Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Calculate a CRC T10DIF  with vpmsum acceleration
 *
 * Constants generated by crc32-vpmsum, available at
 * https://github.com/antonblanchard/crc32-vpmsum
 *
 * crc32-vpmsum is
 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
 */
	.section	.rodata
.balign 16

.byteswap_constant:
	/* byte reverse permute constant */
	.octa 0x0F0E0D0C0B0A09080706050403020100

.constants:

	/* Reduce 262144 kbits to 1024 bits */
	/* x^261184 mod p(x), x^261120 mod p(x) */
	.octa 0x0000000056d300000000000052550000

	/* x^260160 mod p(x), x^260096 mod p(x) */
	.octa 0x00000000ee67000000000000a1e40000

	/* x^259136 mod p(x), x^259072 mod p(x) */
	.octa 0x0000000060830000000000004ad10000

	/* x^258112 mod p(x), x^258048 mod p(x) */
	.octa 0x000000008cfe0000000000009ab40000

	/* x^257088 mod p(x), x^257024 mod p(x) */
	.octa 0x000000003e93000000000000fdb50000

	/* x^256064 mod p(x), x^256000 mod p(x) */
	.octa 0x000000003c2000000000000045480000

	/* x^255040 mod p(x), x^254976 mod p(x) */
	.octa 0x00000000b1fc0000000000008d690000

	/* x^254016 mod p(x), x^253952 mod p(x) */
	.octa 0x00000000f82b00000000000024ad0000

	/* x^252992 mod p(x), x^252928 mod p(x) */
	.octa 0x0000000044420000000000009f1a0000

	/* x^251968 mod p(x), x^251904 mod p(x) */
	.octa 0x00000000e88c00000000000066ec0000

	/* x^250944 mod p(x), x^250880 mod p(x) */
	.octa 0x00000000385c000000000000c87d0000

	/* x^249920 mod p(x), x^249856 mod p(x) */
	.octa 0x000000003227000000000000c8ff0000

	/* x^248896 mod p(x), x^248832 mod p(x) */
	.octa 0x00000000a9a900000000000033440000

	/* x^247872 mod p(x), x^247808 mod p(x) */
	.octa 0x00000000abaa00000000000066eb0000

	/* x^246848 mod p(x), x^246784 mod p(x) */
	.octa 0x000000001ac3000000000000c4ef0000

	/* x^245824 mod p(x), x^245760 mod p(x) */
	.octa 0x0000000063f000000000000056f30000

	/* x^244800 mod p(x), x^244736 mod p(x) */
	.octa 0x0000000032cc00000000000002050000

	/* x^243776 mod p(x), x^243712 mod p(x) */
	.octa 0x00000000f8b5000000000000568e0000

	/* x^242752 mod p(x), x^242688 mod p(x) */
	.octa 0x000000008db100000000000064290000

	/* x^241728 mod p(x), x^241664 mod p(x) */
	.octa 0x0000000059ca0000000000006b660000

	/* x^240704 mod p(x), x^240640 mod p(x) */
	.octa 0x000000005f5c00000000000018f80000

	/* x^239680 mod p(x), x^239616 mod p(x) */
	.octa 0x0000000061af000000000000b6090000

	/* x^238656 mod p(x), x^238592 mod p(x) */
	.octa 0x00000000e29e000000000000099a0000

	/* x^237632 mod p(x), x^237568 mod p(x) */
	.octa 0x000000000975000000000000a8360000

	/* x^236608 mod p(x), x^236544 mod p(x) */
	.octa 0x0000000043900000000000004f570000

	/* x^235584 mod p(x), x^235520 mod p(x) */
	.octa 0x00000000f9cd000000000000134c0000

	/* x^234560 mod p(x), x^234496 mod p(x) */
	.octa 0x000000007c29000000000000ec380000

	/* x^233536 mod p(x), x^233472 mod p(x) */
	.octa 0x000000004c6a000000000000b0d10000

	/* x^232512 mod p(x), x^232448 mod p(x) */
	.octa 0x00000000e7290000000000007d3e0000

	/* x^231488 mod p(x), x^231424 mod p(x) */
	.octa 0x00000000f1ab000000000000f0b20000

