Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
/*
 * videobuf2-core.h - Video Buffer 2 Core Framework
 *
 * Copyright (C) 2010 Samsung Electronics
 *
 * Author: Pawel Osciak <pawel@osciak.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation.
 */
#ifndef _MEDIA_VIDEOBUF2_CORE_H
#define _MEDIA_VIDEOBUF2_CORE_H

#include <linux/mm_types.h>
#include <linux/mutex.h>
#include <linux/poll.h>
#include <linux/dma-buf.h>
#include <linux/bitops.h>
#include <media/media-request.h>

#define VB2_MAX_FRAME	(32)
#define VB2_MAX_PLANES	(8)

/**
 * enum vb2_memory - type of memory model used to make the buffers visible
 *	on userspace.
 *
 * @VB2_MEMORY_UNKNOWN:	Buffer status is unknown or it is not used yet on
 *			userspace.
 * @VB2_MEMORY_MMAP:	The buffers are allocated by the Kernel and it is
 *			memory mapped via mmap() ioctl. This model is
 *			also used when the user is using the buffers via
 *			read() or write() system calls.
 * @VB2_MEMORY_USERPTR:	The buffers was allocated in userspace and it is
 *			memory mapped via mmap() ioctl.
 * @VB2_MEMORY_DMABUF:	The buffers are passed to userspace via DMA buffer.
 */
enum vb2_memory {
	VB2_MEMORY_UNKNOWN	= 0,
	VB2_MEMORY_MMAP		= 1,
	VB2_MEMORY_USERPTR	= 2,
	VB2_MEMORY_DMABUF	= 4,
};

struct vb2_fileio_data;
struct vb2_threadio_data;

/**
 * struct vb2_mem_ops - memory handling/memory allocator operations.
 * @alloc:	allocate video memory and, optionally, allocator private data,
 *		return ERR_PTR() on failure or a pointer to allocator private,
 *		per-buffer data on success; the returned private structure
 *		will then be passed as @buf_priv argument to other ops in this
 *		structure. Additional gfp_flags to use when allocating the
 *		are also passed to this operation. These flags are from the
 *		gfp_flags field of vb2_queue. The size argument to this function
 *		shall be *page aligned*.
 * @put:	inform the allocator that the buffer will no longer be used;
 *		usually will result in the allocator freeing the buffer (if
 *		no other users of this buffer are present); the @buf_priv
 *		argument is the allocator private per-buffer structure
 *		previously returned from the alloc callback.
 * @get_dmabuf: acquire userspace memory for a hardware operation; used for
 *		 DMABUF memory types.
 * @get_userptr: acquire userspace memory for a hardware operation; used for
 *		 USERPTR memory types; vaddr is the address passed to the
 *		 videobuf layer when queuing a video buffer of USERPTR type;
 *		 should return an allocator private per-buffer structure
 *		 associated with the buffer on success, ERR_PTR() on failure;
 *		 the returned private structure will then be passed as @buf_priv
 *		 argument to other ops in this structure.
 * @put_userptr: inform the allocator that a USERPTR buffer will no longer
 *		 be used.
 * @attach_dmabuf: attach a shared &struct dma_buf for a hardware operation;
 *		   used for DMABUF memory types; dev is the alloc device
 *		   dbuf is the shared dma_buf; returns ERR_PTR() on failure;
 *		   allocator private per-buffer structure on success;
 *		   this needs to be used for further accesses to the buffer.
 * @detach_dmabuf: inform the exporter of the buffer that the current DMABUF
 *		   buffer is no longer used; the @buf_priv argument is the
 *		   allocator private per-buffer structure previously returned
 *		   from the attach_dmabuf callback.
 * @map_dmabuf: request for access to the dmabuf from allocator; the allocator
 *		of dmabuf is informed that this driver is going to use the
 *		dmabuf.
 * @unmap_dmabuf: releases access control to the dmabuf - allocator is notified
 *		  that this driver is done using the dmabuf for now.
 * @prepare:	called every time the buffer is passed from userspace to the
 *		driver, useful for cache synchronisation, optional.
 * @finish:	called every time the buffer is passed back from the driver
 *		to the userspace, also optional.
 * @vaddr:	return a kernel virtual address to a given memory buffer
 *		associated with the passed private structure or NULL if no
 *		such mapping exists.
 * @cookie:	return allocator specific cookie for a given memory buffer
 *		associated with the passed private structure or NULL if not
 *		available.
 * @num_users:	return the current number of users of a memory buffer;
 *		return 1 if the videobuf layer (or actually the driver using
 *		it) is the only user.
 * @mmap:	setup a userspace mapping for a given memory buffer under
 *		the provided virtual memory region.
 *
 * Those operations are used by the videobuf2 core to implement the memory
 * handling/memory allocators for each type of supported streaming I/O method.
 *
 * .. note::
 *    #) Required ops for USERPTR types: get_userptr, put_userptr.
 *
 *    #) Required ops for MMAP types: alloc, put, num_users, mmap.
 *
 *    #) Required ops for read/write access types: alloc, put, num_users, vaddr.
 *
 *    #) Required ops for DMABUF types: attach_dmabuf, detach_dmabuf,
 *       map_dmabuf, unmap_dmabuf.
 */
struct vb2_mem_ops {
	void		*(*alloc)(struct device *dev, unsigned long attrs,
				  unsigned long size,
				  enum dma_data_direction dma_dir,
				  gfp_t gfp_flags);
	void		(*put)(void *buf_priv);
	struct dma_buf *(*get_dmabuf)(void *buf_priv, unsigned long flags);

