// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2016-2018 Netronome Systems, Inc. */
#define pr_fmt(fmt) "NFP net bpf: " fmt
#include <linux/bug.h>
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/kernel.h>
#include <linux/pkt_cls.h>
#include <linux/reciprocal_div.h>
#include <linux/unistd.h>
#include "main.h"
#include "../nfp_asm.h"
#include "../nfp_net_ctrl.h"
/* --- NFP prog --- */
/* Foreach "multiple" entries macros provide pos and next<n> pointers.
* It's safe to modify the next pointers (but not pos).
*/
#define nfp_for_each_insn_walk2(nfp_prog, pos, next) \
for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
next = list_next_entry(pos, l); \
&(nfp_prog)->insns != &pos->l && \
&(nfp_prog)->insns != &next->l; \
pos = nfp_meta_next(pos), \
next = nfp_meta_next(pos))
#define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \
for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
next = list_next_entry(pos, l), \
next2 = list_next_entry(next, l); \
&(nfp_prog)->insns != &pos->l && \
&(nfp_prog)->insns != &next->l && \
&(nfp_prog)->insns != &next2->l; \
pos = nfp_meta_next(pos), \
next = nfp_meta_next(pos), \
next2 = nfp_meta_next(next))
static bool
nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return meta->l.prev != &nfp_prog->insns;
}
static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
{
if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
pr_warn("instruction limit reached (%u NFP instructions)\n",
nfp_prog->prog_len);
nfp_prog->error = -ENOSPC;
return;
}
nfp_prog->prog[nfp_prog->prog_len] = insn;
nfp_prog->prog_len++;
}
static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
{
return nfp_prog->prog_len;
}
static bool
nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
{
/* If there is a recorded error we may have dropped instructions;
* that doesn't have to be due to translator bug, and the translation
* will fail anyway, so just return OK.
*/
if (nfp_prog->error)
return true;
return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
}
/* --- Emitters --- */
static void
__emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
bool indir)
{
u64 insn;
insn = FIELD_PREP(OP_CMD_A_SRC, areg) |
FIELD_PREP(OP_CMD_CTX, ctx) |
FIELD_PREP(OP_CMD_B_SRC, breg) |
FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
FIELD_PREP(OP_CMD_XFER, xfer) |
FIELD_PREP(OP_CMD_CNT, size) |
FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
FIELD_PREP(OP_CMD_INDIR, indir) |
FIELD_PREP(OP_CMD_MODE, mode);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
{
struct nfp_insn_re_regs reg;
int err;
err = swreg_to_restricted(reg_none(), lreg, rreg, ®, false);
if (err) {
nfp_prog->error = err;
return;
}
if (reg.swap) {
pr_err("cmd can't swap arguments\n");
nfp_prog->error = -EFAULT;
return;
}
if (reg.dst_lmextn || reg.src_lmextn) {
pr_err("cmd can't use LMextn\n");
nfp_prog->error = -EFAULT;
return;
}
__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
indir);
}
static void
emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
{
emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
}
static void
emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
{
emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
}
static void
__emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
enum br_ctx_signal_state css, u16 addr, u8 defer)
{
u16 addr_lo, addr_hi;
u64 insn;
addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
addr_hi = addr != addr_lo;
insn = OP_BR_BASE |
FIELD_PREP(OP_BR_MASK, mask) |
FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
FIELD_PREP(OP_BR_CSS, css) |
FIELD_PREP(OP_BR_DEFBR, defer) |
FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
enum nfp_relo_type relo)
{
if (mask == BR_UNC && defer > 2) {
pr_err("BUG: branch defer out of bounds %d\n", defer);
nfp_prog->error = -EFAULT;
return;
}
__emit_br(nfp_prog, mask,
mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
BR_CSS_NONE, addr, defer);
nfp_prog->prog[nfp_prog->prog_len - 1] |=
FIELD_PREP(OP_RELO_TYPE, relo);
}
static void
emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
{
emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
}
static void
__emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
bool set, bool src_lmextn)
{
u16 addr_lo, addr_hi;
u64 insn;
addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
addr_hi = addr != addr_lo;
insn = OP_BR_BIT_BASE |
FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
FIELD_PREP(OP_BR_BIT_BV, set) |
FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
u8 defer, bool set, enum nfp_relo_type relo)
{
struct nfp_insn_re_regs reg;
int err;
/* NOTE: The bit to test is specified as an rotation amount, such that
* the bit to test will be placed on the MSB of the result when
* doing a rotate right. For bit X, we need right rotate X + 1.
*/
bit += 1;
err = swreg_to_restricted(reg_none(), src, reg_imm(bit), ®, false);
if (err) {
nfp_prog->error = err;
return;
}
__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
reg.src_lmextn);
nfp_prog->prog[nfp_prog->prog_len - 1] |=
FIELD_PREP(OP_RELO_TYPE, relo);
}
static void
emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
{
emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
}
static void
__emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
u8 defer, bool dst_lmextn, bool src_lmextn)
{
u64 insn;
insn = OP_BR_ALU_BASE |
FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
{
struct nfp_insn_ur_regs reg;
int err;
err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), ®);
if (err) {
nfp_prog->error = err;
return;
}
__emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
reg.src_lmextn);
}
static void
__emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
enum immed_width width, bool invert,
enum immed_shift shift, bool wr_both,
bool dst_lmextn, bool src_lmextn)
{
u64 insn;
insn = OP_IMMED_BASE |
FIELD_PREP(OP_IMMED_A_SRC, areg) |
FIELD_PREP(OP_IMMED_B_SRC, breg) |
FIELD_PREP(OP_IMMED_IMM, imm_hi) |
FIELD_PREP(OP_IMMED_WIDTH, width) |
FIELD_PREP(OP_IMMED_INV, invert) |
FIELD_PREP(OP_IMMED_SHIFT, shift) |
FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
enum immed_width width, bool invert, enum immed_shift shift)
{
struct nfp_insn_ur_regs reg;
int err;
if (swreg_type(dst) == NN_REG_IMM) {
nfp_prog->error = -EFAULT;
return;
}
err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), ®);
if (err) {
nfp_prog->error = err;
return;
}
/* Use reg.dst when destination is No-Dest. */
__emit_immed(nfp_prog,
swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
reg.breg, imm >> 8, width, invert, shift,
reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
}
static void
__emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
enum shf_sc sc, u8 shift,
u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
bool dst_lmextn, bool src_lmextn)
{
u64 insn;
if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
nfp_prog->error = -EFAULT;
return;
}
/* NFP shift instruction has something special. If shift direction is
* left then shift amount of 1 to 31 is specified as 32 minus the amount
* to shift.
*
* But no need to do this for indirect shift which has shift amount be
* 0. Even after we do this subtraction, shift amount 0 will be turned
* into 32 which will eventually be encoded the same as 0 because only
* low 5 bits are encoded, but shift amount be 32 will fail the
* FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
* mask range.
*/
if (sc == SHF_SC_L_SHF && shift)
shift = 32 - shift;
insn = OP_SHF_BASE |
FIELD_PREP(OP_SHF_A_SRC, areg) |
FIELD_PREP(OP_SHF_SC, sc) |
FIELD_PREP(OP_SHF_B_SRC, breg) |
FIELD_PREP(OP_SHF_I8, i8) |
FIELD_PREP(OP_SHF_SW, sw) |
FIELD_PREP(OP_SHF_DST, dst) |
FIELD_PREP(OP_SHF_SHIFT, shift) |
FIELD_PREP(OP_SHF_OP, op) |
FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
FIELD_PREP(OP_SHF_WR_AB, wr_both) |
FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_shf(struct nfp_prog *nfp_prog, swreg dst,
swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
{
struct nfp_insn_re_regs reg;
int err;
err = swreg_to_restricted(dst, lreg, rreg, ®, true);
if (err) {
nfp_prog->error = err;
return;
}
__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
reg.dst_lmextn, reg.src_lmextn);
}
static void
emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
{
if (sc == SHF_SC_R_ROT) {
pr_err("indirect shift is not allowed on rotation\n");
nfp_prog->error = -EFAULT;
return;
}
emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
}
static void
__emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
bool dst_lmextn, bool src_lmextn)
{
u64 insn;
insn = OP_ALU_BASE |
FIELD_PREP(OP_ALU_A_SRC, areg) |
FIELD_PREP(OP_ALU_B_SRC, breg) |
FIELD_PREP(OP_ALU_DST, dst) |
FIELD_PREP(OP_ALU_SW, swap) |
FIELD_PREP(OP_ALU_OP, op) |
FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
FIELD_PREP(OP_ALU_WR_AB, wr_both) |
FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_alu(struct nfp_prog *nfp_prog, swreg dst,
swreg lreg, enum alu_op op, swreg rreg)
{
struct nfp_insn_ur_regs reg;
int err;
err = swreg_to_unrestricted(dst, lreg, rreg, ®);
if (err) {
nfp_prog->error = err;
return;
}
__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
reg.areg, op, reg.breg, reg.swap, reg.wr_both,
reg.dst_lmextn, reg.src_lmextn);
}
static void
__emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
enum mul_type type, enum mul_step step, u16 breg, bool swap,
bool wr_both, bool dst_lmextn, bool src_lmextn)
{
u64 insn;
insn = OP_MUL_BASE |
FIELD_PREP(OP_MUL_A_SRC, areg) |
FIELD_PREP(OP_MUL_B_SRC, breg) |
FIELD_PREP(OP_MUL_STEP, step) |
FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
FIELD_PREP(OP_MUL_SW, swap) |
FIELD_PREP(OP_MUL_TYPE, type) |
FIELD_PREP(OP_MUL_WR_AB, wr_both) |
FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
enum mul_step step, swreg rreg)
{
struct nfp_insn_ur_regs reg;
u16 areg;
int err;
if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
nfp_prog->error = -EINVAL;
return;
}
if (step == MUL_LAST || step == MUL_LAST_2) {
/* When type is step and step Number is LAST or LAST2, left
* source is used as destination.
*/
err = swreg_to_unrestricted(lreg, reg_none(), rreg, ®);
areg = reg.dst;
} else {
err = swreg_to_unrestricted(reg_none(), lreg, rreg, ®);
areg = reg.areg;
}
if (err) {
nfp_prog->error = err;
return;
}
__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
}
static void
__emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
bool zero, bool swap, bool wr_both,
bool dst_lmextn, bool src_lmextn)
{
u64 insn;
insn = OP_LDF_BASE |
FIELD_PREP(OP_LDF_A_SRC, areg) |
FIELD_PREP(OP_LDF_SC, sc) |
FIELD_PREP(OP_LDF_B_SRC, breg) |
FIELD_PREP(OP_LDF_I8, imm8) |
FIELD_PREP(OP_LDF_SW, swap) |
FIELD_PREP(OP_LDF_ZF, zero) |
FIELD_PREP(OP_LDF_BMASK, bmask) |
FIELD_PREP(OP_LDF_SHF, shift) |
FIELD_PREP(OP_LDF_WR_AB, wr_both) |
FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void
emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
enum shf_sc sc, u8 shift, bool zero)
{
struct nfp_insn_re_regs reg;
int err;
/* Note: ld_field is special as it uses one of the src regs as dst */
err = swreg_to_restricted(dst, dst, src, ®, true);
if (err) {
nfp_prog->error = err;
return;
}
__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
reg.i8, zero, reg.swap, reg.wr_both,
reg.dst_lmextn, reg.src_lmextn);
}
static void
emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
enum shf_sc sc, u8 shift)
{
emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
}
static void
__emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
bool dst_lmextn, bool src_lmextn)
{
u64 insn;
insn = OP_LCSR_BASE |
FIELD_PREP(OP_LCSR_A_SRC, areg) |
FIELD_PREP(OP_LCSR_B_SRC, breg) |
FIELD_PREP(OP_LCSR_WRITE, wr) |
FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
nfp_prog_push(nfp_prog, insn);
}
static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
{
struct nfp_insn_ur_regs reg;
int err;
/* This instruction takes immeds instead of reg_none() for the ignored
* operand, but we can't encode 2 immeds in one instr with our normal
* swreg infra so if param is an immed, we encode as reg_none() and
* copy the immed to both operands.