	/* x^230464 mod p(x), x^230400 mod p(x) */
	.octa 0x0000000039db0000000000009c270000

	/* x^229440 mod p(x), x^229376 mod p(x) */
	.octa 0x000000005e2800000000000092890000

	/* x^228416 mod p(x), x^228352 mod p(x) */
	.octa 0x00000000d44e000000000000d5ee0000

	/* x^227392 mod p(x), x^227328 mod p(x) */
	.octa 0x00000000cd0a00000000000041f50000

	/* x^226368 mod p(x), x^226304 mod p(x) */
	.octa 0x00000000c5b400000000000010520000

	/* x^225344 mod p(x), x^225280 mod p(x) */
	.octa 0x00000000fd2100000000000042170000

	/* x^224320 mod p(x), x^224256 mod p(x) */
	.octa 0x000000002f2500000000000095c20000

	/* x^223296 mod p(x), x^223232 mod p(x) */
	.octa 0x000000001b0100000000000001ce0000

	/* x^222272 mod p(x), x^222208 mod p(x) */
	.octa 0x000000000d430000000000002aca0000

	/* x^221248 mod p(x), x^221184 mod p(x) */
	.octa 0x0000000030a6000000000000385e0000

	/* x^220224 mod p(x), x^220160 mod p(x) */
	.octa 0x00000000e37b0000000000006f7a0000

	/* x^219200 mod p(x), x^219136 mod p(x) */
	.octa 0x00000000873600000000000024320000

	/* x^218176 mod p(x), x^218112 mod p(x) */
	.octa 0x00000000e9fb000000000000bd9c0000

	/* x^217152 mod p(x), x^217088 mod p(x) */
	.octa 0x000000003b9500000000000054bc0000

	/* x^216128 mod p(x), x^216064 mod p(x) */
	.octa 0x00000000133e000000000000a4660000

	/* x^215104 mod p(x), x^215040 mod p(x) */
	.octa 0x00000000784500000000000079930000

	/* x^214080 mod p(x), x^214016 mod p(x) */
	.octa 0x00000000b9800000000000001bb80000

	/* x^213056 mod p(x), x^212992 mod p(x) */
	.octa 0x00000000687600000000000024400000

	/* x^212032 mod p(x), x^211968 mod p(x) */
	.octa 0x00000000aff300000000000029e10000

	/* x^211008 mod p(x), x^210944 mod p(x) */
	.octa 0x0000000024b50000000000005ded0000

	/* x^209984 mod p(x), x^209920 mod p(x) */
	.octa 0x0000000017e8000000000000b12e0000

	/* x^208960 mod p(x), x^208896 mod p(x) */
	.octa 0x00000000128400000000000026d20000

	/* x^207936 mod p(x), x^207872 mod p(x) */
	.octa 0x000000002115000000000000a32a0000

	/* x^206912 mod p(x), x^206848 mod p(x) */
	.octa 0x000000009595000000000000a1210000

	/* x^205888 mod p(x), x^205824 mod p(x) */
	.octa 0x00000000281e000000000000ee8b0000

	/* x^204864 mod p(x), x^204800 mod p(x) */
	.octa 0x0000000006010000000000003d0d0000

	/* x^203840 mod p(x), x^203776 mod p(x) */
	.octa 0x00000000e2b600000000000034e90000

	/* x^202816 mod p(x), x^202752 mod p(x) */
	.octa 0x000000001bd40000000000004cdb0000

	/* x^201792 mod p(x), x^201728 mod p(x) */
	.octa 0x00000000df2800000000000030e90000

	/* x^200768 mod p(x), x^200704 mod p(x) */
	.octa 0x0000000049c200000000000042590000

	/* x^199744 mod p(x), x^199680 mod p(x) */
	.octa 0x000000009b97000000000000df950000

	/* x^198720 mod p(x), x^198656 mod p(x) */
	.octa 0x000000006184000000000000da7b0000

	/* x^197696 mod p(x), x^197632 mod p(x) */
	.octa 0x00000000461700000000000012510000

	/* x^196672 mod p(x), x^196608 mod p(x) */
	.octa 0x000000009b40000000000000f37e0000