	void		*(*get_userptr)(struct device *dev, unsigned long vaddr,
					unsigned long size,
					enum dma_data_direction dma_dir);
	void		(*put_userptr)(void *buf_priv);

	void		(*prepare)(void *buf_priv);
	void		(*finish)(void *buf_priv);

	void		*(*attach_dmabuf)(struct device *dev,
					  struct dma_buf *dbuf,
					  unsigned long size,
					  enum dma_data_direction dma_dir);
	void		(*detach_dmabuf)(void *buf_priv);
	int		(*map_dmabuf)(void *buf_priv);
	void		(*unmap_dmabuf)(void *buf_priv);

	void		*(*vaddr)(void *buf_priv);
	void		*(*cookie)(void *buf_priv);

	unsigned int	(*num_users)(void *buf_priv);

	int		(*mmap)(void *buf_priv, struct vm_area_struct *vma);
};

/**
 * struct vb2_plane - plane information.
 * @mem_priv:	private data with this plane.
 * @dbuf:	dma_buf - shared buffer object.
 * @dbuf_mapped:	flag to show whether dbuf is mapped or not
 * @bytesused:	number of bytes occupied by data in the plane (payload).
 * @length:	size of this plane (NOT the payload) in bytes.
 * @min_length:	minimum required size of this plane (NOT the payload) in bytes.
 *		@length is always greater or equal to @min_length.
 * @m:		Union with memtype-specific data.
 * @m.offset:	when memory in the associated struct vb2_buffer is
 *		%VB2_MEMORY_MMAP, equals the offset from the start of
 *		the device memory for this plane (or is a "cookie" that
 *		should be passed to mmap() called on the video node).
 * @m.userptr:	when memory is %VB2_MEMORY_USERPTR, a userspace pointer
 *		pointing to this plane.
 * @m.fd:	when memory is %VB2_MEMORY_DMABUF, a userspace file
 *		descriptor associated with this plane.
 * @data_offset:	offset in the plane to the start of data; usually 0,
 *		unless there is a header in front of the data.
 *
 * Should contain enough information to be able to cover all the fields
 * of &struct v4l2_plane at videodev2.h.
 */
struct vb2_plane {
	void			*mem_priv;
	struct dma_buf		*dbuf;
	unsigned int		dbuf_mapped;
	unsigned int		bytesused;
	unsigned int		length;
	unsigned int		min_length;
	union {
		unsigned int	offset;
		unsigned long	userptr;
		int		fd;
	} m;
	unsigned int		data_offset;
};