*/
if (swreg_type(src) == NN_REG_IMM) {
err = swreg_to_unrestricted(reg_none(), src, reg_none(), ®);
reg.breg = reg.areg;
} else {
err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), ®);
}
if (err) {
nfp_prog->error = err;
return;
}
__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
false, reg.src_lmextn);
}
/* CSR value is read in following immed[gpr, 0] */
static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
{
__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
}
static void emit_nop(struct nfp_prog *nfp_prog)
{
__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
}
/* --- Wrappers --- */
static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
{
if (!(imm & 0xffff0000)) {
*val = imm;
*shift = IMMED_SHIFT_0B;
} else if (!(imm & 0xff0000ff)) {
*val = imm >> 8;
*shift = IMMED_SHIFT_1B;
} else if (!(imm & 0x0000ffff)) {
*val = imm >> 16;
*shift = IMMED_SHIFT_2B;
} else {
return false;
}
return true;
}
static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
{
enum immed_shift shift;
u16 val;
if (pack_immed(imm, &val, &shift)) {
emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
} else if (pack_immed(~imm, &val, &shift)) {
emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
} else {
emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
false, IMMED_SHIFT_0B);
emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
false, IMMED_SHIFT_2B);
}
}
static void
wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst)
{
if (meta->flags & FLAG_INSN_DO_ZEXT)
wrp_immed(nfp_prog, reg_both(dst + 1), 0);
}
static void
wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
enum nfp_relo_type relo)
{
if (imm > 0xffff) {
pr_err("relocation of a large immediate!\n");
nfp_prog->error = -EFAULT;
return;
}
emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
nfp_prog->prog[nfp_prog->prog_len - 1] |=
FIELD_PREP(OP_RELO_TYPE, relo);
}
/* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
* If the @imm is small enough encode it directly in operand and return
* otherwise load @imm to a spare register and return its encoding.
*/
static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
{
if (FIELD_FIT(UR_REG_IMM_MAX, imm))
return reg_imm(imm);
wrp_immed(nfp_prog, tmp_reg, imm);
return tmp_reg;
}
/* re_load_imm_any() - encode immediate or use tmp register (restricted)
* If the @imm is small enough encode it directly in operand and return
* otherwise load @imm to a spare register and return its encoding.
*/
static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
{
if (FIELD_FIT(RE_REG_IMM_MAX, imm))
return reg_imm(imm);
wrp_immed(nfp_prog, tmp_reg, imm);
return tmp_reg;
}
static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
{
while (count--)
emit_nop(nfp_prog);
}
static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
{
emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
}
static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
{
wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
}
/* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
* result to @dst from low end.
*/
static void
wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
u8 offset)
{
enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
u8 mask = (1 << field_len) - 1;
emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
}
/* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
* result to @dst from offset, there is no change on the other bits of @dst.
*/
static void
wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
u8 field_len, u8 offset)
{
enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
u8 mask = ((1 << field_len) - 1) << offset;
emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
}
static void
addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
swreg *rega, swreg *regb)
{
if (offset == reg_imm(0)) {
*rega = reg_a(src_gpr);
*regb = reg_b(src_gpr + 1);
return;
}
emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
reg_imm(0));
*rega = imm_a(nfp_prog);
*regb = imm_b(nfp_prog);
}
/* NFP has Command Push Pull bus which supports bluk memory operations. */
static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
bool descending_seq = meta->ldst_gather_len < 0;
s16 len = abs(meta->ldst_gather_len);
swreg src_base, off;
bool src_40bit_addr;
unsigned int i;
u8 xfer_num;
off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
src_base = reg_a(meta->insn.src_reg * 2);
xfer_num = round_up(len, 4) / 4;
if (src_40bit_addr)
addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
&off);
/* Setup PREV_ALU fields to override memory read length. */
if (len > 32)
wrp_immed(nfp_prog, reg_none(),
CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
/* Memory read from source addr into transfer-in registers. */
emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
/* Move from transfer-in to transfer-out. */
for (i = 0; i < xfer_num; i++)
wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
if (len <= 8) {
/* Use single direct_ref write8. */
emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
CMD_CTX_SWAP);
} else if (len <= 32 && IS_ALIGNED(len, 4)) {
/* Use single direct_ref write32. */
emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
CMD_CTX_SWAP);
} else if (len <= 32) {
/* Use single indirect_ref write8. */
wrp_immed(nfp_prog, reg_none(),
CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
reg_a(meta->paired_st->dst_reg * 2), off,
len - 1, CMD_CTX_SWAP);
} else if (IS_ALIGNED(len, 4)) {
/* Use single indirect_ref write32. */
wrp_immed(nfp_prog, reg_none(),
CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
reg_a(meta->paired_st->dst_reg * 2), off,
xfer_num - 1, CMD_CTX_SWAP);
} else if (len <= 40) {
/* Use one direct_ref write32 to write the first 32-bytes, then
* another direct_ref write8 to write the remaining bytes.
*/
emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
reg_a(meta->paired_st->dst_reg * 2), off, 7,
CMD_CTX_SWAP);
off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
imm_b(nfp_prog));
emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
CMD_CTX_SWAP);
} else {
/* Use one indirect_ref write32 to write 4-bytes aligned length,
* then another direct_ref write8 to write the remaining bytes.
*/
u8 new_off;
wrp_immed(nfp_prog, reg_none(),
CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
reg_a(meta->paired_st->dst_reg * 2), off,
xfer_num - 2, CMD_CTX_SWAP);
new_off = meta->paired_st->off + (xfer_num - 1) * 4;
off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
(len & 0x3) - 1, CMD_CTX_SWAP);
}
/* TODO: The following extra load is to make sure data flow be identical
* before and after we do memory copy optimization.
*
* The load destination register is not guaranteed to be dead, so we
* need to make sure it is loaded with the value the same as before
* this transformation.
*
* These extra loads could be removed once we have accurate register
* usage information.
*/
if (descending_seq)
xfer_num = 0;
else if (BPF_SIZE(meta->insn.code) != BPF_DW)
xfer_num = xfer_num - 1;
else
xfer_num = xfer_num - 2;
switch (BPF_SIZE(meta->insn.code)) {
case BPF_B:
wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
reg_xfer(xfer_num), 1,
IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
break;
case BPF_H:
wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
reg_xfer(xfer_num), 2, (len & 3) ^ 2);
break;
case BPF_W:
wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
reg_xfer(0));
break;
case BPF_DW:
wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
reg_xfer(xfer_num));
wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
reg_xfer(xfer_num + 1));
break;
}
if (BPF_SIZE(meta->insn.code) != BPF_DW)
wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
return 0;
}
static int
data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset,
u8 dst_gpr, int size)
{
unsigned int i;
u16 shift, sz;
/* We load the value from the address indicated in @offset and then
* shift out the data we don't need. Note: this is big endian!
*/
sz = max(size, 4);
shift = size < 4 ? 4 - size : 0;
emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
i = 0;
if (shift)
emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
reg_xfer(0), SHF_SC_R_SHF, shift * 8);
else
for (; i * 4 < size; i++)
wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
if (i < 2)
wrp_zext(nfp_prog, meta, dst_gpr);
return 0;
}
static int
data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u8 dst_gpr, swreg lreg, swreg rreg, int size,
enum cmd_mode mode)
{
unsigned int i;
u8 mask, sz;
/* We load the value from the address indicated in rreg + lreg and then
* mask out the data we don't need. Note: this is little endian!
*/
sz = max(size, 4);
mask = size < 4 ? GENMASK(size - 1, 0) : 0;
emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
i = 0;
if (mask)
emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
reg_xfer(0), SHF_SC_NONE, 0, true);
else
for (; i * 4 < size; i++)
wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
if (i < 2)
wrp_zext(nfp_prog, meta, dst_gpr);
return 0;
}
static int
data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
{
return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr),
offset, size, CMD_MODE_32b);
}
static int
data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
{
swreg rega, regb;
addr40_offset(nfp_prog, src_gpr, offset, ®a, ®b);
return data_ld_host_order(nfp_prog, meta, dst_gpr, rega, regb,
size, CMD_MODE_40b_BA);
}
static int
construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u16 offset, u16 src, u8 size)
{
swreg tmp_reg;
/* Calculate the true offset (src_reg + imm) */
tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
/* Check packet length (size guaranteed to fit b/c it's u8) */
emit_alu(nfp_prog, imm_a(nfp_prog),
imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
emit_alu(nfp_prog, reg_none(),
plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
/* Load data */
return data_ld(nfp_prog, meta, imm_b(nfp_prog), 0, size);
}
static int
construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u16 offset, u8 size)
{
swreg tmp_reg;
/* Check packet length */
tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
/* Load data */
tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
return data_ld(nfp_prog, meta, tmp_reg, 0, size);
}
static int
data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
u8 src_gpr, u8 size)
{
unsigned int i;
for (i = 0; i * 4 < size; i++)
wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
return 0;
}
static int
data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
u64 imm, u8 size)
{
wrp_immed(nfp_prog, reg_xfer(0), imm);
if (size == 8)
wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
return 0;
}
typedef int
(*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
bool needs_inc);
static int
wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
bool needs_inc)
{
bool should_inc = needs_inc && new_gpr && !last;
u32 idx, src_byte;
enum shf_sc sc;
swreg reg;
int shf;
u8 mask;
if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
return -EOPNOTSUPP;
idx = off / 4;
/* Move the entire word */
if (size == 4) {
wrp_mov(nfp_prog, reg_both(dst),
should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
return 0;
}
if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
return -EOPNOTSUPP;
src_byte = off % 4;
mask = (1 << size) - 1;
mask <<= dst_byte;
if (WARN_ON_ONCE(mask > 0xf))
return -EOPNOTSUPP;
shf = abs(src_byte - dst_byte) * 8;
if (src_byte == dst_byte) {
sc = SHF_SC_NONE;
} else if (src_byte < dst_byte) {
shf = 32 - shf;
sc = SHF_SC_L_SHF;
} else {
sc = SHF_SC_R_SHF;
}
/* ld_field can address fewer indexes, if offset too large do RMW.
* Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
*/
if (idx <= RE_REG_LM_IDX_MAX) {
reg = reg_lm(lm3 ? 3 : 0, idx);
} else {
reg = imm_a(nfp_prog);
/* If it's not the first part of the load and we start a new GPR
* that means we are loading a second part of the LMEM word into
* a new GPR. IOW we've already looked that LMEM word and
* therefore it has been loaded into imm_a().
*/
if (first || !new_gpr)
wrp_mov(nfp_prog, reg, reg_lm(0, idx));
}
emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
if (should_inc)
wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
return 0;
}
static int
wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
bool needs_inc)
{
bool should_inc = needs_inc && new_gpr && !last;
u32 idx, dst_byte;
enum shf_sc sc;
swreg reg;
int shf;
u8 mask;
if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
return -EOPNOTSUPP;
idx = off / 4;
/* Move the entire word */
if (size == 4) {
wrp_mov(nfp_prog,
should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
reg_b(src));
return 0;
}
if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
return -EOPNOTSUPP;
dst_byte = off % 4;
mask = (1 << size) - 1;
mask <<= dst_byte;
if (WARN_ON_ONCE(mask > 0xf))
return -EOPNOTSUPP;
shf = abs(src_byte - dst_byte) * 8;
if (src_byte == dst_byte) {
sc = SHF_SC_NONE;
} else if (src_byte < dst_byte) {
shf = 32 - shf;
sc = SHF_SC_L_SHF;
} else {
sc = SHF_SC_R_SHF;
}
/* ld_field can address fewer indexes, if offset too large do RMW.
* Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
*/
if (idx <= RE_REG_LM_IDX_MAX) {
reg = reg_lm(lm3 ? 3 : 0, idx);
} else {
reg = imm_a(nfp_prog);
/* Only first and last LMEM locations are going to need RMW,
* the middle location will be overwritten fully.