	/* x^195648 mod p(x), x^195584 mod p(x) */
	.octa 0x00000000eeb2000000000000ecf10000

	/* x^194624 mod p(x), x^194560 mod p(x) */
	.octa 0x00000000b2e800000000000050f20000

	/* x^193600 mod p(x), x^193536 mod p(x) */
	.octa 0x00000000f59a000000000000e0b30000

	/* x^192576 mod p(x), x^192512 mod p(x) */
	.octa 0x00000000467f0000000000004d5a0000

	/* x^191552 mod p(x), x^191488 mod p(x) */
	.octa 0x00000000da92000000000000bb010000

	/* x^190528 mod p(x), x^190464 mod p(x) */
	.octa 0x000000001e1000000000000022a40000

	/* x^189504 mod p(x), x^189440 mod p(x) */
	.octa 0x0000000058fe000000000000836f0000

	/* x^188480 mod p(x), x^188416 mod p(x) */
	.octa 0x00000000b9ce000000000000d78d0000

	/* x^187456 mod p(x), x^187392 mod p(x) */
	.octa 0x0000000022210000000000004f8d0000

	/* x^186432 mod p(x), x^186368 mod p(x) */
	.octa 0x00000000744600000000000033760000

	/* x^185408 mod p(x), x^185344 mod p(x) */
	.octa 0x000000001c2e000000000000a1e50000

	/* x^184384 mod p(x), x^184320 mod p(x) */
	.octa 0x00000000dcc8000000000000a1a40000

	/* x^183360 mod p(x), x^183296 mod p(x) */
	.octa 0x00000000910f00000000000019a20000

	/* x^182336 mod p(x), x^182272 mod p(x) */
	.octa 0x0000000055d5000000000000f6ae0000

	/* x^181312 mod p(x), x^181248 mod p(x) */
	.octa 0x00000000c8ba000000000000a7ac0000

	/* x^180288 mod p(x), x^180224 mod p(x) */
	.octa 0x0000000031f8000000000000eea20000

	/* x^179264 mod p(x), x^179200 mod p(x) */
	.octa 0x000000001966000000000000c4d90000

	/* x^178240 mod p(x), x^178176 mod p(x) */
	.octa 0x00000000b9810000000000002b470000

	/* x^177216 mod p(x), x^177152 mod p(x) */
	.octa 0x000000008303000000000000f7cf0000

	/* x^176192 mod p(x), x^176128 mod p(x) */
	.octa 0x000000002ce500000000000035b30000

	/* x^175168 mod p(x), x^175104 mod p(x) */
	.octa 0x000000002fae0000000000000c7c0000

	/* x^174144 mod p(x), x^174080 mod p(x) */
	.octa 0x00000000f50c0000000000009edf0000

	/* x^173120 mod p(x), x^173056 mod p(x) */
	.octa 0x00000000714f00000000000004cd0000

	/* x^172096 mod p(x), x^172032 mod p(x) */
	.octa 0x00000000c161000000000000541b0000

	/* x^171072 mod p(x), x^171008 mod p(x) */
	.octa 0x0000000021c8000000000000e2700000

	/* x^170048 mod p(x), x^169984 mod p(x) */
	.octa 0x00000000b93d00000000000009a60000

	/* x^169024 mod p(x), x^168960 mod p(x) */
	.octa 0x00000000fbcf000000000000761c0000

	/* x^168000 mod p(x), x^167936 mod p(x) */
	.octa 0x0000000026350000000000009db30000

	/* x^166976 mod p(x), x^166912 mod p(x) */
	.octa 0x00000000b64f0000000000003e9f0000

	/* x^165952 mod p(x), x^165888 mod p(x) */
	.octa 0x00000000bd0e00000000000078590000

	/* x^164928 mod p(x), x^164864 mod p(x) */
	.octa 0x00000000d9360000000000008bc80000

	/* x^163904 mod p(x), x^163840 mod p(x) */
	.octa 0x000000002f140000000000008c9f0000

	/* x^162880 mod p(x), x^162816 mod p(x) */
	.octa 0x000000006a270000000000006af70000

	/* x^161856 mod p(x), x^161792 mod p(x) */
	.octa 0x000000006685000000000000e5210000