/**
 * enum vb2_io_modes - queue access methods.
 * @VB2_MMAP:		driver supports MMAP with streaming API.
 * @VB2_USERPTR:	driver supports USERPTR with streaming API.
 * @VB2_READ:		driver supports read() style access.
 * @VB2_WRITE:		driver supports write() style access.
 * @VB2_DMABUF:		driver supports DMABUF with streaming API.
 */
enum vb2_io_modes {
	VB2_MMAP	= BIT(0),
	VB2_USERPTR	= BIT(1),
	VB2_READ	= BIT(2),
	VB2_WRITE	= BIT(3),
	VB2_DMABUF	= BIT(4),
};

/**
 * enum vb2_buffer_state - current video buffer state.
 * @VB2_BUF_STATE_DEQUEUED:	buffer under userspace control.
 * @VB2_BUF_STATE_IN_REQUEST:	buffer is queued in media request.
 * @VB2_BUF_STATE_PREPARING:	buffer is being prepared in videobuf.
 * @VB2_BUF_STATE_QUEUED:	buffer queued in videobuf, but not in driver.
 * @VB2_BUF_STATE_ACTIVE:	buffer queued in driver and possibly used
 *				in a hardware operation.
 * @VB2_BUF_STATE_DONE:		buffer returned from driver to videobuf, but
 *				not yet dequeued to userspace.
 * @VB2_BUF_STATE_ERROR:	same as above, but the operation on the buffer
 *				has ended with an error, which will be reported
 *				to the userspace when it is dequeued.
 */
enum vb2_buffer_state {
	VB2_BUF_STATE_DEQUEUED,
	VB2_BUF_STATE_IN_REQUEST,
	VB2_BUF_STATE_PREPARING,
	VB2_BUF_STATE_QUEUED,
	VB2_BUF_STATE_ACTIVE,
	VB2_BUF_STATE_DONE,
	VB2_BUF_STATE_ERROR,
};

struct vb2_queue;

/**
 * struct vb2_buffer - represents a video buffer.
 * @vb2_queue:		pointer to &struct vb2_queue with the queue to
 *			which this driver belongs.
 * @index:		id number of the buffer.
 * @type:		buffer type.
 * @memory:		the method, in which the actual data is passed.
 * @num_planes:		number of planes in the buffer
 *			on an internal driver queue.
 * @timestamp:		frame timestamp in ns.
 * @request:		the request this buffer is associated with.
 * @req_obj:		used to bind this buffer to a request. This
 *			request object has a refcount.
 */
struct vb2_buffer {
	struct vb2_queue	*vb2_queue;
	unsigned int		index;
	unsigned int		type;
	unsigned int		memory;
	unsigned int		num_planes;
	u64			timestamp;
	struct media_request	*request;
	struct media_request_object	req_obj;

	/* private: internal use only
	 *
	 * state:		current buffer state; do not change
	 * synced:		this buffer has been synced for DMA, i.e. the
	 *			'prepare' memop was called. It is cleared again
	 *			after the 'finish' memop is called.
	 * prepared:		this buffer has been prepared, i.e. the
	 *			buf_prepare op was called. It is cleared again
	 *			after the 'buf_finish' op is called.
	 * copied_timestamp:	the timestamp of this capture buffer was copied
	 *			from an output buffer.
	 * queued_entry:	entry on the queued buffers list, which holds
	 *			all buffers queued from userspace
	 * done_entry:		entry on the list that stores all buffers ready
	 *			to be dequeued to userspace
	 * vb2_plane:		per-plane information; do not change
	 */
	enum vb2_buffer_state	state;
	unsigned int		synced:1;
	unsigned int		prepared:1;
	unsigned int		copied_timestamp:1;