*/
if (first || last)
wrp_mov(nfp_prog, reg, reg_lm(0, idx));
}
emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
if (new_gpr || last) {
if (idx > RE_REG_LM_IDX_MAX)
wrp_mov(nfp_prog, reg_lm(0, idx), reg);
if (should_inc)
wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
}
return 0;
}
static int
mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
bool clr_gpr, lmem_step step)
{
s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
bool first = true, narrow_ld, last;
bool needs_inc = false;
swreg stack_off_reg;
u8 prev_gpr = 255;
u32 gpr_byte = 0;
bool lm3 = true;
int ret;
if (meta->ptr_not_const ||
meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
/* Use of the last encountered ptr_off is OK, they all have
* the same alignment. Depend on low bits of value being
* discarded when written to LMaddr register.
*/
stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
stack_imm(nfp_prog));
emit_alu(nfp_prog, imm_b(nfp_prog),
reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
needs_inc = true;
} else if (off + size <= 64) {
/* We can reach bottom 64B with LMaddr0 */
lm3 = false;
} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
/* We have to set up a new pointer. If we know the offset
* and the entire access falls into a single 32 byte aligned
* window we won't have to increment the LM pointer.
* The 32 byte alignment is imporant because offset is ORed in
* not added when doing *l$indexN[off].
*/
stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
stack_imm(nfp_prog));
emit_alu(nfp_prog, imm_b(nfp_prog),
stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
off %= 32;
} else {
stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
stack_imm(nfp_prog));
emit_alu(nfp_prog, imm_b(nfp_prog),
stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
needs_inc = true;
}
narrow_ld = clr_gpr && size < 8;
if (lm3) {
unsigned int nop_cnt;
emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
/* For size < 4 one slot will be filled by zeroing of upper,
* but be careful, that zeroing could be eliminated by zext
* optimization.
*/
nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3;
wrp_nops(nfp_prog, nop_cnt);
}
if (narrow_ld)
wrp_zext(nfp_prog, meta, gpr);
while (size) {
u32 slice_end;
u8 slice_size;
slice_size = min(size, 4 - gpr_byte);
slice_end = min(off + slice_size, round_up(off + 1, 4));
slice_size = slice_end - off;
last = slice_size == size;
if (needs_inc)
off %= 4;
ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
first, gpr != prev_gpr, last, lm3, needs_inc);
if (ret)
return ret;
prev_gpr = gpr;
first = false;
gpr_byte += slice_size;
if (gpr_byte >= 4) {
gpr_byte -= 4;
gpr++;
}
size -= slice_size;
off += slice_size;
}
return 0;
}
static void
wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
{
swreg tmp_reg;
if (alu_op == ALU_OP_AND) {
if (!imm)
wrp_immed(nfp_prog, reg_both(dst), 0);
if (!imm || !~imm)
return;
}
if (alu_op == ALU_OP_OR) {
if (!~imm)
wrp_immed(nfp_prog, reg_both(dst), ~0U);
if (!imm || !~imm)
return;
}
if (alu_op == ALU_OP_XOR) {
if (!~imm)
emit_alu(nfp_prog, reg_both(dst), reg_none(),
ALU_OP_NOT, reg_b(dst));
if (!imm || !~imm)
return;
}
tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
}
static int
wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
enum alu_op alu_op, bool skip)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
if (skip) {
meta->flags |= FLAG_INSN_SKIP_NOOP;
return 0;
}
wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
return 0;
}
static int
wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
enum alu_op alu_op)
{
u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
emit_alu(nfp_prog, reg_both(dst + 1),
reg_a(dst + 1), alu_op, reg_b(src + 1));
return 0;
}
static int
wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
enum alu_op alu_op)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
wrp_alu_imm(nfp_prog, dst, alu_op, insn->imm);
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int
wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
enum alu_op alu_op)
{
u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static void
wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
enum br_mask br_mask, u16 off)
{
emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
emit_br(nfp_prog, br_mask, off, 0);
}
static int
wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
enum alu_op alu_op, enum br_mask br_mask)
{
const struct bpf_insn *insn = &meta->insn;
wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
insn->src_reg * 2, br_mask, insn->off);
if (is_mbpf_jmp64(meta))
wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
insn->src_reg * 2 + 1, br_mask, insn->off);
return 0;
}
static const struct jmp_code_map {
enum br_mask br_mask;
bool swap;
} jmp_code_map[] = {
[BPF_JGT >> 4] = { BR_BLO, true },
[BPF_JGE >> 4] = { BR_BHS, false },
[BPF_JLT >> 4] = { BR_BLO, false },
[BPF_JLE >> 4] = { BR_BHS, true },
[BPF_JSGT >> 4] = { BR_BLT, true },
[BPF_JSGE >> 4] = { BR_BGE, false },
[BPF_JSLT >> 4] = { BR_BLT, false },
[BPF_JSLE >> 4] = { BR_BGE, true },
};
static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
{
unsigned int op;
op = BPF_OP(meta->insn.code) >> 4;
/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
!jmp_code_map[op].br_mask,
"no code found for jump instruction"))
return NULL;
return &jmp_code_map[op];
}
static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
const struct jmp_code_map *code;
enum alu_op alu_op, carry_op;
u8 reg = insn->dst_reg * 2;
swreg tmp_reg;
code = nfp_jmp_code_get(meta);
if (!code)
return -EINVAL;
alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
if (!code->swap)
emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
else
emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
if (is_mbpf_jmp64(meta)) {
tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
if (!code->swap)
emit_alu(nfp_prog, reg_none(),
reg_a(reg + 1), carry_op, tmp_reg);
else
emit_alu(nfp_prog, reg_none(),
tmp_reg, carry_op, reg_a(reg + 1));
}
emit_br(nfp_prog, code->br_mask, insn->off, 0);
return 0;
}
static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
const struct jmp_code_map *code;
u8 areg, breg;
code = nfp_jmp_code_get(meta);
if (!code)
return -EINVAL;
areg = insn->dst_reg * 2;
breg = insn->src_reg * 2;
if (code->swap) {
areg ^= breg;
breg ^= areg;
areg ^= breg;
}
emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
if (is_mbpf_jmp64(meta))
emit_alu(nfp_prog, reg_none(),
reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
emit_br(nfp_prog, code->br_mask, insn->off, 0);
return 0;
}
static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
{
emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
SHF_SC_R_ROT, 8);
emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
SHF_SC_R_ROT, 16);
}
static void
wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
swreg rreg, bool gen_high_half)
{
emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
if (gen_high_half)
emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
reg_none());
else
wrp_immed(nfp_prog, dst_hi, 0);
}
static void
wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
swreg rreg)
{
emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
}
static int
wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
bool gen_high_half, bool ropnd_from_reg)
{
swreg multiplier, multiplicand, dst_hi, dst_lo;
const struct bpf_insn *insn = &meta->insn;
u32 lopnd_max, ropnd_max;
u8 dst_reg;
dst_reg = insn->dst_reg;
multiplicand = reg_a(dst_reg * 2);
dst_hi = reg_both(dst_reg * 2 + 1);
dst_lo = reg_both(dst_reg * 2);
lopnd_max = meta->umax_dst;
if (ropnd_from_reg) {
multiplier = reg_b(insn->src_reg * 2);
ropnd_max = meta->umax_src;
} else {
u32 imm = insn->imm;
multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
ropnd_max = imm;
}
if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
gen_high_half);
else
wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
return 0;
}
static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
{
swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
struct reciprocal_value_adv rvalue;
u8 pre_shift, exp;
swreg magic;
if (imm > U32_MAX) {
wrp_immed(nfp_prog, dst_both, 0);
return 0;
}
/* NOTE: because we are using "reciprocal_value_adv" which doesn't
* support "divisor > (1u << 31)", we need to JIT separate NFP sequence
* to handle such case which actually equals to the result of unsigned
* comparison "dst >= imm" which could be calculated using the following
* NFP sequence:
*
* alu[--, dst, -, imm]
* immed[imm, 0]
* alu[dst, imm, +carry, 0]
*
*/
if (imm > 1U << 31) {
swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
reg_imm(0));
return 0;
}
rvalue = reciprocal_value_adv(imm, 32);
exp = rvalue.exp;
if (rvalue.is_wide_m && !(imm & 1)) {
pre_shift = fls(imm & -imm) - 1;
rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
} else {
pre_shift = 0;
}
magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
if (imm == 1U << exp) {
emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
SHF_SC_R_SHF, exp);
} else if (rvalue.is_wide_m) {
wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
magic, true);
emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
imm_b(nfp_prog));
emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
SHF_SC_R_SHF, 1);
emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
imm_b(nfp_prog));
emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
SHF_SC_R_SHF, rvalue.sh - 1);
} else {
if (pre_shift)
emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
dst_b, SHF_SC_R_SHF, pre_shift);
wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
dst_b, SHF_SC_R_SHF, rvalue.sh);
}
return 0;
}
static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
struct nfp_bpf_cap_adjust_head *adjust_head;
u32 ret_einval, end;
adjust_head = &nfp_prog->bpf->adjust_head;
/* Optimized version - 5 vs 14 cycles */
if (nfp_prog->adjust_head_location != UINT_MAX) {
if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
return -EINVAL;
emit_alu(nfp_prog, pptr_reg(nfp_prog),
reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
emit_alu(nfp_prog, plen_reg(nfp_prog),
plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
emit_alu(nfp_prog, pv_len(nfp_prog),
pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
wrp_immed(nfp_prog, reg_both(0), 0);
wrp_immed(nfp_prog, reg_both(1), 0);
/* TODO: when adjust head is guaranteed to succeed we can
* also eliminate the following if (r0 == 0) branch.
*/
return 0;
}
ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
end = ret_einval + 2;
/* We need to use a temp because offset is just a part of the pkt ptr */
emit_alu(nfp_prog, tmp,
reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
/* Validate result will fit within FW datapath constraints */
emit_alu(nfp_prog, reg_none(),
tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
emit_br(nfp_prog, BR_BLO, ret_einval, 0);
emit_alu(nfp_prog, reg_none(),
reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
emit_br(nfp_prog, BR_BLO, ret_einval, 0);
/* Validate the length is at least ETH_HLEN */
emit_alu(nfp_prog, tmp_len,
plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
emit_alu(nfp_prog, reg_none(),
tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
emit_br(nfp_prog, BR_BMI, ret_einval, 0);
/* Load the ret code */
wrp_immed(nfp_prog, reg_both(0), 0);
wrp_immed(nfp_prog, reg_both(1), 0);
/* Modify the packet metadata */
emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
/* Skip over the -EINVAL ret code (defer 2) */
emit_br(nfp_prog, BR_UNC, end, 2);
emit_alu(nfp_prog, plen_reg(nfp_prog),
plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
emit_alu(nfp_prog, pv_len(nfp_prog),
pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
/* return -EINVAL target */
if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
return -EINVAL;
wrp_immed(nfp_prog, reg_both(0), -22);
wrp_immed(nfp_prog, reg_both(1), ~0);
if (!nfp_prog_confirm_current_offset(nfp_prog, end))
return -EINVAL;
return 0;
}
static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
u32 ret_einval, end;
swreg plen, delta;
BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
plen = imm_a(nfp_prog);
delta = reg_a(2 * 2);
ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
end = nfp_prog_current_offset(nfp_prog) + 11;
/* Calculate resulting length */
emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
/* delta == 0 is not allowed by the kernel, add must overflow to make
* length smaller.