	/* x^160832 mod p(x), x^160768 mod p(x) */
	.octa 0x0000000062da00000000000008290000

	/* x^159808 mod p(x), x^159744 mod p(x) */
	.octa 0x00000000bb4b000000000000e4d00000

	/* x^158784 mod p(x), x^158720 mod p(x) */
	.octa 0x00000000d2490000000000004ae10000

	/* x^157760 mod p(x), x^157696 mod p(x) */
	.octa 0x00000000c85b00000000000000e70000

	/* x^156736 mod p(x), x^156672 mod p(x) */
	.octa 0x00000000c37a00000000000015650000

	/* x^155712 mod p(x), x^155648 mod p(x) */
	.octa 0x0000000018530000000000001c2f0000

	/* x^154688 mod p(x), x^154624 mod p(x) */
	.octa 0x00000000b46600000000000037bd0000

	/* x^153664 mod p(x), x^153600 mod p(x) */
	.octa 0x00000000439b00000000000012190000

	/* x^152640 mod p(x), x^152576 mod p(x) */
	.octa 0x00000000b1260000000000005ece0000

	/* x^151616 mod p(x), x^151552 mod p(x) */
	.octa 0x00000000d8110000000000002a5e0000

	/* x^150592 mod p(x), x^150528 mod p(x) */
	.octa 0x00000000099f00000000000052330000

	/* x^149568 mod p(x), x^149504 mod p(x) */
	.octa 0x00000000f9f9000000000000f9120000

	/* x^148544 mod p(x), x^148480 mod p(x) */
	.octa 0x000000005cc00000000000000ddc0000

	/* x^147520 mod p(x), x^147456 mod p(x) */
	.octa 0x00000000343b00000000000012200000

	/* x^146496 mod p(x), x^146432 mod p(x) */
	.octa 0x000000009222000000000000d12b0000

	/* x^145472 mod p(x), x^145408 mod p(x) */
	.octa 0x00000000d781000000000000eb2d0000

	/* x^144448 mod p(x), x^144384 mod p(x) */
	.octa 0x000000000bf400000000000058970000

	/* x^143424 mod p(x), x^143360 mod p(x) */
	.octa 0x00000000094200000000000013690000

	/* x^142400 mod p(x), x^142336 mod p(x) */
	.octa 0x00000000d55100000000000051950000

	/* x^141376 mod p(x), x^141312 mod p(x) */
	.octa 0x000000008f11000000000000954b0000

	/* x^140352 mod p(x), x^140288 mod p(x) */
	.octa 0x00000000140f000000000000b29e0000

	/* x^139328 mod p(x), x^139264 mod p(x) */
	.octa 0x00000000c6db000000000000db5d0000

	/* x^138304 mod p(x), x^138240 mod p(x) */
	.octa 0x00000000715b000000000000dfaf0000

	/* x^137280 mod p(x), x^137216 mod p(x) */
	.octa 0x000000000dea000000000000e3b60000

	/* x^136256 mod p(x), x^136192 mod p(x) */
	.octa 0x000000006f94000000000000ddaf0000

	/* x^135232 mod p(x), x^135168 mod p(x) */
	.octa 0x0000000024e1000000000000e4f70000

	/* x^134208 mod p(x), x^134144 mod p(x) */
	.octa 0x000000008810000000000000aa110000

	/* x^133184 mod p(x), x^133120 mod p(x) */
	.octa 0x0000000030c2000000000000a8e60000

	/* x^132160 mod p(x), x^132096 mod p(x) */
	.octa 0x00000000e6d0000000000000ccf30000

	/* x^131136 mod p(x), x^131072 mod p(x) */
	.octa 0x000000004da000000000000079bf0000

	/* x^130112 mod p(x), x^130048 mod p(x) */
	.octa 0x000000007759000000000000b3a30000

	/* x^129088 mod p(x), x^129024 mod p(x) */
	.octa 0x00000000597400000000000028790000

	/* x^128064 mod p(x), x^128000 mod p(x) */
	.octa 0x000000007acd000000000000b5820000

	/* x^127040 mod p(x), x^126976 mod p(x) */
	.octa 0x00000000e6e400000000000026ad0000

