Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 * Copyright 2010 Orex Computed Radiography
 */

/*
 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
 * to implement a Linux RTC. Times and alarms are truncated to seconds.
 * Since the RTC framework performs API locking via rtc->ops_lock the
 * only simultaneous accesses we need to deal with is updating DryIce
 * registers while servicing an alarm.
 *
 * Note that reading the DSR (DryIce Status Register) automatically clears
 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
 * LP (Low Power) domain and set the WCF upon completion. Writes to the
 * DIER (DryIce Interrupt Enable Register) are the only exception. These
 * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
 * not supported by the hardware.
 */

#include <linux/io.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/of.h>

/* DryIce Register Definitions */

#define DTCMR     0x00           /* Time Counter MSB Reg */
#define DTCLR     0x04           /* Time Counter LSB Reg */

#define DCAMR     0x08           /* Clock Alarm MSB Reg */
#define DCALR     0x0c           /* Clock Alarm LSB Reg */
#define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */

#define DCR       0x10           /* Control Reg */
#define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
#define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
#define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
#define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
#define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
#define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
#define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
#define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
#define DCR_TCE   (1 << 3)       /* Time Counter Enable */
#define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */

#define DSR       0x14           /* Status Reg */
#define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
#define DSR_ETBD  (1 << 22)      /* External tamper B detected */
#define DSR_ETAD  (1 << 21)      /* External tamper A detected */
#define DSR_EBD   (1 << 20)      /* External boot detected */
#define DSR_SAD   (1 << 19)      /* SCC alarm detected */
#define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
#define DSR_CTD   (1 << 17)      /* Clock tamper detected */
#define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
#define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
#define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
#define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
#define DSR_WEF   (1 << 7)       /* Write Error Flag */
#define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
#define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
#define DSR_TCO   (1 << 2)       /* time counter overflow */
#define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
#define DSR_SVF   (1 << 0)       /* Security Violation Flag */

#define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
#define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
#define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
#define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
#define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
#define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */

#define DMCR      0x1c           /* DryIce Monotonic Counter Reg */

#define DTCR      0x28           /* DryIce Tamper Configuration Reg */
#define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
#define DTCR_TOE  (1 << 8)       /* time overflow enabled */
#define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
#define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
#define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
#define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
#define DTCR_SAIE (1 << 3)       /* SCC enabled */
#define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
#define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
#define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */

#define DGPR      0x3c           /* DryIce General Purpose Reg */

/**
 * struct imxdi_dev - private imxdi rtc data
 * @pdev: pionter to platform dev
 * @rtc: pointer to rtc struct
 * @ioaddr: IO registers pointer
 * @clk: input reference clock
 * @dsr: copy of the DSR register
 * @irq_lock: interrupt enable register (DIER) lock
 * @write_wait: registers write complete queue
 * @write_mutex: serialize registers write
 * @work: schedule alarm work
 */
struct imxdi_dev {
	struct platform_device *pdev;
	struct rtc_device *rtc;
	void __iomem *ioaddr;
	struct clk *clk;
	u32 dsr;
	spinlock_t irq_lock;
	wait_queue_head_t write_wait;
	struct mutex write_mutex;
	struct work_struct work;
};

/* Some background:
 *
 * The DryIce unit is a complex security/tamper monitor device. To be able do
 * its job in a useful manner it runs a bigger statemachine to bring it into
 * security/tamper failure state and once again to bring it out of this state.
 *
 * This unit can be in one of three states:
 *
 * - "NON-VALID STATE"
 *   always after the battery power was removed
 * - "FAILURE STATE"
 *   if one of the enabled security events has happened
 * - "VALID STATE"
 *   if the unit works as expected
 *
 * Everything stops when the unit enters the failure state including the RTC
 * counter (to be able to detect the time the security event happened).
 *
 * The following events (when enabled) let the DryIce unit enter the failure
 * state:
 *
 * - wire-mesh-tamper detect
 * - external tamper B detect
 * - external tamper A detect
 * - temperature tamper detect
 * - clock tamper detect
 * - voltage tamper detect
 * - RTC counter overflow
 * - monotonic counter overflow
 * - external boot
 *
 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
 * can only detect this state. In this case the unit is completely locked and
 * must force a second "SYSTEM POR" to bring the DryIce into the
 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
 * a battery power cycle is required.
 *
 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
 * task, we bring back this unit into life.
 */