*/
emit_br(nfp_prog, BR_BCC, ret_einval, 0);
/* if (new_len < 14) then -EINVAL */
emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
emit_br(nfp_prog, BR_BMI, ret_einval, 0);
emit_alu(nfp_prog, plen_reg(nfp_prog),
plen_reg(nfp_prog), ALU_OP_ADD, delta);
emit_alu(nfp_prog, pv_len(nfp_prog),
pv_len(nfp_prog), ALU_OP_ADD, delta);
emit_br(nfp_prog, BR_UNC, end, 2);
wrp_immed(nfp_prog, reg_both(0), 0);
wrp_immed(nfp_prog, reg_both(1), 0);
if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
return -EINVAL;
wrp_immed(nfp_prog, reg_both(0), -22);
wrp_immed(nfp_prog, reg_both(1), ~0);
if (!nfp_prog_confirm_current_offset(nfp_prog, end))
return -EINVAL;
return 0;
}
static int
map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
bool load_lm_ptr;
u32 ret_tgt;
s64 lm_off;
/* We only have to reload LM0 if the key is not at start of stack */
lm_off = nfp_prog->stack_frame_depth;
lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
load_lm_ptr = meta->arg2.var_off || lm_off;
/* Set LM0 to start of key */
if (load_lm_ptr)
emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
if (meta->func_id == BPF_FUNC_map_update_elem)
emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
2, RELO_BR_HELPER);
ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
/* Load map ID into A0 */
wrp_mov(nfp_prog, reg_a(0), reg_a(2));
/* Load the return address into B0 */
wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
return -EINVAL;
/* Reset the LM0 pointer */
if (!load_lm_ptr)
return 0;
emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
wrp_nops(nfp_prog, 3);
return 0;
}
static int
nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
/* CSR value is read in following immed[gpr, 0] */
emit_immed(nfp_prog, reg_both(0), 0,
IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
emit_immed(nfp_prog, reg_both(1), 0,
IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
return 0;
}
static int
nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
swreg ptr_type;
u32 ret_tgt;
ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
2, RELO_BR_HELPER);
/* Load ptr type into A1 */
wrp_mov(nfp_prog, reg_a(1), ptr_type);
/* Load the return address into B0 */
wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
return -EINVAL;
return 0;
}
static int
nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
u32 jmp_tgt;
jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
/* Make sure the queue id fits into FW field */
emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
ALU_OP_AND_NOT_B, reg_imm(0xff));
emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
/* Set the 'queue selected' bit and the queue value */
emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
emit_ld_field(nfp_prog,
pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
SHF_SC_NONE, 0);
/* Delay slots end here, we will jump over next instruction if queue
* value fits into the field.
*/
emit_ld_field(nfp_prog,
pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
SHF_SC_NONE, 0);
if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
return -EINVAL;
return 0;
}
/* --- Callbacks --- */
static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
u8 src = insn->src_reg * 2;
if (insn->src_reg == BPF_REG_10) {
swreg stack_depth_reg;
stack_depth_reg = ur_load_imm_any(nfp_prog,
nfp_prog->stack_frame_depth,
stack_imm(nfp_prog));
emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
ALU_OP_ADD, stack_depth_reg);
wrp_immed(nfp_prog, reg_both(dst + 1), 0);
} else {
wrp_reg_mov(nfp_prog, dst, src);
wrp_reg_mov(nfp_prog, dst + 1, src + 1);
}
return 0;
}
static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
u64 imm = meta->insn.imm; /* sign extend */
wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
return 0;
}
static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
}
static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
}
static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
}
static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
}
static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
}
static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
}
static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
reg_a(insn->dst_reg * 2), ALU_OP_ADD,
reg_b(insn->src_reg * 2));
emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
reg_b(insn->src_reg * 2 + 1));
return 0;
}
static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
return 0;
}
static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
reg_a(insn->dst_reg * 2), ALU_OP_SUB,
reg_b(insn->src_reg * 2));
emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
reg_b(insn->src_reg * 2 + 1));
return 0;
}
static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
return 0;
}
static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_mul(nfp_prog, meta, true, true);
}
static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_mul(nfp_prog, meta, true, false);
}
static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
}
static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
/* NOTE: verifier hook has rejected cases for which verifier doesn't
* know whether the source operand is constant or not.
*/
return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
}
static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
ALU_OP_SUB, reg_b(insn->dst_reg * 2));
emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
return 0;
}
/* Pseudo code:
* if shift_amt >= 32
* dst_high = dst_low << shift_amt[4:0]
* dst_low = 0;
* else
* dst_high = (dst_high, dst_low) >> (32 - shift_amt)
* dst_low = dst_low << shift_amt
*
* The indirect shift will use the same logic at runtime.
*/
static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
{
if (!shift_amt)
return 0;
if (shift_amt < 32) {
emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
32 - shift_amt);
emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_L_SHF, shift_amt);
} else if (shift_amt == 32) {
wrp_reg_mov(nfp_prog, dst + 1, dst);
wrp_immed(nfp_prog, reg_both(dst), 0);
} else if (shift_amt > 32) {
emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
wrp_immed(nfp_prog, reg_both(dst), 0);
}
return 0;
}
static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
return __shl_imm64(nfp_prog, dst, insn->imm);
}
static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
reg_b(src));
emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
reg_b(dst), SHF_SC_R_DSHF);
}
/* NOTE: for indirect left shift, HIGH part should be calculated first. */
static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_L_SHF);
}
static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
shl_reg64_lt32_high(nfp_prog, dst, src);
shl_reg64_lt32_low(nfp_prog, dst, src);
}
static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_L_SHF);
wrp_immed(nfp_prog, reg_both(dst), 0);
}
static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 umin, umax;
u8 dst, src;
dst = insn->dst_reg * 2;
umin = meta->umin_src;
umax = meta->umax_src;
if (umin == umax)
return __shl_imm64(nfp_prog, dst, umin);
src = insn->src_reg * 2;
if (umax < 32) {
shl_reg64_lt32(nfp_prog, dst, src);
} else if (umin >= 32) {
shl_reg64_ge32(nfp_prog, dst, src);
} else {
/* Generate different instruction sequences depending on runtime
* value of shift amount.
*/
u16 label_ge32, label_end;
label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
shl_reg64_lt32_high(nfp_prog, dst, src);
label_end = nfp_prog_current_offset(nfp_prog) + 6;
emit_br(nfp_prog, BR_UNC, label_end, 2);
/* shl_reg64_lt32_low packed in delay slot. */
shl_reg64_lt32_low(nfp_prog, dst, src);
if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
return -EINVAL;
shl_reg64_ge32(nfp_prog, dst, src);
if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
return -EINVAL;
}
return 0;
}
/* Pseudo code:
* if shift_amt >= 32
* dst_high = 0;
* dst_low = dst_high >> shift_amt[4:0]
* else
* dst_high = dst_high >> shift_amt
* dst_low = (dst_high, dst_low) >> shift_amt
*
* The indirect shift will use the same logic at runtime.
*/
static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
{
if (!shift_amt)
return 0;
if (shift_amt < 32) {
emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
reg_b(dst), SHF_SC_R_DSHF, shift_amt);
emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
} else if (shift_amt == 32) {
wrp_reg_mov(nfp_prog, dst, dst + 1);
wrp_immed(nfp_prog, reg_both(dst + 1), 0);
} else if (shift_amt > 32) {
emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
wrp_immed(nfp_prog, reg_both(dst + 1), 0);
}
return 0;
}
static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
return __shr_imm64(nfp_prog, dst, insn->imm);
}
/* NOTE: for indirect right shift, LOW part should be calculated first. */
static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
reg_b(dst + 1), SHF_SC_R_SHF);
}
static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
reg_b(dst), SHF_SC_R_DSHF);
}
static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
shr_reg64_lt32_low(nfp_prog, dst, src);
shr_reg64_lt32_high(nfp_prog, dst, src);
}
static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst + 1), SHF_SC_R_SHF);
wrp_immed(nfp_prog, reg_both(dst + 1), 0);
}
static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 umin, umax;
u8 dst, src;
dst = insn->dst_reg * 2;
umin = meta->umin_src;
umax = meta->umax_src;
if (umin == umax)
return __shr_imm64(nfp_prog, dst, umin);
src = insn->src_reg * 2;
if (umax < 32) {
shr_reg64_lt32(nfp_prog, dst, src);
} else if (umin >= 32) {
shr_reg64_ge32(nfp_prog, dst, src);
} else {
/* Generate different instruction sequences depending on runtime
* value of shift amount.
*/
u16 label_ge32, label_end;
label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
shr_reg64_lt32_low(nfp_prog, dst, src);
label_end = nfp_prog_current_offset(nfp_prog) + 6;
emit_br(nfp_prog, BR_UNC, label_end, 2);
/* shr_reg64_lt32_high packed in delay slot. */
shr_reg64_lt32_high(nfp_prog, dst, src);
if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
return -EINVAL;
shr_reg64_ge32(nfp_prog, dst, src);
if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
return -EINVAL;
}
return 0;
}
/* Code logic is the same as __shr_imm64 except ashr requires signedness bit
* told through PREV_ALU result.
*/
static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
{
if (!shift_amt)
return 0;
if (shift_amt < 32) {
emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
reg_b(dst), SHF_SC_R_DSHF, shift_amt);
/* Set signedness bit. */
emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
reg_imm(0));
emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
} else if (shift_amt == 32) {
/* NOTE: this also helps setting signedness bit. */
wrp_reg_mov(nfp_prog, dst, dst + 1);
emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF, 31);
} else if (shift_amt > 32) {
emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
reg_imm(0));
emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF, 31);
}
return 0;
}
static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
return __ashr_imm64(nfp_prog, dst, insn->imm);
}
static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
/* NOTE: the first insn will set both indirect shift amount (source A)
* and signedness bit (MSB of result).
*/
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF);
}
static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
/* NOTE: it is the same as logic shift because we don't need to shift in
* signedness bit when the shift amount is less than 32.
*/
return shr_reg64_lt32_low(nfp_prog, dst, src);
}
static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
ashr_reg64_lt32_low(nfp_prog, dst, src);
ashr_reg64_lt32_high(nfp_prog, dst, src);
}
static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
{
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF);
emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
reg_b(dst + 1), SHF_SC_R_SHF, 31);
}
/* Like ashr_imm64, but need to use indirect shift. */
static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 umin, umax;
u8 dst, src;
dst = insn->dst_reg * 2;
umin = meta->umin_src;
umax = meta->umax_src;
if (umin == umax)
return __ashr_imm64(nfp_prog, dst, umin);
src = insn->src_reg * 2;
if (umax < 32) {
ashr_reg64_lt32(nfp_prog, dst, src);
} else if (umin >= 32) {
ashr_reg64_ge32(nfp_prog, dst, src);
} else {
u16 label_ge32, label_end;
label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
ashr_reg64_lt32_low(nfp_prog, dst, src);
label_end = nfp_prog_current_offset(nfp_prog) + 6;
emit_br(nfp_prog, BR_UNC, label_end, 2);
/* ashr_reg64_lt32_high packed in delay slot. */
ashr_reg64_lt32_high(nfp_prog, dst, src);
if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
return -EINVAL;
ashr_reg64_ge32(nfp_prog, dst, src);
if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
return -EINVAL;
}
return 0;
}
static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2);
wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
return 0;
}
static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
return 0;
}
static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
}
static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
}
static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
}
static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
}
static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
}
static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
}
static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
}
static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
}
static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
}
static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
}
static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_mul(nfp_prog, meta, false, true);
}
static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_mul(nfp_prog, meta, false, false);
}
static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return div_reg64(nfp_prog, meta);
}
static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return div_imm64(nfp_prog, meta);
}
static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
u8 dst = meta->insn.dst_reg * 2;
emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int
__ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
u8 shift_amt)
{
if (shift_amt) {
/* Set signedness bit (MSB of result). */
emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
reg_imm(0));
emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
reg_b(dst), SHF_SC_R_SHF, shift_amt);
}
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 umin, umax;
u8 dst, src;
dst = insn->dst_reg * 2;
umin = meta->umin_src;
umax = meta->umax_src;
if (umin == umax)
return __ashr_imm(nfp_prog, meta, dst, umin);
src = insn->src_reg * 2;
/* NOTE: the first insn will set both indirect shift amount (source A)
* and signedness bit (MSB of result).