	/* x^126016 mod p(x), x^125952 mod p(x) */
	.octa 0x000000006d49000000000000985b0000

	/* x^124992 mod p(x), x^124928 mod p(x) */
	.octa 0x000000000f0800000000000011520000

	/* x^123968 mod p(x), x^123904 mod p(x) */
	.octa 0x000000002c7f000000000000846c0000

	/* x^122944 mod p(x), x^122880 mod p(x) */
	.octa 0x000000005ce7000000000000ae1d0000

	/* x^121920 mod p(x), x^121856 mod p(x) */
	.octa 0x00000000d4cb000000000000e21d0000

	/* x^120896 mod p(x), x^120832 mod p(x) */
	.octa 0x000000003a2300000000000019bb0000

	/* x^119872 mod p(x), x^119808 mod p(x) */
	.octa 0x000000000e1700000000000095290000

	/* x^118848 mod p(x), x^118784 mod p(x) */
	.octa 0x000000006e6400000000000050d20000

	/* x^117824 mod p(x), x^117760 mod p(x) */
	.octa 0x000000008d5c0000000000000cd10000

	/* x^116800 mod p(x), x^116736 mod p(x) */
	.octa 0x00000000ef310000000000007b570000

	/* x^115776 mod p(x), x^115712 mod p(x) */
	.octa 0x00000000645d00000000000053d60000

	/* x^114752 mod p(x), x^114688 mod p(x) */
	.octa 0x0000000018fc00000000000077510000

	/* x^113728 mod p(x), x^113664 mod p(x) */
	.octa 0x000000000cb3000000000000a7b70000

	/* x^112704 mod p(x), x^112640 mod p(x) */
	.octa 0x00000000991b000000000000d0780000

	/* x^111680 mod p(x), x^111616 mod p(x) */
	.octa 0x00000000845a000000000000be3c0000

	/* x^110656 mod p(x), x^110592 mod p(x) */
	.octa 0x00000000d3a9000000000000df020000

	/* x^109632 mod p(x), x^109568 mod p(x) */
	.octa 0x0000000017d7000000000000063e0000

	/* x^108608 mod p(x), x^108544 mod p(x) */
	.octa 0x000000007a860000000000008ab40000

	/* x^107584 mod p(x), x^107520 mod p(x) */
	.octa 0x00000000fd7c000000000000c7bd0000

	/* x^106560 mod p(x), x^106496 mod p(x) */
	.octa 0x00000000a56b000000000000efd60000

	/* x^105536 mod p(x), x^105472 mod p(x) */
	.octa 0x0000000010e400000000000071380000

	/* x^104512 mod p(x), x^104448 mod p(x) */
	.octa 0x00000000994500000000000004d30000

	/* x^103488 mod p(x), x^103424 mod p(x) */
	.octa 0x00000000b83c0000000000003b0e0000

	/* x^102464 mod p(x), x^102400 mod p(x) */
	.octa 0x00000000d6c10000000000008b020000

	/* x^101440 mod p(x), x^101376 mod p(x) */
	.octa 0x000000009efc000000000000da940000

	/* x^100416 mod p(x), x^100352 mod p(x) */
	.octa 0x000000005e87000000000000f9f70000

	/* x^99392 mod p(x), x^99328 mod p(x) */
	.octa 0x000000006c9b00000000000045e40000

	/* x^98368 mod p(x), x^98304 mod p(x) */
	.octa 0x00000000178a00000000000083940000

	/* x^97344 mod p(x), x^97280 mod p(x) */
	.octa 0x00000000f0c8000000000000f0a00000

	/* x^96320 mod p(x), x^96256 mod p(x) */
	.octa 0x00000000f699000000000000b74b0000

	/* x^95296 mod p(x), x^95232 mod p(x) */
	.octa 0x00000000316d000000000000c1cf0000

	/* x^94272 mod p(x), x^94208 mod p(x) */
	.octa 0x00000000987e00000000000072680000

	/* x^93248 mod p(x), x^93184 mod p(x) */
	.octa 0x00000000acff000000000000e0ab0000

	/* x^92224 mod p(x), x^92160 mod p(x) */
	.octa 0x00000000a1f6000000000000c5a80000