/*
 * Do a write into the unit without interrupt support.
 * We do not need to check the WEF here, because the only reason this kind of
 * write error can happen is if we write to the unit twice within the 122 us
 * interval. This cannot happen, since we are using this function only while
 * setting up the unit.
 */
static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
			       unsigned reg)
{
	/* do the register write */
	writel(val, imxdi->ioaddr + reg);

	/*
	 * now it takes four 32,768 kHz clock cycles to take
	 * the change into effect = 122 us
	 */
	usleep_range(130, 200);
}

static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
{
	u32 dtcr;

	dtcr = readl(imxdi->ioaddr + DTCR);

	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
	/* the following flags force a transition into the "FAILURE STATE" */
	if (dsr & DSR_VTD)
		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
			  dtcr & DTCR_VTE ? "" : "Spurious ");

	if (dsr & DSR_CTD)
		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
			  dtcr & DTCR_CTE ? "" : "Spurious ");

	if (dsr & DSR_TTD)
		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
			  dtcr & DTCR_TTE ? "" : "Spurious ");

	if (dsr & DSR_SAD)
		dev_emerg(&imxdi->pdev->dev,
			  "%sSecure Controller Alarm Event\n",
			  dtcr & DTCR_SAIE ? "" : "Spurious ");

	if (dsr & DSR_EBD)
		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
			  dtcr & DTCR_EBE ? "" : "Spurious ");

	if (dsr & DSR_ETAD)
		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
			  dtcr & DTCR_ETAE ? "" : "Spurious ");

	if (dsr & DSR_ETBD)
		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
			  dtcr & DTCR_ETBE ? "" : "Spurious ");

	if (dsr & DSR_WTD)
		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
			  dtcr & DTCR_WTE ? "" : "Spurious ");

	if (dsr & DSR_MCO)
		dev_emerg(&imxdi->pdev->dev,
			  "%sMonotonic-counter Overflow Event\n",
			  dtcr & DTCR_MOE ? "" : "Spurious ");

	if (dsr & DSR_TCO)
		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
			  dtcr & DTCR_TOE ? "" : "Spurious ");
}

static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
				  const char *power_supply)
{
	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
		  power_supply);
}

static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
{
	u32 dcr;

	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);

	/* report the cause */
	di_report_tamper_info(imxdi, dsr);

	dcr = readl(imxdi->ioaddr + DCR);

	if (dcr & DCR_FSHL) {
		/* we are out of luck */
		di_what_is_to_be_done(imxdi, "battery");
		return -ENODEV;
	}
	/*
	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
	 * into the "NON-VALID STATE" + "FAILURE STATE"
	 */
	di_what_is_to_be_done(imxdi, "main");

	return -ENODEV;
}

static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
{
	/* initialize alarm */
	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
	di_write_busy_wait(imxdi, 0, DCALR);

	/* clear alarm flag */
	if (dsr & DSR_CAF)
		di_write_busy_wait(imxdi, DSR_CAF, DSR);

	return 0;
}

static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
{
	u32 dcr, sec;

	/*
	 * lets disable all sources which can force the DryIce unit into
	 * the "FAILURE STATE" for now
	 */
	di_write_busy_wait(imxdi, 0x00000000, DTCR);
	/* and lets protect them at runtime from any change */
	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);

	sec = readl(imxdi->ioaddr + DTCMR);
	if (sec != 0)
		dev_warn(&imxdi->pdev->dev,
			 "The security violation has happened at %u seconds\n",
			 sec);
	/*
	 * the timer cannot be set/modified if
	 * - the TCHL or TCSL bit is set in DCR
	 */
	dcr = readl(imxdi->ioaddr + DCR);
	if (!(dcr & DCR_TCE)) {
		if (dcr & DCR_TCHL) {
			/* we are out of luck */
			di_what_is_to_be_done(imxdi, "battery");
			return -ENODEV;
		}
		if (dcr & DCR_TCSL) {
			di_what_is_to_be_done(imxdi, "main");
			return -ENODEV;
		}
	}
	/*
	 * - the timer counter stops/is stopped if
	 *   - its overflow flag is set (TCO in DSR)
	 *      -> clear overflow bit to make it count again
	 *   - NVF is set in DSR
	 *      -> clear non-valid bit to make it count again
	 *   - its TCE (DCR) is cleared
	 *      -> set TCE to make it count
	 *   - it was never set before
	 *      -> write a time into it (required again if the NVF was set)
	 */
	/* state handled */
	di_write_busy_wait(imxdi, DSR_NVF, DSR);
	/* clear overflow flag */
	di_write_busy_wait(imxdi, DSR_TCO, DSR);
	/* enable the counter */
	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
	/* set and trigger it to make it count */
	di_write_busy_wait(imxdi, sec, DTCMR);