*/
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
reg_b(dst), SHF_SC_R_SHF);
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
return __ashr_imm(nfp_prog, meta, dst, insn->imm);
}
static int
__shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
u8 shift_amt)
{
if (shift_amt)
emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_R_SHF, shift_amt);
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
return __shr_imm(nfp_prog, meta, dst, insn->imm);
}
static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 umin, umax;
u8 dst, src;
dst = insn->dst_reg * 2;
umin = meta->umin_src;
umax = meta->umax_src;
if (umin == umax)
return __shr_imm(nfp_prog, meta, dst, umin);
src = insn->src_reg * 2;
emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_R_SHF);
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int
__shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
u8 shift_amt)
{
if (shift_amt)
emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
reg_b(dst), SHF_SC_L_SHF, shift_amt);
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 dst = insn->dst_reg * 2;
return __shl_imm(nfp_prog, meta, dst, insn->imm);
}
static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 umin, umax;
u8 dst, src;
dst = insn->dst_reg * 2;
umin = meta->umin_src;
umax = meta->umax_src;
if (umin == umax)
return __shl_imm(nfp_prog, meta, dst, umin);
src = insn->src_reg * 2;
shl_reg64_lt32_low(nfp_prog, dst, src);
wrp_zext(nfp_prog, meta, dst);
return 0;
}
static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u8 gpr = insn->dst_reg * 2;
switch (insn->imm) {
case 16:
emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
SHF_SC_R_ROT, 8);
emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
SHF_SC_R_SHF, 16);
wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
break;
case 32:
wrp_end32(nfp_prog, reg_a(gpr), gpr);
wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
break;
case 64:
wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
break;
}
return 0;
}
static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
struct nfp_insn_meta *prev = nfp_meta_prev(meta);
u32 imm_lo, imm_hi;
u8 dst;
dst = prev->insn.dst_reg * 2;
imm_lo = prev->insn.imm;
imm_hi = meta->insn.imm;
wrp_immed(nfp_prog, reg_both(dst), imm_lo);
/* mov is always 1 insn, load imm may be two, so try to use mov */
if (imm_hi == imm_lo)
wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
else
wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
return 0;
}
static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
meta->double_cb = imm_ld8_part2;
return 0;
}
static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return construct_data_ld(nfp_prog, meta, meta->insn.imm, 1);
}
static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return construct_data_ld(nfp_prog, meta, meta->insn.imm, 2);
}
static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return construct_data_ld(nfp_prog, meta, meta->insn.imm, 4);
}
static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
meta->insn.src_reg * 2, 1);
}
static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
meta->insn.src_reg * 2, 2);
}
static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
meta->insn.src_reg * 2, 4);
}
static int
mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size, unsigned int ptr_off)
{
return mem_op_stack(nfp_prog, meta, size, ptr_off,
meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
true, wrp_lmem_load);
}
static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u8 size)
{
swreg dst = reg_both(meta->insn.dst_reg * 2);
switch (meta->insn.off) {
case offsetof(struct __sk_buff, len):
if (size != FIELD_SIZEOF(struct __sk_buff, len))
return -EOPNOTSUPP;
wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
break;
case offsetof(struct __sk_buff, data):
if (size != FIELD_SIZEOF(struct __sk_buff, data))
return -EOPNOTSUPP;
wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
break;
case offsetof(struct __sk_buff, data_end):
if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
return -EOPNOTSUPP;
emit_alu(nfp_prog, dst,
plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
break;
default:
return -EOPNOTSUPP;
}
wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
return 0;
}
static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
u8 size)
{
swreg dst = reg_both(meta->insn.dst_reg * 2);
switch (meta->insn.off) {
case offsetof(struct xdp_md, data):
if (size != FIELD_SIZEOF(struct xdp_md, data))
return -EOPNOTSUPP;
wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
break;
case offsetof(struct xdp_md, data_end):
if (size != FIELD_SIZEOF(struct xdp_md, data_end))
return -EOPNOTSUPP;
emit_alu(nfp_prog, dst,
plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
break;
default:
return -EOPNOTSUPP;
}
wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
return 0;
}
static int
mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
swreg tmp_reg;
tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
return data_ld_host_order_addr32(nfp_prog, meta, meta->insn.src_reg * 2,
tmp_reg, meta->insn.dst_reg * 2, size);
}
static int
mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
swreg tmp_reg;
tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
return data_ld_host_order_addr40(nfp_prog, meta, meta->insn.src_reg * 2,
tmp_reg, meta->insn.dst_reg * 2, size);
}
static void
mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta)
{
s16 range_start = meta->pkt_cache.range_start;
s16 range_end = meta->pkt_cache.range_end;
swreg src_base, off;
u8 xfer_num, len;
bool indir;
off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
src_base = reg_a(meta->insn.src_reg * 2);
len = range_end - range_start;
xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
indir = len > 8 * REG_WIDTH;
/* Setup PREV_ALU for indirect mode. */
if (indir)
wrp_immed(nfp_prog, reg_none(),
CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
/* Cache memory into transfer-in registers. */
emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
off, xfer_num - 1, CMD_CTX_SWAP, indir);
}
static int
mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta,
unsigned int size)
{
s16 range_start = meta->pkt_cache.range_start;
s16 insn_off = meta->insn.off - range_start;
swreg dst_lo, dst_hi, src_lo, src_mid;
u8 dst_gpr = meta->insn.dst_reg * 2;
u8 len_lo = size, len_mid = 0;
u8 idx = insn_off / REG_WIDTH;
u8 off = insn_off % REG_WIDTH;
dst_hi = reg_both(dst_gpr + 1);
dst_lo = reg_both(dst_gpr);
src_lo = reg_xfer(idx);
/* The read length could involve as many as three registers. */
if (size > REG_WIDTH - off) {
/* Calculate the part in the second register. */
len_lo = REG_WIDTH - off;
len_mid = size - len_lo;
/* Calculate the part in the third register. */
if (size > 2 * REG_WIDTH - off)
len_mid = REG_WIDTH;
}
wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
if (!len_mid) {
wrp_zext(nfp_prog, meta, dst_gpr);
return 0;
}
src_mid = reg_xfer(idx + 1);
if (size <= REG_WIDTH) {
wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
wrp_zext(nfp_prog, meta, dst_gpr);
} else {
swreg src_hi = reg_xfer(idx + 2);
wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
REG_WIDTH - len_lo, len_lo);
wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
REG_WIDTH - len_lo);
wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
len_lo);
}
return 0;
}
static int
mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta,
unsigned int size)
{
swreg dst_lo, dst_hi, src_lo;
u8 dst_gpr, idx;
idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
dst_gpr = meta->insn.dst_reg * 2;
dst_hi = reg_both(dst_gpr + 1);
dst_lo = reg_both(dst_gpr);
src_lo = reg_xfer(idx);
if (size < REG_WIDTH) {
wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
wrp_zext(nfp_prog, meta, dst_gpr);
} else if (size == REG_WIDTH) {
wrp_mov(nfp_prog, dst_lo, src_lo);
wrp_zext(nfp_prog, meta, dst_gpr);
} else {
swreg src_hi = reg_xfer(idx + 1);
wrp_mov(nfp_prog, dst_lo, src_lo);
wrp_mov(nfp_prog, dst_hi, src_hi);
}
return 0;
}
static int
mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta, unsigned int size)
{
u8 off = meta->insn.off - meta->pkt_cache.range_start;
if (IS_ALIGNED(off, REG_WIDTH))
return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
}
static int
mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
if (meta->ldst_gather_len)
return nfp_cpp_memcpy(nfp_prog, meta);
if (meta->ptr.type == PTR_TO_CTX) {
if (nfp_prog->type == BPF_PROG_TYPE_XDP)
return mem_ldx_xdp(nfp_prog, meta, size);
else
return mem_ldx_skb(nfp_prog, meta, size);
}
if (meta->ptr.type == PTR_TO_PACKET) {
if (meta->pkt_cache.range_end) {
if (meta->pkt_cache.do_init)
mem_ldx_data_init_pktcache(nfp_prog, meta);
return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
} else {
return mem_ldx_data(nfp_prog, meta, size);
}
}
if (meta->ptr.type == PTR_TO_STACK)
return mem_ldx_stack(nfp_prog, meta, size,
meta->ptr.off + meta->ptr.var_off.value);
if (meta->ptr.type == PTR_TO_MAP_VALUE)
return mem_ldx_emem(nfp_prog, meta, size);
return -EOPNOTSUPP;
}
static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_ldx(nfp_prog, meta, 1);
}
static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_ldx(nfp_prog, meta, 2);
}
static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_ldx(nfp_prog, meta, 4);
}
static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_ldx(nfp_prog, meta, 8);
}
static int
mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
u64 imm = meta->insn.imm; /* sign extend */
swreg off_reg;
off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
imm, size);
}
static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
if (meta->ptr.type == PTR_TO_PACKET)
return mem_st_data(nfp_prog, meta, size);
return -EOPNOTSUPP;
}
static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_st(nfp_prog, meta, 1);
}
static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_st(nfp_prog, meta, 2);
}
static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_st(nfp_prog, meta, 4);
}
static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_st(nfp_prog, meta, 8);
}
static int
mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
swreg off_reg;
off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
meta->insn.src_reg * 2, size);
}
static int
mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size, unsigned int ptr_off)
{
return mem_op_stack(nfp_prog, meta, size, ptr_off,
meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
false, wrp_lmem_store);
}
static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
switch (meta->insn.off) {
case offsetof(struct xdp_md, rx_queue_index):
return nfp_queue_select(nfp_prog, meta);
}
WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
return -EOPNOTSUPP;
}
static int
mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int size)
{
if (meta->ptr.type == PTR_TO_PACKET)
return mem_stx_data(nfp_prog, meta, size);
if (meta->ptr.type == PTR_TO_STACK)
return mem_stx_stack(nfp_prog, meta, size,
meta->ptr.off + meta->ptr.var_off.value);
return -EOPNOTSUPP;
}
static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_stx(nfp_prog, meta, 1);
}
static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_stx(nfp_prog, meta, 2);
}
static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
if (meta->ptr.type == PTR_TO_CTX)
if (nfp_prog->type == BPF_PROG_TYPE_XDP)
return mem_stx_xdp(nfp_prog, meta);
return mem_stx(nfp_prog, meta, 4);
}
static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_stx(nfp_prog, meta, 8);
}
static int
mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
{
u8 dst_gpr = meta->insn.dst_reg * 2;
u8 src_gpr = meta->insn.src_reg * 2;
unsigned int full_add, out;
swreg addra, addrb, off;
off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
/* We can fit 16 bits into command immediate, if we know the immediate
* is guaranteed to either always or never fit into 16 bit we only
* generate code to handle that particular case, otherwise generate
* code for both.
*/
out = nfp_prog_current_offset(nfp_prog);
full_add = nfp_prog_current_offset(nfp_prog);
if (meta->insn.off) {
out += 2;
full_add += 2;
}
if (meta->xadd_maybe_16bit) {
out += 3;
full_add += 3;
}
if (meta->xadd_over_16bit)
out += 2 + is64;
if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
out += 5;
full_add += 5;
}
/* Generate the branch for choosing add_imm vs add */
if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
swreg max_imm = imm_a(nfp_prog);
wrp_immed(nfp_prog, max_imm, 0xffff);
emit_alu(nfp_prog, reg_none(),
max_imm, ALU_OP_SUB, reg_b(src_gpr));
emit_alu(nfp_prog, reg_none(),
reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
/* defer for add */
}
/* If insn has an offset add to the address */
if (!meta->insn.off) {
addra = reg_a(dst_gpr);
addrb = reg_b(dst_gpr + 1);
} else {
emit_alu(nfp_prog, imma_a(nfp_prog),
reg_a(dst_gpr), ALU_OP_ADD, off);
emit_alu(nfp_prog, imma_b(nfp_prog),
reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
addra = imma_a(nfp_prog);
addrb = imma_b(nfp_prog);
}
/* Generate the add_imm if 16 bits are possible */
if (meta->xadd_maybe_16bit) {
swreg prev_alu = imm_a(nfp_prog);
wrp_immed(nfp_prog, prev_alu,
FIELD_PREP(CMD_OVE_DATA, 2) |
CMD_OVE_LEN |
FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
addra, addrb, 0, CMD_CTX_NO_SWAP);
if (meta->xadd_over_16bit)
emit_br(nfp_prog, BR_UNC, out, 0);
}
if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
return -EINVAL;
/* Generate the add if 16 bits are not guaranteed */
if (meta->xadd_over_16bit) {
emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
addra, addrb, is64 << 2,
is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
if (is64)
wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
}
if (!nfp_prog_confirm_current_offset(nfp_prog, out))
return -EINVAL;
return 0;
}
static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_xadd(nfp_prog, meta, false);
}
static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return mem_xadd(nfp_prog, meta, true);
}
static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
return 0;
}
static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
swreg or1, or2, tmp_reg;
or1 = reg_a(insn->dst_reg * 2);
or2 = reg_b(insn->dst_reg * 2 + 1);
if (imm & ~0U) {
tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
emit_alu(nfp_prog, imm_a(nfp_prog),
reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
or1 = imm_a(nfp_prog);
}
if (imm >> 32) {
tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
emit_alu(nfp_prog, imm_b(nfp_prog),
reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
or2 = imm_b(nfp_prog);
}
emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
emit_br(nfp_prog, BR_BEQ, insn->off, 0);
return 0;
}
static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
swreg tmp_reg;
tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
emit_alu(nfp_prog, reg_none(),
reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
emit_br(nfp_prog, BR_BEQ, insn->off, 0);
return 0;
}
static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
u8 dst_gpr = insn->dst_reg * 2;
swreg tmp_reg;
tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
emit_alu(nfp_prog, imm_b(nfp_prog),
reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
/* Upper word of the mask can only be 0 or ~0 from sign extension,
* so either ignore it or OR the whole thing in.