	/* x^91200 mod p(x), x^91136 mod p(x) */
	.octa 0x0000000061bd000000000000cf690000

	/* x^90176 mod p(x), x^90112 mod p(x) */
	.octa 0x00000000c9f2000000000000cbcc0000

	/* x^89152 mod p(x), x^89088 mod p(x) */
	.octa 0x000000005a33000000000000de050000

	/* x^88128 mod p(x), x^88064 mod p(x) */
	.octa 0x00000000e416000000000000ccd70000

	/* x^87104 mod p(x), x^87040 mod p(x) */
	.octa 0x0000000058930000000000002f670000

	/* x^86080 mod p(x), x^86016 mod p(x) */
	.octa 0x00000000a9d3000000000000152f0000

	/* x^85056 mod p(x), x^84992 mod p(x) */
	.octa 0x00000000c114000000000000ecc20000

	/* x^84032 mod p(x), x^83968 mod p(x) */
	.octa 0x00000000b9270000000000007c890000

	/* x^83008 mod p(x), x^82944 mod p(x) */
	.octa 0x000000002e6000000000000006ee0000

	/* x^81984 mod p(x), x^81920 mod p(x) */
	.octa 0x00000000dfc600000000000009100000

	/* x^80960 mod p(x), x^80896 mod p(x) */
	.octa 0x000000004911000000000000ad4e0000

	/* x^79936 mod p(x), x^79872 mod p(x) */
	.octa 0x00000000ae1b000000000000b04d0000

	/* x^78912 mod p(x), x^78848 mod p(x) */
	.octa 0x0000000005fa000000000000e9900000

	/* x^77888 mod p(x), x^77824 mod p(x) */
	.octa 0x0000000004a1000000000000cc6f0000

	/* x^76864 mod p(x), x^76800 mod p(x) */
	.octa 0x00000000af73000000000000ed110000

	/* x^75840 mod p(x), x^75776 mod p(x) */
	.octa 0x0000000082530000000000008f7e0000

	/* x^74816 mod p(x), x^74752 mod p(x) */
	.octa 0x00000000cfdc000000000000594f0000

	/* x^73792 mod p(x), x^73728 mod p(x) */
	.octa 0x00000000a6b6000000000000a8750000

	/* x^72768 mod p(x), x^72704 mod p(x) */
	.octa 0x00000000fd76000000000000aa0c0000

	/* x^71744 mod p(x), x^71680 mod p(x) */
	.octa 0x0000000006f500000000000071db0000

	/* x^70720 mod p(x), x^70656 mod p(x) */
	.octa 0x0000000037ca000000000000ab0c0000

	/* x^69696 mod p(x), x^69632 mod p(x) */
	.octa 0x00000000d7ab000000000000b7a00000

	/* x^68672 mod p(x), x^68608 mod p(x) */
	.octa 0x00000000440800000000000090d30000

	/* x^67648 mod p(x), x^67584 mod p(x) */
	.octa 0x00000000186100000000000054730000

	/* x^66624 mod p(x), x^66560 mod p(x) */
	.octa 0x000000007368000000000000a3a20000

	/* x^65600 mod p(x), x^65536 mod p(x) */
	.octa 0x0000000026d0000000000000f9040000

	/* x^64576 mod p(x), x^64512 mod p(x) */
	.octa 0x00000000fe770000000000009c0a0000

	/* x^63552 mod p(x), x^63488 mod p(x) */
	.octa 0x000000002cba000000000000d1e70000

	/* x^62528 mod p(x), x^62464 mod p(x) */
	.octa 0x00000000f8bd0000000000005ac10000

	/* x^61504 mod p(x), x^61440 mod p(x) */
	.octa 0x000000007372000000000000d68d0000

	/* x^60480 mod p(x), x^60416 mod p(x) */
	.octa 0x00000000f37f00000000000089f60000

	/* x^59456 mod p(x), x^59392 mod p(x) */
	.octa 0x00000000078400000000000008a90000

	/* x^58432 mod p(x), x^58368 mod p(x) */
	.octa 0x00000000d3e400000000000042360000

	/* x^57408 mod p(x), x^57344 mod p(x) */
	.octa 0x00000000eba800000000000092d50000