	/* now prepare for the valid state */
	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
}

static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
{
	u32 dcr;

	/*
	 * now we must first remove the tamper sources in order to get the
	 * device out of the "FAILURE STATE"
	 * To disable any of the following sources we need to modify the DTCR
	 */
	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
		dcr = __raw_readl(imxdi->ioaddr + DCR);
		if (dcr & DCR_TDCHL) {
			/*
			 * the tamper register is locked. We cannot disable the
			 * tamper detection. The TDCHL can only be reset by a
			 * DRYICE POR, but we cannot force a DRYICE POR in
			 * softwere because we are still in "FAILURE STATE".
			 * We need a DRYICE POR via battery power cycling....
			 */
			/*
			 * out of luck!
			 * we cannot disable them without a DRYICE POR
			 */
			di_what_is_to_be_done(imxdi, "battery");
			return -ENODEV;
		}
		if (dcr & DCR_TDCSL) {
			/* a soft lock can be removed by a SYSTEM POR */
			di_what_is_to_be_done(imxdi, "main");
			return -ENODEV;
		}
	}

	/* disable all sources */
	di_write_busy_wait(imxdi, 0x00000000, DTCR);

	/* clear the status bits now */
	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
			DSR_MCO | DSR_TCO), DSR);

	dsr = readl(imxdi->ioaddr + DSR);
	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
			DSR_WCF | DSR_WEF)) != 0)
		dev_warn(&imxdi->pdev->dev,
			 "There are still some sources of pain in DSR: %08x!\n",
			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
				 DSR_WCF | DSR_WEF));

	/*
	 * now we are trying to clear the "Security-violation flag" to
	 * get the DryIce out of this state
	 */
	di_write_busy_wait(imxdi, DSR_SVF, DSR);

	/* success? */
	dsr = readl(imxdi->ioaddr + DSR);
	if (dsr & DSR_SVF) {
		dev_crit(&imxdi->pdev->dev,
			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
		/* last resort */
		di_what_is_to_be_done(imxdi, "battery");
		return -ENODEV;
	}

	/*
	 * now we have left the "FAILURE STATE" and ending up in the
	 * "NON-VALID STATE" time to recover everything
	 */
	return di_handle_invalid_state(imxdi, dsr);
}

static int di_handle_state(struct imxdi_dev *imxdi)
{
	int rc;
	u32 dsr;

	dsr = readl(imxdi->ioaddr + DSR);

	switch (dsr & (DSR_NVF | DSR_SVF)) {
	case DSR_NVF:
		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
		rc = di_handle_invalid_state(imxdi, dsr);
		break;
	case DSR_SVF:
		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
		rc = di_handle_failure_state(imxdi, dsr);
		break;
	case DSR_NVF | DSR_SVF:
		dev_warn(&imxdi->pdev->dev,
			 "Failure+Invalid stated unit detected\n");
		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
		break;
	default:
		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
		rc = di_handle_valid_state(imxdi, dsr);
	}

	return rc;
}

/*
 * enable a dryice interrupt
 */
static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
{
	unsigned long flags;

	spin_lock_irqsave(&imxdi->irq_lock, flags);
	writel(readl(imxdi->ioaddr + DIER) | intr,
	       imxdi->ioaddr + DIER);
	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
}

/*
 * disable a dryice interrupt
 */
static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
{
	unsigned long flags;

	spin_lock_irqsave(&imxdi->irq_lock, flags);
	writel(readl(imxdi->ioaddr + DIER) & ~intr,
	       imxdi->ioaddr + DIER);
	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
}

/*
 * This function attempts to clear the dryice write-error flag.
 *
 * A dryice write error is similar to a bus fault and should not occur in
 * normal operation.  Clearing the flag requires another write, so the root
 * cause of the problem may need to be fixed before the flag can be cleared.
 */
static void clear_write_error(struct imxdi_dev *imxdi)
{
	int cnt;

	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");

	/* clear the write error flag */
	writel(DSR_WEF, imxdi->ioaddr + DSR);

	/* wait for it to take effect */
	for (cnt = 0; cnt < 1000; cnt++) {
		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
			return;
		udelay(10);
	}
	dev_err(&imxdi->pdev->dev,
			"ERROR: Cannot clear write-error flag!\n");
}