*/
if (is_mbpf_jmp64(meta) && imm >> 32) {
emit_alu(nfp_prog, reg_none(),
reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
}
emit_br(nfp_prog, BR_BNE, insn->off, 0);
return 0;
}
static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
u64 imm = insn->imm; /* sign extend */
bool is_jmp32 = is_mbpf_jmp32(meta);
swreg tmp_reg;
if (!imm) {
if (is_jmp32)
emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
reg_b(insn->dst_reg * 2));
else
emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
emit_br(nfp_prog, BR_BNE, insn->off, 0);
return 0;
}
tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
emit_alu(nfp_prog, reg_none(),
reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
emit_br(nfp_prog, BR_BNE, insn->off, 0);
if (is_jmp32)
return 0;
tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
emit_alu(nfp_prog, reg_none(),
reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
emit_br(nfp_prog, BR_BNE, insn->off, 0);
return 0;
}
static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
const struct bpf_insn *insn = &meta->insn;
emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
ALU_OP_XOR, reg_b(insn->src_reg * 2));
if (is_mbpf_jmp64(meta)) {
emit_alu(nfp_prog, imm_b(nfp_prog),
reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
reg_b(insn->src_reg * 2 + 1));
emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
imm_b(nfp_prog));
}
emit_br(nfp_prog, BR_BEQ, insn->off, 0);
return 0;
}
static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
}
static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
}
static int
bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
u32 ret_tgt, stack_depth, offset_br;
swreg tmp_reg;
stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
/* Space for saving the return address is accounted for by the callee,
* so stack_depth can be zero for the main function.
*/
if (stack_depth) {
tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
stack_imm(nfp_prog));
emit_alu(nfp_prog, stack_reg(nfp_prog),
stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
NFP_CSR_ACT_LM_ADDR0);
}
/* Two cases for jumping to the callee:
*
* - If callee uses and needs to save R6~R9 then:
* 1. Put the start offset of the callee into imm_b(). This will
* require a fixup step, as we do not necessarily know this
* address yet.
* 2. Put the return address from the callee to the caller into
* register ret_reg().
* 3. (After defer slots are consumed) Jump to the subroutine that
* pushes the registers to the stack.
* The subroutine acts as a trampoline, and returns to the address in
* imm_b(), i.e. jumps to the callee.
*
* - If callee does not need to save R6~R9 then just load return
* address to the caller in ret_reg(), and jump to the callee
* directly.
*
* Using ret_reg() to pass the return address to the callee is set here
* as a convention. The callee can then push this address onto its
* stack frame in its prologue. The advantages of passing the return
* address through ret_reg(), instead of pushing it to the stack right
* here, are the following:
* - It looks cleaner.
* - If the called function is called multiple time, we get a lower
* program size.
* - We save two no-op instructions that should be added just before
* the emit_br() when stack depth is not null otherwise.
* - If we ever find a register to hold the return address during whole
* execution of the callee, we will not have to push the return
* address to the stack for leaf functions.
*/
if (!meta->jmp_dst) {
pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
return -ELOOP;
}
if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
RELO_BR_GO_CALL_PUSH_REGS);
offset_br = nfp_prog_current_offset(nfp_prog);
wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
} else {
ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
offset_br = nfp_prog_current_offset(nfp_prog);
}
wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
return -EINVAL;
if (stack_depth) {
tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
stack_imm(nfp_prog));
emit_alu(nfp_prog, stack_reg(nfp_prog),
stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
NFP_CSR_ACT_LM_ADDR0);
wrp_nops(nfp_prog, 3);
}
meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
meta->num_insns_after_br -= offset_br;
return 0;
}
static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
switch (meta->insn.imm) {
case BPF_FUNC_xdp_adjust_head:
return adjust_head(nfp_prog, meta);
case BPF_FUNC_xdp_adjust_tail:
return adjust_tail(nfp_prog, meta);
case BPF_FUNC_map_lookup_elem:
case BPF_FUNC_map_update_elem:
case BPF_FUNC_map_delete_elem:
return map_call_stack_common(nfp_prog, meta);
case BPF_FUNC_get_prandom_u32:
return nfp_get_prandom_u32(nfp_prog, meta);
case BPF_FUNC_perf_event_output:
return nfp_perf_event_output(nfp_prog, meta);
default:
WARN_ONCE(1, "verifier allowed unsupported function\n");
return -EOPNOTSUPP;
}
}
static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
if (is_mbpf_pseudo_call(meta))
return bpf_to_bpf_call(nfp_prog, meta);
else
return helper_call(nfp_prog, meta);
}
static bool nfp_is_main_function(struct nfp_insn_meta *meta)
{
return meta->subprog_idx == 0;
}
static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
return 0;
}
static int
nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
/* Pop R6~R9 to the stack via related subroutine.
* We loaded the return address to the caller into ret_reg().
* This means that the subroutine does not come back here, we
* make it jump back to the subprogram caller directly!
*/
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
RELO_BR_GO_CALL_POP_REGS);
/* Pop return address from the stack. */
wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
} else {
/* Pop return address from the stack. */
wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
/* Jump back to caller if no callee-saved registers were used
* by the subprogram.
*/
emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
}
return 0;
}
static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
if (nfp_is_main_function(meta))
return goto_out(nfp_prog, meta);
else
return nfp_subprog_epilogue(nfp_prog, meta);
}
static const instr_cb_t instr_cb[256] = {
[BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64,
[BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64,
[BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64,
[BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64,
[BPF_ALU64 | BPF_AND | BPF_X] = and_reg64,
[BPF_ALU64 | BPF_AND | BPF_K] = and_imm64,
[BPF_ALU64 | BPF_OR | BPF_X] = or_reg64,
[BPF_ALU64 | BPF_OR | BPF_K] = or_imm64,
[BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64,
[BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64,
[BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64,
[BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64,
[BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64,
[BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64,
[BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64,
[BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64,
[BPF_ALU64 | BPF_NEG] = neg_reg64,
[BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64,
[BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64,
[BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64,
[BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64,
[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
[BPF_ALU | BPF_MOV | BPF_X] = mov_reg,
[BPF_ALU | BPF_MOV | BPF_K] = mov_imm,
[BPF_ALU | BPF_XOR | BPF_X] = xor_reg,
[BPF_ALU | BPF_XOR | BPF_K] = xor_imm,
[BPF_ALU | BPF_AND | BPF_X] = and_reg,
[BPF_ALU | BPF_AND | BPF_K] = and_imm,
[BPF_ALU | BPF_OR | BPF_X] = or_reg,
[BPF_ALU | BPF_OR | BPF_K] = or_imm,
[BPF_ALU | BPF_ADD | BPF_X] = add_reg,
[BPF_ALU | BPF_ADD | BPF_K] = add_imm,
[BPF_ALU | BPF_SUB | BPF_X] = sub_reg,
[BPF_ALU | BPF_SUB | BPF_K] = sub_imm,
[BPF_ALU | BPF_MUL | BPF_X] = mul_reg,
[BPF_ALU | BPF_MUL | BPF_K] = mul_imm,
[BPF_ALU | BPF_DIV | BPF_X] = div_reg,
[BPF_ALU | BPF_DIV | BPF_K] = div_imm,
[BPF_ALU | BPF_NEG] = neg_reg,
[BPF_ALU | BPF_LSH | BPF_X] = shl_reg,
[BPF_ALU | BPF_LSH | BPF_K] = shl_imm,
[BPF_ALU | BPF_RSH | BPF_X] = shr_reg,
[BPF_ALU | BPF_RSH | BPF_K] = shr_imm,
[BPF_ALU | BPF_ARSH | BPF_X] = ashr_reg,
[BPF_ALU | BPF_ARSH | BPF_K] = ashr_imm,
[BPF_ALU | BPF_END | BPF_X] = end_reg32,
[BPF_LD | BPF_IMM | BPF_DW] = imm_ld8,
[BPF_LD | BPF_ABS | BPF_B] = data_ld1,
[BPF_LD | BPF_ABS | BPF_H] = data_ld2,
[BPF_LD | BPF_ABS | BPF_W] = data_ld4,
[BPF_LD | BPF_IND | BPF_B] = data_ind_ld1,
[BPF_LD | BPF_IND | BPF_H] = data_ind_ld2,
[BPF_LD | BPF_IND | BPF_W] = data_ind_ld4,
[BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1,
[BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2,
[BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4,
[BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8,
[BPF_STX | BPF_MEM | BPF_B] = mem_stx1,
[BPF_STX | BPF_MEM | BPF_H] = mem_stx2,
[BPF_STX | BPF_MEM | BPF_W] = mem_stx4,
[BPF_STX | BPF_MEM | BPF_DW] = mem_stx8,
[BPF_STX | BPF_XADD | BPF_W] = mem_xadd4,
[BPF_STX | BPF_XADD | BPF_DW] = mem_xadd8,
[BPF_ST | BPF_MEM | BPF_B] = mem_st1,
[BPF_ST | BPF_MEM | BPF_H] = mem_st2,
[BPF_ST | BPF_MEM | BPF_W] = mem_st4,
[BPF_ST | BPF_MEM | BPF_DW] = mem_st8,
[BPF_JMP | BPF_JA | BPF_K] = jump,
[BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm,
[BPF_JMP | BPF_JGT | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JGE | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JLT | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JLE | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm,
[BPF_JMP | BPF_JSET | BPF_K] = jset_imm,
[BPF_JMP | BPF_JNE | BPF_K] = jne_imm,
[BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg,
[BPF_JMP | BPF_JGT | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JGE | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JLT | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JLE | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg,
[BPF_JMP | BPF_JSET | BPF_X] = jset_reg,
[BPF_JMP | BPF_JNE | BPF_X] = jne_reg,
[BPF_JMP32 | BPF_JEQ | BPF_K] = jeq32_imm,
[BPF_JMP32 | BPF_JGT | BPF_K] = cmp_imm,
[BPF_JMP32 | BPF_JGE | BPF_K] = cmp_imm,
[BPF_JMP32 | BPF_JLT | BPF_K] = cmp_imm,
[BPF_JMP32 | BPF_JLE | BPF_K] = cmp_imm,
[BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
[BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
[BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
[BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
[BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
[BPF_JMP32 | BPF_JNE | BPF_K] = jne_imm,
[BPF_JMP32 | BPF_JEQ | BPF_X] = jeq_reg,
[BPF_JMP32 | BPF_JGT | BPF_X] = cmp_reg,
[BPF_JMP32 | BPF_JGE | BPF_X] = cmp_reg,
[BPF_JMP32 | BPF_JLT | BPF_X] = cmp_reg,
[BPF_JMP32 | BPF_JLE | BPF_X] = cmp_reg,
[BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
[BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
[BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
[BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
[BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
[BPF_JMP32 | BPF_JNE | BPF_X] = jne_reg,
[BPF_JMP | BPF_CALL] = call,
[BPF_JMP | BPF_EXIT] = jmp_exit,
};
/* --- Assembler logic --- */
static int
nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct nfp_insn_meta *jmp_dst, u32 br_idx)
{
if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
pr_err("BUG: failed to fix up callee register saving\n");
return -EINVAL;
}
immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
return 0;
}
static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta, *jmp_dst;
u32 idx, br_idx;
int err;
list_for_each_entry(meta, &nfp_prog->insns, l) {
if (meta->flags & FLAG_INSN_SKIP_MASK)
continue;
if (!is_mbpf_jmp(meta))
continue;
if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
!nfp_is_main_function(meta))
continue;
if (is_mbpf_helper_call(meta))
continue;
if (list_is_last(&meta->l, &nfp_prog->insns))
br_idx = nfp_prog->last_bpf_off;
else
br_idx = list_next_entry(meta, l)->off - 1;
/* For BPF-to-BPF function call, a stack adjustment sequence is
* generated after the return instruction. Therefore, we must
* withdraw the length of this sequence to have br_idx pointing
* to where the "branch" NFP instruction is expected to be.
