_clear_dirty_log_protect(kvm, log, &flush);

	if (flush) {
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);

		/* Let implementation handle TLB/GVA invalidation */
		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
	}

	mutex_unlock(&kvm->slots_lock);
	return r;
}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
		r = -ENOIOCTLCMD;
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

	return kvm_mips_emulation_init(&kvm_mips_callbacks);
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -ENOIOCTLCMD;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -ENOIOCTLCMD;
}

void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -ENOIOCTLCMD;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -ENOIOCTLCMD;
}

vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_ONE_REG:
	case KVM_CAP_ENABLE_CAP:
	case KVM_CAP_READONLY_MEM:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_IMMEDIATE_EXIT:
		r = 1;
		break;
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
	case KVM_CAP_MIPS_FPU:
		/* We don't handle systems with inconsistent cpu_has_fpu */
		r = !!raw_cpu_has_fpu;
		break;
	case KVM_CAP_MIPS_MSA:
		/*
		 * We don't support MSA vector partitioning yet:
		 * 1) It would require explicit support which can't be tested
		 *    yet due to lack of support in current hardware.
		 * 2) It extends the state that would need to be saved/restored
		 *    by e.g. QEMU for migration.
		 *
		 * When vector partitioning hardware becomes available, support
		 * could be added by requiring a flag when enabling
		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
		 * to save/restore the appropriate extra state.
		 */
		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
		break;
	default:
		r = kvm_mips_callbacks->check_extension(kvm, ext);
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu) ||
		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);

	for (i = 0; i < 32; i += 4) {
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);

	cop0 = vcpu->arch.cop0;
	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));

	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

	vcpu_load(vcpu);

	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
		vcpu->arch.gprs[i] = regs->gpr[i];
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

	vcpu_load(vcpu);

	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
		regs->gpr[i] = vcpu->arch.gprs[i];

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

	vcpu_put(vcpu);
	return 0;
}

static void kvm_mips_comparecount_func(unsigned long data)
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
	if (swq_has_sleeper(&vcpu->wq))
		swake_up_one(&vcpu->wq);
}

/* low level hrtimer wake routine */
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
	return kvm_mips_count_timeout(vcpu);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	int err;

	err = kvm_mips_callbacks->vcpu_init(vcpu);
	if (err)
		return err;

	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_uninit(vcpu);
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

static void kvm_mips_set_c0_status(void)
{
	u32 status = read_c0_status();

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	u32 cause = vcpu->arch.host_cp0_cause;
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	u32 inst;
	int ret = RESUME_GUEST;

	vcpu->mode = OUTSIDE_GUEST_MODE;

	/* re-enable HTW before enabling interrupts */
	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
		htw_start();

	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);
	trace_kvm_exit(vcpu, exccode);

	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
		/*
		 * Do a privilege check, if in UM most of these exit conditions
		 * end up causing an exception to be delivered to the Guest
		 * Kernel
		 */
		er = kvm_mips_check_privilege(cause, opc, run, vcpu);
		if (er == EMULATE_PRIV_FAIL) {
			goto skip_emul;
		} else if (er == EMULATE_FAIL) {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			ret = RESUME_HOST;
			goto skip_emul;
		}
	}

	switch (exccode) {
	case EXCCODE_INT:
		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);

		++vcpu->stat.int_exits;

		if (need_resched())
			cond_resched();

		ret = RESUME_GUEST;
		break;

	case EXCCODE_CPU:
		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);

		++vcpu->stat.cop_unusable_exits;
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
			ret = RESUME_HOST;
		break;

	case EXCCODE_MOD:
		++vcpu->stat.tlbmod_exits;
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

	case EXCCODE_TLBS:
		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);

		++vcpu->stat.tlbmiss_st_exits;
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

	case EXCCODE_TLBL:
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

	case EXCCODE_ADES:
		++vcpu->stat.addrerr_st_exits;
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

	case EXCCODE_ADEL:
		++vcpu->stat.addrerr_ld_exits;
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

	case EXCCODE_SYS:
		++vcpu->stat.syscall_exits;
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

	case EXCCODE_RI:
		++vcpu->stat.resvd_inst_exits;
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

	case EXCCODE_BP:
		++vcpu->stat.break_inst_exits;
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

	case EXCCODE_TR:
		++vcpu->stat.trap_inst_exits;
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

	case EXCCODE_MSAFPE:
		++vcpu->stat.msa_fpe_exits;
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

	case EXCCODE_FPE:
		++vcpu->stat.fpe_exits;
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

	case EXCCODE_MSADIS:
		++vcpu->stat.msa_disabled_exits;
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

	case EXCCODE_GE:
		/* defer exit accounting to handler */
		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
		break;

	default:
		if (cause & CAUSEF_BD)
			opc += 1;
		inst = 0;
		kvm_get_badinstr(opc, vcpu, &inst);
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
			exccode, opc, inst, badvaddr,
			kvm_read_c0_guest_status(vcpu->arch.cop0));
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (ret == RESUME_GUEST)
		kvm_vz_acquire_htimer(vcpu);

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
		/* Only check for signals if not already exiting to userspace */
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
		}
	}

	if (ret == RESUME_GUEST) {
		trace_kvm_reenter(vcpu);

		/*
		 * Make sure the read of VCPU requests in vcpu_reenter()
		 * callback is not reordered ahead of the write to vcpu->mode,
		 * or we could miss a TLB flush request while the requester sees
		 * the VCPU as outside of guest mode and not needing an IPI.
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

		kvm_mips_callbacks->vcpu_reenter(run, vcpu);

		/*
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
		 *
		 * This should be before returning to the guest exception
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
	}

	/* Disable HTW before returning to guest or host */
	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
		htw_stop();

	return ret;
}

/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
		kvm_lose_fpu(vcpu);

	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
		__kvm_restore_fpu(&vcpu->arch);
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
	} else {
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
	}

	preempt_enable();
}

#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
	case KVM_MIPS_AUX_FPU:
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
			      KVM_TRACE_AUX_FPU_MSA);
		break;
	default:
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
		disable_msa();
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
	}
	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
		clear_c0_status(ST0_CU1 | ST0_FR);
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
	}
	preempt_enable();
}

/* Save and disable FPU & MSA */
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
	 * is disabled in guest context (software), but the register state in
	 * the hardware may still be in use.
	 * This is why we explicitly re-enable the hardware before saving.
	 */

	preempt_disable();
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_config5(MIPS_CONF5_MSAEN);
			enable_fpu_hazard();
		}

		__kvm_save_msa(&vcpu->arch);
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);

		/* Disable MSA & FPU */
		disable_msa();
		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
			clear_c0_status(ST0_CU1 | ST0_FR);
			disable_fpu_hazard();
		}
		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_status(ST0_CU1);
			enable_fpu_hazard();
		}

		__kvm_save_fpu(&vcpu->arch);
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
		disable_fpu_hazard();
	}
	preempt_enable();
}

/*
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

static int __init kvm_mips_init(void)
{
	int ret;

	if (cpu_has_mmid) {
		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
		return -EOPNOTSUPP;
	}

	ret = kvm_mips_entry_setup();
	if (ret)
		return ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

	register_die_notifier(&kvm_mips_csr_die_notifier);

	return 0;
}

static void __exit kvm_mips_exit(void)
{
	kvm_exit();

	unregister_die_notifier(&kvm_mips_csr_die_notifier);
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);