/*
 * Write a dryice register and wait until it completes.
 *
 * This function uses interrupts to determine when the
 * write has completed.
 */
static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
{
	int ret;
	int rc = 0;

	/* serialize register writes */
	mutex_lock(&imxdi->write_mutex);

	/* enable the write-complete interrupt */
	di_int_enable(imxdi, DIER_WCIE);

	imxdi->dsr = 0;

	/* do the register write */
	writel(val, imxdi->ioaddr + reg);

	/* wait for the write to finish */
	ret = wait_event_interruptible_timeout(imxdi->write_wait,
			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
	if (ret < 0) {
		rc = ret;
		goto out;
	} else if (ret == 0) {
		dev_warn(&imxdi->pdev->dev,
				"Write-wait timeout "
				"val = 0x%08x reg = 0x%08x\n", val, reg);
	}

	/* check for write error */
	if (imxdi->dsr & DSR_WEF) {
		clear_write_error(imxdi);
		rc = -EIO;
	}

out:
	mutex_unlock(&imxdi->write_mutex);

	return rc;
}

/*
 * read the seconds portion of the current time from the dryice time counter
 */
static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
	unsigned long now;

	now = readl(imxdi->ioaddr + DTCMR);
	rtc_time64_to_tm(now, tm);

	return 0;
}

/*
 * set the seconds portion of dryice time counter and clear the
 * fractional part.
 */
static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
	u32 dcr, dsr;
	int rc;

	dcr = readl(imxdi->ioaddr + DCR);
	dsr = readl(imxdi->ioaddr + DSR);

	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
		if (dcr & DCR_TCHL) {
			/* we are even more out of luck */
			di_what_is_to_be_done(imxdi, "battery");
			return -EPERM;
		}
		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
			/* we are out of luck for now */
			di_what_is_to_be_done(imxdi, "main");
			return -EPERM;
		}
	}

	/* zero the fractional part first */
	rc = di_write_wait(imxdi, 0, DTCLR);
	if (rc != 0)
		return rc;

	rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
	if (rc != 0)
		return rc;

	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
}

static int dryice_rtc_alarm_irq_enable(struct device *dev,
		unsigned int enabled)
{
	struct imxdi_dev *imxdi = dev_get_drvdata(dev);

	if (enabled)
		di_int_enable(imxdi, DIER_CAIE);
	else
		di_int_disable(imxdi, DIER_CAIE);

	return 0;
}

/*
 * read the seconds portion of the alarm register.
 * the fractional part of the alarm register is always zero.
 */
static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
	u32 dcamr;

	dcamr = readl(imxdi->ioaddr + DCAMR);
	rtc_time64_to_tm(dcamr, &alarm->time);

	/* alarm is enabled if the interrupt is enabled */
	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;

	/* don't allow the DSR read to mess up DSR_WCF */
	mutex_lock(&imxdi->write_mutex);

	/* alarm is pending if the alarm flag is set */
	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;

	mutex_unlock(&imxdi->write_mutex);

	return 0;
}

/*
 * set the seconds portion of dryice alarm register
 */
static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
	int rc;

	/* write the new alarm time */
	rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
	if (rc)
		return rc;

	if (alarm->enabled)
		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
	else
		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */

	return 0;
}

static const struct rtc_class_ops dryice_rtc_ops = {
	.read_time		= dryice_rtc_read_time,
	.set_time		= dryice_rtc_set_time,
	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
	.read_alarm		= dryice_rtc_read_alarm,
	.set_alarm		= dryice_rtc_set_alarm,
};

/*
 * interrupt handler for dryice "normal" and security violation interrupt
 */
static irqreturn_t dryice_irq(int irq, void *dev_id)
{
	struct imxdi_dev *imxdi = dev_id;
	u32 dsr, dier;
	irqreturn_t rc = IRQ_NONE;

	dier = readl(imxdi->ioaddr + DIER);
	dsr = readl(imxdi->ioaddr + DSR);

	/* handle the security violation event */
	if (dier & DIER_SVIE) {
		if (dsr & DSR_SVF) {
			/*
			 * Disable the interrupt when this kind of event has
			 * happened.
			 * There cannot be more than one event of this type,
			 * because it needs a complex state change
			 * including a main power cycle to get again out of
			 * this state.
			 */
			di_int_disable(imxdi, DIER_SVIE);
			/* report the violation */
			di_report_tamper_info(imxdi, dsr);
			rc = IRQ_HANDLED;
		}
	}