	struct vb2_plane	planes[VB2_MAX_PLANES];
	struct list_head	queued_entry;
	struct list_head	done_entry;
#ifdef CONFIG_VIDEO_ADV_DEBUG
	/*
	 * Counters for how often these buffer-related ops are
	 * called. Used to check for unbalanced ops.
	 */
	u32		cnt_mem_alloc;
	u32		cnt_mem_put;
	u32		cnt_mem_get_dmabuf;
	u32		cnt_mem_get_userptr;
	u32		cnt_mem_put_userptr;
	u32		cnt_mem_prepare;
	u32		cnt_mem_finish;
	u32		cnt_mem_attach_dmabuf;
	u32		cnt_mem_detach_dmabuf;
	u32		cnt_mem_map_dmabuf;
	u32		cnt_mem_unmap_dmabuf;
	u32		cnt_mem_vaddr;
	u32		cnt_mem_cookie;
	u32		cnt_mem_num_users;
	u32		cnt_mem_mmap;

	u32		cnt_buf_out_validate;
	u32		cnt_buf_init;
	u32		cnt_buf_prepare;
	u32		cnt_buf_finish;
	u32		cnt_buf_cleanup;
	u32		cnt_buf_queue;
	u32		cnt_buf_request_complete;

	/* This counts the number of calls to vb2_buffer_done() */
	u32		cnt_buf_done;
#endif
};

/**
 * struct vb2_ops - driver-specific callbacks.
 *
 * These operations are not called from interrupt context except where
 * mentioned specifically.
 *
 * @queue_setup:	called from VIDIOC_REQBUFS() and VIDIOC_CREATE_BUFS()
 *			handlers before memory allocation. It can be called
 *			twice: if the original number of requested buffers
 *			could not be allocated, then it will be called a
 *			second time with the actually allocated number of
 *			buffers to verify if that is OK.
 *			The driver should return the required number of buffers
 *			in \*num_buffers, the required number of planes per
 *			buffer in \*num_planes, the size of each plane should be
 *			set in the sizes\[\] array and optional per-plane
 *			allocator specific device in the alloc_devs\[\] array.
 *			When called from VIDIOC_REQBUFS(), \*num_planes == 0,
 *			the driver has to use the currently configured format to
 *			determine the plane sizes and \*num_buffers is the total
 *			number of buffers that are being allocated. When called
 *			from VIDIOC_CREATE_BUFS(), \*num_planes != 0 and it
 *			describes the requested number of planes and sizes\[\]
 *			contains the requested plane sizes. In this case
 *			\*num_buffers are being allocated additionally to
 *			q->num_buffers. If either \*num_planes or the requested
 *			sizes are invalid callback must return %-EINVAL.
 * @wait_prepare:	release any locks taken while calling vb2 functions;
 *			it is called before an ioctl needs to wait for a new
 *			buffer to arrive; required to avoid a deadlock in
 *			blocking access type.
 * @wait_finish:	reacquire all locks released in the previous callback;
 *			required to continue operation after sleeping while
 *			waiting for a new buffer to arrive.
 * @buf_out_validate:	called when the output buffer is prepared or queued
 *			to a request; drivers can use this to validate
 *			userspace-provided information; this is required only
 *			for OUTPUT queues.
 * @buf_init:		called once after allocating a buffer (in MMAP case)
 *			or after acquiring a new USERPTR buffer; drivers may
 *			perform additional buffer-related initialization;
 *			initialization failure (return != 0) will prevent
 *			queue setup from completing successfully; optional.
 * @buf_prepare:	called every time the buffer is queued from userspace
 *			and from the VIDIOC_PREPARE_BUF() ioctl; drivers may
 *			perform any initialization required before each
 *			hardware operation in this callback; drivers can
 *			access/modify the buffer here as it is still synced for
 *			the CPU; drivers that support VIDIOC_CREATE_BUFS() must
 *			also validate the buffer size; if an error is returned,
 *			the buffer will not be queued in driver; optional.
 * @buf_finish:		called before every dequeue of the buffer back to
 *			userspace; the buffer is synced for the CPU, so drivers
 *			can access/modify the buffer contents; drivers may
 *			perform any operations required before userspace
 *			accesses the buffer; optional. The buffer state can be
 *			one of the following: %DONE and %ERROR occur while
 *			streaming is in progress, and the %PREPARED state occurs
 *			when the queue has been canceled and all pending
 *			buffers are being returned to their default %DEQUEUED
 *			state. Typically you only have to do something if the
 *			state is %VB2_BUF_STATE_DONE, since in all other cases
 *			the buffer contents will be ignored anyway.
 * @buf_cleanup:	called once before the buffer is freed; drivers may
 *			perform any additional cleanup; optional.
 * @start_streaming:	called once to enter 'streaming' state; the driver may
 *			receive buffers with @buf_queue callback
 *			before @start_streaming is called; the driver gets the
 *			number of already queued buffers in count parameter;
 *			driver can return an error if hardware fails, in that
 *			case all buffers that have been already given by
 *			the @buf_queue callback are to be returned by the driver
 *			by calling vb2_buffer_done() with %VB2_BUF_STATE_QUEUED.
 *			If you need a minimum number of buffers before you can
 *			start streaming, then set
 *			&vb2_queue->min_buffers_needed. If that is non-zero
 *			then @start_streaming won't be called until at least
 *			that many buffers have been queued up by userspace.
 * @stop_streaming:	called when 'streaming' state must be disabled; driver
 *			should stop any DMA transactions or wait until they
 *			finish and give back all buffers it got from &buf_queue
 *			callback by calling vb2_buffer_done() with either
 *			%VB2_BUF_STATE_DONE or %VB2_BUF_STATE_ERROR; may use
 *			vb2_wait_for_all_buffers() function
 * @buf_queue:		passes buffer vb to the driver; driver may start
 *			hardware operation on this buffer; driver should give
 *			the buffer back by calling vb2_buffer_done() function;
 *			it is always called after calling VIDIOC_STREAMON()
 *			ioctl; might be called before @start_streaming callback
 *			if user pre-queued buffers before calling
 *			VIDIOC_STREAMON().
 * @buf_request_complete: a buffer that was never queued to the driver but is
 *			associated with a queued request was canceled.
 *			The driver will have to mark associated objects in the
 *			request as completed; required if requests are
 *			supported.
 */
struct vb2_ops {
	int (*queue_setup)(struct vb2_queue *q,
			   unsigned int *num_buffers, unsigned int *num_planes,
			   unsigned int sizes[], struct device *alloc_devs[]);