*/
if (is_mbpf_pseudo_call(meta))
br_idx -= meta->num_insns_after_br;
if (!nfp_is_br(nfp_prog->prog[br_idx])) {
pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
return -ELOOP;
}
if (meta->insn.code == (BPF_JMP | BPF_EXIT))
continue;
/* Leave special branches for later */
if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
RELO_BR_REL && !is_mbpf_pseudo_call(meta))
continue;
if (!meta->jmp_dst) {
pr_err("Non-exit jump doesn't have destination info recorded!!\n");
return -ELOOP;
}
jmp_dst = meta->jmp_dst;
if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
pr_err("Branch landing on removed instruction!!\n");
return -ELOOP;
}
if (is_mbpf_pseudo_call(meta) &&
nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
err = nfp_fixup_immed_relo(nfp_prog, meta,
jmp_dst, br_idx);
if (err)
return err;
}
if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
RELO_BR_REL)
continue;
for (idx = meta->off; idx <= br_idx; idx++) {
if (!nfp_is_br(nfp_prog->prog[idx]))
continue;
br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
}
}
return 0;
}
static void nfp_intro(struct nfp_prog *nfp_prog)
{
wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
emit_alu(nfp_prog, plen_reg(nfp_prog),
plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
}
static void
nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
/* Save return address into the stack. */
wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
}
static void
nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
{
unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
nfp_prog->stack_frame_depth = round_up(depth, 4);
nfp_subprog_prologue(nfp_prog, meta);
}
bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
{
return meta->flags & FLAG_INSN_IS_SUBPROG_START;
}
static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
{
/* TC direct-action mode:
* 0,1 ok NOT SUPPORTED[1]
* 2 drop 0x22 -> drop, count as stat1
* 4,5 nuke 0x02 -> drop
* 7 redir 0x44 -> redir, count as stat2
* * unspec 0x11 -> pass, count as stat0
*
* [1] We can't support OK and RECLASSIFY because we can't tell TC
* the exact decision made. We are forced to support UNSPEC
* to handle aborts so that's the only one we handle for passing
* packets up the stack.
*/
/* Target for aborts */
nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
/* Target for normal exits */
nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
/* if R0 > 7 jump to abort */
emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
wrp_immed(nfp_prog, reg_b(2), 0x41221211);
wrp_immed(nfp_prog, reg_b(3), 0x41001211);
emit_shf(nfp_prog, reg_a(1),
reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
emit_shf(nfp_prog, reg_a(2),
reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
emit_shf(nfp_prog, reg_b(2),
reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
emit_shf(nfp_prog, reg_b(2),
reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
}
static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
{
/* XDP return codes:
* 0 aborted 0x82 -> drop, count as stat3
* 1 drop 0x22 -> drop, count as stat1
* 2 pass 0x11 -> pass, count as stat0
* 3 tx 0x44 -> redir, count as stat2
* * unknown 0x82 -> drop, count as stat3
*/
/* Target for aborts */
nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
/* Target for normal exits */
nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
/* if R0 > 3 jump to abort */
emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
wrp_immed(nfp_prog, reg_b(2), 0x44112282);
emit_shf(nfp_prog, reg_a(1),
reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
emit_shf(nfp_prog, reg_b(2),
reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
}
static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
{
unsigned int idx;
for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
if (nfp_prog->subprog[idx].needs_reg_push)
return true;
return false;
}
static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
{
u8 reg;
/* Subroutine: Save all callee saved registers (R6 ~ R9).
* imm_b() holds the return address.
*/
nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
u8 adj = (reg - BPF_REG_0) * 2;
u8 idx = (reg - BPF_REG_6) * 2;
/* The first slot in the stack frame is used to push the return
* address in bpf_to_bpf_call(), start just after.
*/
wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
if (reg == BPF_REG_8)
/* Prepare to jump back, last 3 insns use defer slots */
emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
}
}
static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
{
u8 reg;
/* Subroutine: Restore all callee saved registers (R6 ~ R9).
* ret_reg() holds the return address.
*/
nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
u8 adj = (reg - BPF_REG_0) * 2;
u8 idx = (reg - BPF_REG_6) * 2;
/* The first slot in the stack frame holds the return address,
* start popping just after that.
*/
wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
if (reg == BPF_REG_8)
/* Prepare to jump back, last 3 insns use defer slots */
emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
}
}
static void nfp_outro(struct nfp_prog *nfp_prog)
{
switch (nfp_prog->type) {
case BPF_PROG_TYPE_SCHED_CLS:
nfp_outro_tc_da(nfp_prog);
break;
case BPF_PROG_TYPE_XDP:
nfp_outro_xdp(nfp_prog);
break;
default:
WARN_ON(1);
}
if (!nfp_prog_needs_callee_reg_save(nfp_prog))
return;
nfp_push_callee_registers(nfp_prog);
nfp_pop_callee_registers(nfp_prog);
}
static int nfp_translate(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta;
unsigned int depth;
int err;
depth = nfp_prog->subprog[0].stack_depth;
nfp_prog->stack_frame_depth = round_up(depth, 4);
nfp_intro(nfp_prog);
if (nfp_prog->error)
return nfp_prog->error;
list_for_each_entry(meta, &nfp_prog->insns, l) {
instr_cb_t cb = instr_cb[meta->insn.code];
meta->off = nfp_prog_current_offset(nfp_prog);
if (nfp_is_subprog_start(meta)) {
nfp_start_subprog(nfp_prog, meta);
if (nfp_prog->error)
return nfp_prog->error;
}
if (meta->flags & FLAG_INSN_SKIP_MASK) {
nfp_prog->n_translated++;
continue;
}
if (nfp_meta_has_prev(nfp_prog, meta) &&
nfp_meta_prev(meta)->double_cb)
cb = nfp_meta_prev(meta)->double_cb;
if (!cb)
return -ENOENT;
err = cb(nfp_prog, meta);
if (err)
return err;
if (nfp_prog->error)
return nfp_prog->error;
nfp_prog->n_translated++;
}
nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
nfp_outro(nfp_prog);
if (nfp_prog->error)
return nfp_prog->error;
wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
if (nfp_prog->error)
return nfp_prog->error;
return nfp_fixup_branches(nfp_prog);
}
/* --- Optimizations --- */
static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta;
list_for_each_entry(meta, &nfp_prog->insns, l) {
struct bpf_insn insn = meta->insn;
/* Programs converted from cBPF start with register xoring */
if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
insn.src_reg == insn.dst_reg)
continue;
/* Programs start with R6 = R1 but we ignore the skb pointer */
if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
insn.src_reg == 1 && insn.dst_reg == 6)
meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
/* Return as soon as something doesn't match */
if (!(meta->flags & FLAG_INSN_SKIP_MASK))
return;
}
}
/* abs(insn.imm) will fit better into unrestricted reg immediate -
* convert add/sub of a negative number into a sub/add of a positive one.
*/
static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta;
list_for_each_entry(meta, &nfp_prog->insns, l) {
struct bpf_insn insn = meta->insn;
if (meta->flags & FLAG_INSN_SKIP_MASK)
continue;
if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
continue;
if (BPF_SRC(insn.code) != BPF_K)
continue;
if (insn.imm >= 0)
continue;
if (is_mbpf_jmp(meta)) {
switch (BPF_OP(insn.code)) {
case BPF_JGE:
case BPF_JSGE:
case BPF_JLT:
case BPF_JSLT:
meta->jump_neg_op = true;
break;
default:
continue;
}
} else {
if (BPF_OP(insn.code) == BPF_ADD)
insn.code = BPF_CLASS(insn.code) | BPF_SUB;
else if (BPF_OP(insn.code) == BPF_SUB)
insn.code = BPF_CLASS(insn.code) | BPF_ADD;
else
continue;
meta->insn.code = insn.code | BPF_K;
}
meta->insn.imm = -insn.imm;
}
}
/* Remove masking after load since our load guarantees this is not needed */
static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta1, *meta2;
const s32 exp_mask[] = {
[BPF_B] = 0x000000ffU,
[BPF_H] = 0x0000ffffU,
[BPF_W] = 0xffffffffU,
};
nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
struct bpf_insn insn, next;
insn = meta1->insn;
next = meta2->insn;
if (BPF_CLASS(insn.code) != BPF_LD)
continue;
if (BPF_MODE(insn.code) != BPF_ABS &&
BPF_MODE(insn.code) != BPF_IND)
continue;
if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
continue;
if (!exp_mask[BPF_SIZE(insn.code)])
continue;
if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
continue;
if (next.src_reg || next.dst_reg)
continue;
if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
continue;
meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
}
}
static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta1, *meta2, *meta3;
nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
struct bpf_insn insn, next1, next2;
insn = meta1->insn;
next1 = meta2->insn;
next2 = meta3->insn;
if (BPF_CLASS(insn.code) != BPF_LD)
continue;
if (BPF_MODE(insn.code) != BPF_ABS &&
BPF_MODE(insn.code) != BPF_IND)
continue;
if (BPF_SIZE(insn.code) != BPF_W)
continue;
if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
!(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
continue;
if (next1.src_reg || next1.dst_reg ||
next2.src_reg || next2.dst_reg)
continue;
if (next1.imm != 0x20 || next2.imm != 0x20)
continue;
if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
meta3->flags & FLAG_INSN_IS_JUMP_DST)
continue;
meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
}
}
/* load/store pair that forms memory copy sould look like the following:
*
* ld_width R, [addr_src + offset_src]
* st_width [addr_dest + offset_dest], R
*
* The destination register of load and source register of store should
* be the same, load and store should also perform at the same width.
* If either of addr_src or addr_dest is stack pointer, we don't do the
* CPP optimization as stack is modelled by registers on NFP.
*/
static bool
curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
struct nfp_insn_meta *st_meta)
{
struct bpf_insn *ld = &ld_meta->insn;
struct bpf_insn *st = &st_meta->insn;
if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
return false;
if (ld_meta->ptr.type != PTR_TO_PACKET &&
ld_meta->ptr.type != PTR_TO_MAP_VALUE)
return false;
if (st_meta->ptr.type != PTR_TO_PACKET)
return false;
if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
return false;
if (ld->dst_reg != st->src_reg)
return false;
/* There is jump to the store insn in this pair. */
if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
return false;
return true;
}
/* Currently, we only support chaining load/store pairs if:
*
* - Their address base registers are the same.
* - Their address offsets are in the same order.
* - They operate at the same memory width.
* - There is no jump into the middle of them.
*/
static bool
curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
struct nfp_insn_meta *st_meta,
struct bpf_insn *prev_ld,
struct bpf_insn *prev_st)
{
u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
struct bpf_insn *ld = &ld_meta->insn;
struct bpf_insn *st = &st_meta->insn;
s16 prev_ld_off, prev_st_off;
/* This pair is the start pair. */
if (!prev_ld)
return true;
prev_size = BPF_LDST_BYTES(prev_ld);
curr_size = BPF_LDST_BYTES(ld);
prev_ld_base = prev_ld->src_reg;
prev_st_base = prev_st->dst_reg;
prev_ld_dst = prev_ld->dst_reg;
prev_ld_off = prev_ld->off;
prev_st_off = prev_st->off;
if (ld->dst_reg != prev_ld_dst)
return false;
if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
return false;
if (curr_size != prev_size)
return false;
/* There is jump to the head of this pair. */
if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
return false;
/* Both in ascending order. */
if (prev_ld_off + prev_size == ld->off &&
prev_st_off + prev_size == st->off)
return true;
/* Both in descending order. */
if (ld->off + curr_size == prev_ld_off &&
st->off + curr_size == prev_st_off)
return true;
return false;
}
/* Return TRUE if cross memory access happens. Cross memory access means
* store area is overlapping with load area that a later load might load
* the value from previous store, for this case we can't treat the sequence
* as an memory copy.