	/* x^56384 mod p(x), x^56320 mod p(x) */
	.octa 0x00000000afbe000000000000b4d50000

	/* x^55360 mod p(x), x^55296 mod p(x) */
	.octa 0x00000000d8ca000000000000c9060000

	/* x^54336 mod p(x), x^54272 mod p(x) */
	.octa 0x00000000c2d00000000000008f4f0000

	/* x^53312 mod p(x), x^53248 mod p(x) */
	.octa 0x00000000373200000000000028690000

	/* x^52288 mod p(x), x^52224 mod p(x) */
	.octa 0x0000000046ae000000000000c3b30000

	/* x^51264 mod p(x), x^51200 mod p(x) */
	.octa 0x00000000b243000000000000f8700000

	/* x^50240 mod p(x), x^50176 mod p(x) */
	.octa 0x00000000f7f500000000000029eb0000

	/* x^49216 mod p(x), x^49152 mod p(x) */
	.octa 0x000000000c7e000000000000fe730000

	/* x^48192 mod p(x), x^48128 mod p(x) */
	.octa 0x00000000c38200000000000096000000

	/* x^47168 mod p(x), x^47104 mod p(x) */
	.octa 0x000000008956000000000000683c0000

	/* x^46144 mod p(x), x^46080 mod p(x) */
	.octa 0x00000000422d0000000000005f1e0000

	/* x^45120 mod p(x), x^45056 mod p(x) */
	.octa 0x00000000ac0f0000000000006f810000

	/* x^44096 mod p(x), x^44032 mod p(x) */
	.octa 0x00000000ce30000000000000031f0000

	/* x^43072 mod p(x), x^43008 mod p(x) */
	.octa 0x000000003d43000000000000455a0000

	/* x^42048 mod p(x), x^41984 mod p(x) */
	.octa 0x000000007ebe000000000000a6050000

	/* x^41024 mod p(x), x^40960 mod p(x) */
	.octa 0x00000000976e00000000000077eb0000

	/* x^40000 mod p(x), x^39936 mod p(x) */
	.octa 0x000000000872000000000000389c0000

	/* x^38976 mod p(x), x^38912 mod p(x) */
	.octa 0x000000008979000000000000c7b20000

	/* x^37952 mod p(x), x^37888 mod p(x) */
	.octa 0x000000005c1e0000000000001d870000

	/* x^36928 mod p(x), x^36864 mod p(x) */
	.octa 0x00000000aebb00000000000045810000

	/* x^35904 mod p(x), x^35840 mod p(x) */
	.octa 0x000000004f7e0000000000006d4a0000

	/* x^34880 mod p(x), x^34816 mod p(x) */
	.octa 0x00000000ea98000000000000b9200000

	/* x^33856 mod p(x), x^33792 mod p(x) */
	.octa 0x00000000f39600000000000022f20000

	/* x^32832 mod p(x), x^32768 mod p(x) */
	.octa 0x000000000bc500000000000041ca0000

	/* x^31808 mod p(x), x^31744 mod p(x) */
	.octa 0x00000000786400000000000078500000

	/* x^30784 mod p(x), x^30720 mod p(x) */
	.octa 0x00000000be970000000000009e7e0000

	/* x^29760 mod p(x), x^29696 mod p(x) */
	.octa 0x00000000dd6d000000000000a53c0000

	/* x^28736 mod p(x), x^28672 mod p(x) */
	.octa 0x000000004c3f00000000000039340000

	/* x^27712 mod p(x), x^27648 mod p(x) */
	.octa 0x0000000093a4000000000000b58e0000

	/* x^26688 mod p(x), x^26624 mod p(x) */
	.octa 0x0000000050fb00000000000062d40000

	/* x^25664 mod p(x), x^25600 mod p(x) */
	.octa 0x00000000f505000000000000a26f0000

	/* x^24640 mod p(x), x^24576 mod p(x) */
	.octa 0x0000000064f900000000000065e60000

	/* x^23616 mod p(x), x^23552 mod p(x) */
	.octa 0x00000000e8c2000000000000aad90000

	/* x^22592 mod p(x), x^22528 mod p(x) */
	.octa 0x00000000720b000000000000a3b00000