	void (*wait_prepare)(struct vb2_queue *q);
	void (*wait_finish)(struct vb2_queue *q);

	int (*buf_out_validate)(struct vb2_buffer *vb);
	int (*buf_init)(struct vb2_buffer *vb);
	int (*buf_prepare)(struct vb2_buffer *vb);
	void (*buf_finish)(struct vb2_buffer *vb);
	void (*buf_cleanup)(struct vb2_buffer *vb);

	int (*start_streaming)(struct vb2_queue *q, unsigned int count);
	void (*stop_streaming)(struct vb2_queue *q);

	void (*buf_queue)(struct vb2_buffer *vb);

	void (*buf_request_complete)(struct vb2_buffer *vb);
};

/**
 * struct vb2_buf_ops - driver-specific callbacks.
 *
 * @verify_planes_array: Verify that a given user space structure contains
 *			enough planes for the buffer. This is called
 *			for each dequeued buffer.
 * @init_buffer:	given a &vb2_buffer initialize the extra data after
 *			struct vb2_buffer.
 *			For V4L2 this is a &struct vb2_v4l2_buffer.
 * @fill_user_buffer:	given a &vb2_buffer fill in the userspace structure.
 *			For V4L2 this is a &struct v4l2_buffer.
 * @fill_vb2_buffer:	given a userspace structure, fill in the &vb2_buffer.
 *			If the userspace structure is invalid, then this op
 *			will return an error.
 * @copy_timestamp:	copy the timestamp from a userspace structure to
 *			the &struct vb2_buffer.
 */
struct vb2_buf_ops {
	int (*verify_planes_array)(struct vb2_buffer *vb, const void *pb);
	void (*init_buffer)(struct vb2_buffer *vb);
	void (*fill_user_buffer)(struct vb2_buffer *vb, void *pb);
	int (*fill_vb2_buffer)(struct vb2_buffer *vb, struct vb2_plane *planes);
	void (*copy_timestamp)(struct vb2_buffer *vb, const void *pb);
};