	/* handle write complete and write error cases */
	if (dier & DIER_WCIE) {
		/*If the write wait queue is empty then there is no pending
		  operations. It means the interrupt is for DryIce -Security.
		  IRQ must be returned as none.*/
		if (list_empty_careful(&imxdi->write_wait.head))
			return rc;

		/* DSR_WCF clears itself on DSR read */
		if (dsr & (DSR_WCF | DSR_WEF)) {
			/* mask the interrupt */
			di_int_disable(imxdi, DIER_WCIE);

			/* save the dsr value for the wait queue */
			imxdi->dsr |= dsr;

			wake_up_interruptible(&imxdi->write_wait);
			rc = IRQ_HANDLED;
		}
	}

	/* handle the alarm case */
	if (dier & DIER_CAIE) {
		/* DSR_WCF clears itself on DSR read */
		if (dsr & DSR_CAF) {
			/* mask the interrupt */
			di_int_disable(imxdi, DIER_CAIE);

			/* finish alarm in user context */
			schedule_work(&imxdi->work);
			rc = IRQ_HANDLED;
		}
	}
	return rc;
}

/*
 * post the alarm event from user context so it can sleep
 * on the write completion.
 */
static void dryice_work(struct work_struct *work)
{
	struct imxdi_dev *imxdi = container_of(work,
			struct imxdi_dev, work);

	/* dismiss the interrupt (ignore error) */
	di_write_wait(imxdi, DSR_CAF, DSR);

	/* pass the alarm event to the rtc framework. */
	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
}

/*
 * probe for dryice rtc device
 */
static int __init dryice_rtc_probe(struct platform_device *pdev)
{
	struct imxdi_dev *imxdi;
	int norm_irq, sec_irq;
	int rc;

	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
	if (!imxdi)
		return -ENOMEM;

	imxdi->pdev = pdev;

	imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(imxdi->ioaddr))
		return PTR_ERR(imxdi->ioaddr);

	spin_lock_init(&imxdi->irq_lock);

	norm_irq = platform_get_irq(pdev, 0);
	if (norm_irq < 0)
		return norm_irq;

	/* the 2nd irq is the security violation irq
	 * make this optional, don't break the device tree ABI
	 */
	sec_irq = platform_get_irq(pdev, 1);
	if (sec_irq <= 0)
		sec_irq = IRQ_NOTCONNECTED;

	init_waitqueue_head(&imxdi->write_wait);

	INIT_WORK(&imxdi->work, dryice_work);

	mutex_init(&imxdi->write_mutex);

	imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(imxdi->rtc))
		return PTR_ERR(imxdi->rtc);

	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(imxdi->clk))
		return PTR_ERR(imxdi->clk);
	rc = clk_prepare_enable(imxdi->clk);
	if (rc)
		return rc;

	/*
	 * Initialize dryice hardware
	 */

	/* mask all interrupts */
	writel(0, imxdi->ioaddr + DIER);

	rc = di_handle_state(imxdi);
	if (rc != 0)
		goto err;

	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
			      IRQF_SHARED, pdev->name, imxdi);
	if (rc) {
		dev_warn(&pdev->dev, "interrupt not available.\n");
		goto err;
	}

	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
			      IRQF_SHARED, pdev->name, imxdi);
	if (rc) {
		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
		/* this is not an error, see above */
	}

	platform_set_drvdata(pdev, imxdi);

	imxdi->rtc->ops = &dryice_rtc_ops;
	imxdi->rtc->range_max = U32_MAX;

	rc = rtc_register_device(imxdi->rtc);
	if (rc)
		goto err;

	return 0;

err:
	clk_disable_unprepare(imxdi->clk);

	return rc;
}

static int __exit dryice_rtc_remove(struct platform_device *pdev)
{
	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);

	flush_work(&imxdi->work);

	/* mask all interrupts */
	writel(0, imxdi->ioaddr + DIER);

	clk_disable_unprepare(imxdi->clk);

	return 0;
}

#ifdef CONFIG_OF
static const struct of_device_id dryice_dt_ids[] = {
	{ .compatible = "fsl,imx25-rtc" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, dryice_dt_ids);
#endif

static struct platform_driver dryice_rtc_driver = {
	.driver = {
		   .name = "imxdi_rtc",
		   .of_match_table = of_match_ptr(dryice_dt_ids),
		   },
	.remove = __exit_p(dryice_rtc_remove),
};

module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");