	/* x^21568 mod p(x), x^21504 mod p(x) */
	.octa 0x00000000e992000000000000d2680000

	/* x^20544 mod p(x), x^20480 mod p(x) */
	.octa 0x000000009132000000000000cf4c0000

	/* x^19520 mod p(x), x^19456 mod p(x) */
	.octa 0x00000000608a00000000000076610000

	/* x^18496 mod p(x), x^18432 mod p(x) */
	.octa 0x000000009948000000000000fb9f0000

	/* x^17472 mod p(x), x^17408 mod p(x) */
	.octa 0x00000000173000000000000003770000

	/* x^16448 mod p(x), x^16384 mod p(x) */
	.octa 0x000000006fe300000000000004880000

	/* x^15424 mod p(x), x^15360 mod p(x) */
	.octa 0x00000000e15300000000000056a70000

	/* x^14400 mod p(x), x^14336 mod p(x) */
	.octa 0x0000000092d60000000000009dfd0000

	/* x^13376 mod p(x), x^13312 mod p(x) */
	.octa 0x0000000002fd00000000000074c80000

	/* x^12352 mod p(x), x^12288 mod p(x) */
	.octa 0x00000000c78b000000000000a3ec0000

	/* x^11328 mod p(x), x^11264 mod p(x) */
	.octa 0x000000009262000000000000b3530000

	/* x^10304 mod p(x), x^10240 mod p(x) */
	.octa 0x0000000084f200000000000047bf0000

	/* x^9280 mod p(x), x^9216 mod p(x) */
	.octa 0x0000000067ee000000000000e97c0000

	/* x^8256 mod p(x), x^8192 mod p(x) */
	.octa 0x00000000535b00000000000091e10000

	/* x^7232 mod p(x), x^7168 mod p(x) */
	.octa 0x000000007ebb00000000000055060000

	/* x^6208 mod p(x), x^6144 mod p(x) */
	.octa 0x00000000c6a1000000000000fd360000

	/* x^5184 mod p(x), x^5120 mod p(x) */
	.octa 0x000000001be500000000000055860000

	/* x^4160 mod p(x), x^4096 mod p(x) */
	.octa 0x00000000ae0e0000000000005bd00000

	/* x^3136 mod p(x), x^3072 mod p(x) */
	.octa 0x0000000022040000000000008db20000

	/* x^2112 mod p(x), x^2048 mod p(x) */
	.octa 0x00000000c9eb000000000000efe20000

	/* x^1088 mod p(x), x^1024 mod p(x) */
	.octa 0x0000000039b400000000000051d10000

.short_constants:

	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
	/* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
	.octa 0xefe20000dccf00009440000033590000

	/* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
	.octa 0xee6300002f3f000062180000e0ed0000

	/* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
	.octa 0xcf5f000017ef0000ccbe000023d30000

	/* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
	.octa 0x6d0c0000a30e00000920000042630000

	/* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
	.octa 0x21d30000932b0000a7a00000efcc0000

	/* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
	.octa 0x10be00000b310000666f00000d1c0000

	/* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
	.octa 0x1f240000ce9e0000caad0000589e0000

	/* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
	.octa 0x29610000d02b000039b400007cf50000

	/* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
	.octa 0x51d100009d9d00003c0e0000bfd60000

	/* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
	.octa 0xda390000ceae000013830000713c0000

	/* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
	.octa 0xb67800001e16000085c0000080a60000

	/* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
	.octa 0x0db40000f7f90000371d0000e6580000

	/* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
	.octa 0x87e70000044c0000aadb0000a4970000

	/* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
	.octa 0x1f990000ad180000d8b30000e7b50000

	/* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
	.octa 0xbe6c00006ee300004c1a000006df0000

	/* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
	.octa 0xfb0b00002d560000136800008bb70000


.barrett_constants:
	/* Barrett constant m - (4^32)/n */
	.octa 0x000000000000000000000001f65a57f8	/* x^64 div p(x) */
	/* Barrett constant n */
	.octa 0x0000000000000000000000018bb70000

#define CRC_FUNCTION_NAME __crct10dif_vpmsum
#include "crc32-vpmsum_core.S"