/**
 * struct vb2_queue - a videobuf queue.
 *
 * @type:	private buffer type whose content is defined by the vb2-core
 *		caller. For example, for V4L2, it should match
 *		the types defined on &enum v4l2_buf_type.
 * @io_modes:	supported io methods (see &enum vb2_io_modes).
 * @alloc_devs:	&struct device memory type/allocator-specific per-plane device
 * @dev:	device to use for the default allocation context if the driver
 *		doesn't fill in the @alloc_devs array.
 * @dma_attrs:	DMA attributes to use for the DMA.
 * @bidirectional: when this flag is set the DMA direction for the buffers of
 *		this queue will be overridden with %DMA_BIDIRECTIONAL direction.
 *		This is useful in cases where the hardware (firmware) writes to
 *		a buffer which is mapped as read (%DMA_TO_DEVICE), or reads from
 *		buffer which is mapped for write (%DMA_FROM_DEVICE) in order
 *		to satisfy some internal hardware restrictions or adds a padding
 *		needed by the processing algorithm. In case the DMA mapping is
 *		not bidirectional but the hardware (firmware) trying to access
 *		the buffer (in the opposite direction) this could lead to an
 *		IOMMU protection faults.
 * @fileio_read_once:		report EOF after reading the first buffer
 * @fileio_write_immediately:	queue buffer after each write() call
 * @allow_zero_bytesused:	allow bytesused == 0 to be passed to the driver
 * @quirk_poll_must_check_waiting_for_buffers: Return %EPOLLERR at poll when QBUF
 *              has not been called. This is a vb1 idiom that has been adopted
 *              also by vb2.
 * @supports_requests: this queue supports the Request API.
 * @requires_requests: this queue requires the Request API. If this is set to 1,
 *		then supports_requests must be set to 1 as well.
 * @uses_qbuf:	qbuf was used directly for this queue. Set to 1 the first
 *		time this is called. Set to 0 when the queue is canceled.
 *		If this is 1, then you cannot queue buffers from a request.
 * @uses_requests: requests are used for this queue. Set to 1 the first time
 *		a request is queued. Set to 0 when the queue is canceled.
 *		If this is 1, then you cannot queue buffers directly.
 * @lock:	pointer to a mutex that protects the &struct vb2_queue. The
 *		driver can set this to a mutex to let the v4l2 core serialize
 *		the queuing ioctls. If the driver wants to handle locking
 *		itself, then this should be set to NULL. This lock is not used
 *		by the videobuf2 core API.
 * @owner:	The filehandle that 'owns' the buffers, i.e. the filehandle
 *		that called reqbufs, create_buffers or started fileio.
 *		This field is not used by the videobuf2 core API, but it allows
 *		drivers to easily associate an owner filehandle with the queue.
 * @ops:	driver-specific callbacks
 * @mem_ops:	memory allocator specific callbacks
 * @buf_ops:	callbacks to deliver buffer information.
 *		between user-space and kernel-space.
 * @drv_priv:	driver private data.
 * @buf_struct_size: size of the driver-specific buffer structure;
 *		"0" indicates the driver doesn't want to use a custom buffer
 *		structure type. for example, ``sizeof(struct vb2_v4l2_buffer)``
 *		will be used for v4l2.
 * @timestamp_flags: Timestamp flags; ``V4L2_BUF_FLAG_TIMESTAMP_*`` and
 *		``V4L2_BUF_FLAG_TSTAMP_SRC_*``
 * @gfp_flags:	additional gfp flags used when allocating the buffers.
 *		Typically this is 0, but it may be e.g. %GFP_DMA or %__GFP_DMA32
 *		to force the buffer allocation to a specific memory zone.
 * @min_buffers_needed: the minimum number of buffers needed before
 *		@start_streaming can be called. Used when a DMA engine
 *		cannot be started unless at least this number of buffers
 *		have been queued into the driver.
 */
/*
 * Private elements (won't appear at the uAPI book):
 * @mmap_lock:	private mutex used when buffers are allocated/freed/mmapped
 * @memory:	current memory type used
 * @dma_dir:	DMA mapping direction.
 * @bufs:	videobuf buffer structures
 * @num_buffers: number of allocated/used buffers
 * @queued_list: list of buffers currently queued from userspace
 * @queued_count: number of buffers queued and ready for streaming.
 * @owned_by_drv_count: number of buffers owned by the driver
 * @done_list:	list of buffers ready to be dequeued to userspace
 * @done_lock:	lock to protect done_list list
 * @done_wq:	waitqueue for processes waiting for buffers ready to be dequeued
 * @streaming:	current streaming state
 * @start_streaming_called: @start_streaming was called successfully and we
 *		started streaming.
 * @error:	a fatal error occurred on the queue
 * @waiting_for_buffers: used in poll() to check if vb2 is still waiting for
 *		buffers. Only set for capture queues if qbuf has not yet been
 *		called since poll() needs to return %EPOLLERR in that situation.
 * @is_multiplanar: set if buffer type is multiplanar
 * @is_output:	set if buffer type is output
 * @copy_timestamp: set if vb2-core should set timestamps
 * @last_buffer_dequeued: used in poll() and DQBUF to immediately return if the
 *		last decoded buffer was already dequeued. Set for capture queues
 *		when a buffer with the %V4L2_BUF_FLAG_LAST is dequeued.
 * @fileio:	file io emulator internal data, used only if emulator is active
 * @threadio:	thread io internal data, used only if thread is active
 */
struct vb2_queue {
	unsigned int			type;
	unsigned int			io_modes;
	struct device			*dev;
	unsigned long			dma_attrs;
	unsigned			bidirectional:1;
	unsigned			fileio_read_once:1;
	unsigned			fileio_write_immediately:1;
	unsigned			allow_zero_bytesused:1;
	unsigned		   quirk_poll_must_check_waiting_for_buffers:1;
	unsigned			supports_requests:1;
	unsigned			requires_requests:1;
	unsigned			uses_qbuf:1;
	unsigned			uses_requests:1;

