// SPDX-License-Identifier: GPL-2.0
/*
* Performance events support for SH-4A performance counters
*
* Copyright (C) 2009, 2010 Paul Mundt
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/perf_event.h>
#include <asm/processor.h>
#define PPC_CCBR(idx) (0xff200800 + (sizeof(u32) * idx))
#define PPC_PMCTR(idx) (0xfc100000 + (sizeof(u32) * idx))
#define CCBR_CIT_MASK (0x7ff << 6)
#define CCBR_DUC (1 << 3)
#define CCBR_CMDS (1 << 1)
#define CCBR_PPCE (1 << 0)
#ifdef [31mCONFIG_CPU_SHX3[0m
/*
* The PMCAT location for SH-X3 CPUs was quietly moved, while the CCBR
* and PMCTR locations remains tentatively constant. This change remains
* wholly undocumented, and was simply found through trial and error.
*
* Early cuts of SH-X3 still appear to use the SH-X/SH-X2 locations, and
* it's unclear when this ceased to be the case. For now we always use
* the new location (if future parts keep up with this trend then
* scanning for them at runtime also remains a viable option.)
*
* The gap in the register space also suggests that there are other
* undocumented counters, so this will need to be revisited at a later
* point in time.
*/
#define PPC_PMCAT 0xfc100240
#else
#define PPC_PMCAT 0xfc100080
#endif
#define PMCAT_OVF3 (1 << 27)
#define PMCAT_CNN3 (1 << 26)
#define PMCAT_CLR3 (1 << 25)
#define PMCAT_OVF2 (1 << 19)
#define PMCAT_CLR2 (1 << 17)
#define PMCAT_OVF1 (1 << 11)
#define PMCAT_CNN1 (1 << 10)
#define PMCAT_CLR1 (1 << 9)
#define PMCAT_OVF0 (1 << 3)
#define PMCAT_CLR0 (1 << 1)
static struct sh_pmu sh4a_pmu;
/*
* Supported raw event codes:
*
* Event Code Description
* ---------- -----------
*
* 0x0000 number of elapsed cycles
* 0x0200 number of elapsed cycles in privileged mode
* 0x0280 number of elapsed cycles while SR.BL is asserted
* 0x0202 instruction execution
* 0x0203 instruction execution in parallel
* 0x0204 number of unconditional branches
* 0x0208 number of exceptions
* 0x0209 number of interrupts
* 0x0220 UTLB miss caused by instruction fetch
* 0x0222 UTLB miss caused by operand access
* 0x02a0 number of ITLB misses
* 0x0028 number of accesses to instruction memories
* 0x0029 number of accesses to instruction cache
* 0x002a instruction cache miss
* 0x022e number of access to instruction X/Y memory
* 0x0030 number of reads to operand memories
* 0x0038 number of writes to operand memories
* 0x0031 number of operand cache read accesses
* 0x0039 number of operand cache write accesses
* 0x0032 operand cache read miss
* 0x003a operand cache write miss
* 0x0236 number of reads to operand X/Y memory
* 0x023e number of writes to operand X/Y memory
* 0x0237 number of reads to operand U memory
* 0x023f number of writes to operand U memory
* 0x0337 number of U memory read buffer misses
* 0x02b4 number of wait cycles due to operand read access
* 0x02bc number of wait cycles due to operand write access
* 0x0033 number of wait cycles due to operand cache read miss
* 0x003b number of wait cycles due to operand cache write miss
*/
/*
* Special reserved bits used by hardware emulators, read values will
* vary, but writes must always be 0.
*/
#define PMCAT_EMU_CLR_MASK ((1 << 24) | (1 << 16) | (1 << 8) | (1 << 0))
static const int sh4a_general_events[] = {
[PERF_COUNT_HW_CPU_CYCLES] = 0x0000,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x0202,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x0029, /* I-cache */
[PERF_COUNT_HW_CACHE_MISSES] = 0x002a, /* I-cache */
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x0204,
[PERF_COUNT_HW_BRANCH_MISSES] = -1,
[PERF_COUNT_HW_BUS_CYCLES] = -1,
};
#define C(x) PERF_COUNT_HW_CACHE_##x
static const int sh4a_cache_events
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0031,
[ C(RESULT_MISS) ] = 0x0032,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0039,
[ C(RESULT_MISS) ] = 0x003a,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0029,
[ C(RESULT_MISS) ] = 0x002a,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0030,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0038,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0222,
[ C(RESULT_MISS) ] = 0x0220,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0x02a0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static int sh4a_event_map(int event)
{
return sh4a_general_events[event];
}
static u64 sh4a_pmu_read(int idx)
{
return __raw_readl(PPC_PMCTR(idx));
}
static void sh4a_pmu_disable(struct hw_perf_event *hwc, int idx)
{
unsigned int tmp;
tmp = __raw_readl(PPC_CCBR(idx));
tmp &= ~(CCBR_CIT_MASK | CCBR_DUC);
__raw_writel(tmp, PPC_CCBR(idx));
}
static void sh4a_pmu_enable(struct hw_perf_event *hwc, int idx)
{
unsigned int tmp;
tmp = __raw_readl(PPC_PMCAT);
tmp &= ~PMCAT_EMU_CLR_MASK;
tmp |= idx ? PMCAT_CLR1 : PMCAT_CLR0;
__raw_writel(tmp, PPC_PMCAT);
tmp = __raw_readl(PPC_CCBR(idx));
tmp |= (hwc->config << 6) | CCBR_CMDS | CCBR_PPCE;
__raw_writel(tmp, PPC_CCBR(idx));
__raw_writel(__raw_readl(PPC_CCBR(idx)) | CCBR_DUC, PPC_CCBR(idx));
}
static void sh4a_pmu_disable_all(void)
{
int i;
for (i = 0; i < sh4a_pmu.num_events; i++)
__raw_writel(__raw_readl(PPC_CCBR(i)) & ~CCBR_DUC, PPC_CCBR(i));
}
static void sh4a_pmu_enable_all(void)
{
int i;
for (i = 0; i < sh4a_pmu.num_events; i++)
__raw_writel(__raw_readl(PPC_CCBR(i)) | CCBR_DUC, PPC_CCBR(i));
}
static struct sh_pmu sh4a_pmu = {
.name = "sh4a",
.num_events = 2,
.event_map = sh4a_event_map,
.max_events = ARRAY_SIZE(sh4a_general_events),
.raw_event_mask = 0x3ff,
.cache_events = &sh4a_cache_events,
.read = sh4a_pmu_read,
.disable = sh4a_pmu_disable,
.enable = sh4a_pmu_enable,
.disable_all = sh4a_pmu_disable_all,
.enable_all = sh4a_pmu_enable_all,
};
static int __init sh4a_pmu_init(void)
{
/*
* Make sure this CPU actually has perf counters.
*/
if (!(boot_cpu_data.flags & CPU_HAS_PERF_COUNTER)) {
pr_notice("HW perf events unsupported, software events only.\n");
return -ENODEV;
}
return register_sh_pmu(&sh4a_pmu);
}
early_initcall(sh4a_pmu_init);