*/
static bool
cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
struct nfp_insn_meta *head_st_meta)
{
s16 head_ld_off, head_st_off, ld_off;
/* Different pointer types does not overlap. */
if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
return false;
/* load and store are both PTR_TO_PACKET, check ID info. */
if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
return true;
/* Canonicalize the offsets. Turn all of them against the original
* base register.
*/
head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
ld_off = ld->off + head_ld_meta->ptr.off;
/* Ascending order cross. */
if (ld_off > head_ld_off &&
head_ld_off < head_st_off && ld_off >= head_st_off)
return true;
/* Descending order cross. */
if (ld_off < head_ld_off &&
head_ld_off > head_st_off && ld_off <= head_st_off)
return true;
return false;
}
/* This pass try to identify the following instructoin sequences.
*
* load R, [regA + offA]
* store [regB + offB], R
* load R, [regA + offA + const_imm_A]
* store [regB + offB + const_imm_A], R
* load R, [regA + offA + 2 * const_imm_A]
* store [regB + offB + 2 * const_imm_A], R
* ...
*
* Above sequence is typically generated by compiler when lowering
* memcpy. NFP prefer using CPP instructions to accelerate it.
*/
static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *head_ld_meta = NULL;
struct nfp_insn_meta *head_st_meta = NULL;
struct nfp_insn_meta *meta1, *meta2;
struct bpf_insn *prev_ld = NULL;
struct bpf_insn *prev_st = NULL;
u8 count = 0;
nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
struct bpf_insn *ld = &meta1->insn;
struct bpf_insn *st = &meta2->insn;
/* Reset record status if any of the following if true:
* - The current insn pair is not load/store.
* - The load/store pair doesn't chain with previous one.
* - The chained load/store pair crossed with previous pair.
* - The chained load/store pair has a total size of memory
* copy beyond 128 bytes which is the maximum length a
* single NFP CPP command can transfer.
*/
if (!curr_pair_is_memcpy(meta1, meta2) ||
!curr_pair_chain_with_previous(meta1, meta2, prev_ld,
prev_st) ||
(head_ld_meta && (cross_mem_access(ld, head_ld_meta,
head_st_meta) ||
head_ld_meta->ldst_gather_len >= 128))) {
if (!count)
continue;
if (count > 1) {
s16 prev_ld_off = prev_ld->off;
s16 prev_st_off = prev_st->off;
s16 head_ld_off = head_ld_meta->insn.off;
if (prev_ld_off < head_ld_off) {
head_ld_meta->insn.off = prev_ld_off;
head_st_meta->insn.off = prev_st_off;
head_ld_meta->ldst_gather_len =
-head_ld_meta->ldst_gather_len;
}
head_ld_meta->paired_st = &head_st_meta->insn;
head_st_meta->flags |=
FLAG_INSN_SKIP_PREC_DEPENDENT;
} else {
head_ld_meta->ldst_gather_len = 0;
}
/* If the chain is ended by an load/store pair then this
* could serve as the new head of the the next chain.
*/
if (curr_pair_is_memcpy(meta1, meta2)) {
head_ld_meta = meta1;
head_st_meta = meta2;
head_ld_meta->ldst_gather_len =
BPF_LDST_BYTES(ld);
meta1 = nfp_meta_next(meta1);
meta2 = nfp_meta_next(meta2);
prev_ld = ld;
prev_st = st;
count = 1;
} else {
head_ld_meta = NULL;
head_st_meta = NULL;
prev_ld = NULL;
prev_st = NULL;
count = 0;
}
continue;
}
if (!head_ld_meta) {
head_ld_meta = meta1;
head_st_meta = meta2;
} else {
meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
}
head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
meta1 = nfp_meta_next(meta1);
meta2 = nfp_meta_next(meta2);
prev_ld = ld;
prev_st = st;
count++;
}
}
static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta, *range_node = NULL;
s16 range_start = 0, range_end = 0;
bool cache_avail = false;
struct bpf_insn *insn;
s32 range_ptr_off = 0;
u32 range_ptr_id = 0;
list_for_each_entry(meta, &nfp_prog->insns, l) {
if (meta->flags & FLAG_INSN_IS_JUMP_DST)
cache_avail = false;
if (meta->flags & FLAG_INSN_SKIP_MASK)
continue;
insn = &meta->insn;
if (is_mbpf_store_pkt(meta) ||
insn->code == (BPF_JMP | BPF_CALL) ||
is_mbpf_classic_store_pkt(meta) ||
is_mbpf_classic_load(meta)) {
cache_avail = false;
continue;
}
if (!is_mbpf_load(meta))
continue;
if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
cache_avail = false;
continue;
}
if (!cache_avail) {
cache_avail = true;
if (range_node)
goto end_current_then_start_new;
goto start_new;
}
/* Check ID to make sure two reads share the same
* variable offset against PTR_TO_PACKET, and check OFF
* to make sure they also share the same constant
* offset.
*
* OFFs don't really need to be the same, because they
* are the constant offsets against PTR_TO_PACKET, so
* for different OFFs, we could canonicalize them to
* offsets against original packet pointer. We don't
* support this.
*/
if (meta->ptr.id == range_ptr_id &&
meta->ptr.off == range_ptr_off) {
s16 new_start = range_start;
s16 end, off = insn->off;
s16 new_end = range_end;
bool changed = false;
if (off < range_start) {
new_start = off;
changed = true;
}
end = off + BPF_LDST_BYTES(insn);
if (end > range_end) {
new_end = end;
changed = true;
}
if (!changed)
continue;
if (new_end - new_start <= 64) {
/* Install new range. */
range_start = new_start;
range_end = new_end;
continue;
}
}
end_current_then_start_new:
range_node->pkt_cache.range_start = range_start;
range_node->pkt_cache.range_end = range_end;
start_new:
range_node = meta;
range_node->pkt_cache.do_init = true;
range_ptr_id = range_node->ptr.id;
range_ptr_off = range_node->ptr.off;
range_start = insn->off;
range_end = insn->off + BPF_LDST_BYTES(insn);
}
if (range_node) {
range_node->pkt_cache.range_start = range_start;
range_node->pkt_cache.range_end = range_end;
}
list_for_each_entry(meta, &nfp_prog->insns, l) {
if (meta->flags & FLAG_INSN_SKIP_MASK)
continue;
if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
if (meta->pkt_cache.do_init) {
range_start = meta->pkt_cache.range_start;
range_end = meta->pkt_cache.range_end;
} else {
meta->pkt_cache.range_start = range_start;
meta->pkt_cache.range_end = range_end;
}
}
}
}
static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
{
nfp_bpf_opt_reg_init(nfp_prog);
nfp_bpf_opt_neg_add_sub(nfp_prog);
nfp_bpf_opt_ld_mask(nfp_prog);
nfp_bpf_opt_ld_shift(nfp_prog);
nfp_bpf_opt_ldst_gather(nfp_prog);
nfp_bpf_opt_pkt_cache(nfp_prog);
return 0;
}
static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta1, *meta2;
struct nfp_bpf_map *nfp_map;
struct bpf_map *map;
u32 id;
nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
if (meta1->flags & FLAG_INSN_SKIP_MASK ||
meta2->flags & FLAG_INSN_SKIP_MASK)
continue;
if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
continue;
map = (void *)(unsigned long)((u32)meta1->insn.imm |
(u64)meta2->insn.imm << 32);
if (bpf_map_offload_neutral(map)) {
id = map->id;
} else {
nfp_map = map_to_offmap(map)->dev_priv;
id = nfp_map->tid;
}
meta1->insn.imm = id;
meta2->insn.imm = 0;
}
return 0;
}
static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
{
__le64 *ustore = (__force __le64 *)prog;
int i;
for (i = 0; i < len; i++) {
int err;
err = nfp_ustore_check_valid_no_ecc(prog[i]);
if (err)
return err;
ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
}
return 0;
}
static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
{
void *prog;
prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
if (!prog)
return;
nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
kvfree(nfp_prog->prog);
nfp_prog->prog = prog;
}
int nfp_bpf_jit(struct nfp_prog *nfp_prog)
{
int ret;
ret = nfp_bpf_replace_map_ptrs(nfp_prog);
if (ret)
return ret;
ret = nfp_bpf_optimize(nfp_prog);
if (ret)
return ret;
ret = nfp_translate(nfp_prog);
if (ret) {
pr_err("Translation failed with error %d (translated: %u)\n",
ret, nfp_prog->n_translated);
return -EINVAL;
}
nfp_bpf_prog_trim(nfp_prog);
return ret;
}
void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta;
/* Another pass to record jump information. */
list_for_each_entry(meta, &nfp_prog->insns, l) {
struct nfp_insn_meta *dst_meta;
u64 code = meta->insn.code;
unsigned int dst_idx;
bool pseudo_call;
if (!is_mbpf_jmp(meta))
continue;
if (BPF_OP(code) == BPF_EXIT)
continue;
if (is_mbpf_helper_call(meta))
continue;
/* If opcode is BPF_CALL at this point, this can only be a
* BPF-to-BPF call (a.k.a pseudo call).
*/
pseudo_call = BPF_OP(code) == BPF_CALL;
if (pseudo_call)
dst_idx = meta->n + 1 + meta->insn.imm;
else
dst_idx = meta->n + 1 + meta->insn.off;
dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
if (pseudo_call)
dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
meta->jmp_dst = dst_meta;
}
}
bool nfp_bpf_supported_opcode(u8 code)
{
return !!instr_cb[code];
}
void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
{
unsigned int i;
u64 *prog;
int err;
prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
GFP_KERNEL);
if (!prog)
return ERR_PTR(-ENOMEM);
for (i = 0; i < nfp_prog->prog_len; i++) {
enum nfp_relo_type special;
u32 val;
u16 off;
special = FIELD_GET(OP_RELO_TYPE, prog[i]);
switch (special) {
case RELO_NONE:
continue;
case RELO_BR_REL:
br_add_offset(&prog[i], bv->start_off);
break;
case RELO_BR_GO_OUT:
br_set_offset(&prog[i],
nfp_prog->tgt_out + bv->start_off);
break;
case RELO_BR_GO_ABORT:
br_set_offset(&prog[i],
nfp_prog->tgt_abort + bv->start_off);
break;
case RELO_BR_GO_CALL_PUSH_REGS:
if (!nfp_prog->tgt_call_push_regs) {
pr_err("BUG: failed to detect subprogram registers needs\n");
err = -EINVAL;
goto err_free_prog;
}
off = nfp_prog->tgt_call_push_regs + bv->start_off;
br_set_offset(&prog[i], off);
break;
case RELO_BR_GO_CALL_POP_REGS:
if (!nfp_prog->tgt_call_pop_regs) {
pr_err("BUG: failed to detect subprogram registers needs\n");
err = -EINVAL;
goto err_free_prog;
}
off = nfp_prog->tgt_call_pop_regs + bv->start_off;
br_set_offset(&prog[i], off);
break;
case RELO_BR_NEXT_PKT:
br_set_offset(&prog[i], bv->tgt_done);
break;
case RELO_BR_HELPER:
val = br_get_offset(prog[i]);
val -= BR_OFF_RELO;
switch (val) {
case BPF_FUNC_map_lookup_elem:
val = nfp_prog->bpf->helpers.map_lookup;
break;
case BPF_FUNC_map_update_elem:
val = nfp_prog->bpf->helpers.map_update;
break;
case BPF_FUNC_map_delete_elem:
val = nfp_prog->bpf->helpers.map_delete;
break;
case BPF_FUNC_perf_event_output:
val = nfp_prog->bpf->helpers.perf_event_output;
break;
default:
pr_err("relocation of unknown helper %d\n",
val);
err = -EINVAL;
goto err_free_prog;
}
br_set_offset(&prog[i], val);
break;
case RELO_IMMED_REL:
immed_add_value(&prog[i], bv->start_off);
break;
}
prog[i] &= ~OP_RELO_TYPE;
}
err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
if (err)
goto err_free_prog;
return prog;
err_free_prog:
kfree(prog);
return ERR_PTR(err);
}