	struct mutex			*lock;
	void				*owner;

	const struct vb2_ops		*ops;
	const struct vb2_mem_ops	*mem_ops;
	const struct vb2_buf_ops	*buf_ops;

	void				*drv_priv;
	unsigned int			buf_struct_size;
	u32				timestamp_flags;
	gfp_t				gfp_flags;
	u32				min_buffers_needed;

	struct device			*alloc_devs[VB2_MAX_PLANES];

	/* private: internal use only */
	struct mutex			mmap_lock;
	unsigned int			memory;
	enum dma_data_direction		dma_dir;
	struct vb2_buffer		*bufs[VB2_MAX_FRAME];
	unsigned int			num_buffers;

	struct list_head		queued_list;
	unsigned int			queued_count;

	atomic_t			owned_by_drv_count;
	struct list_head		done_list;
	spinlock_t			done_lock;
	wait_queue_head_t		done_wq;

	unsigned int			streaming:1;
	unsigned int			start_streaming_called:1;
	unsigned int			error:1;
	unsigned int			waiting_for_buffers:1;
	unsigned int			waiting_in_dqbuf:1;
	unsigned int			is_multiplanar:1;
	unsigned int			is_output:1;
	unsigned int			copy_timestamp:1;
	unsigned int			last_buffer_dequeued:1;

	struct vb2_fileio_data		*fileio;
	struct vb2_threadio_data	*threadio;

#ifdef CONFIG_VIDEO_ADV_DEBUG
	/*
	 * Counters for how often these queue-related ops are
	 * called. Used to check for unbalanced ops.
	 */
	u32				cnt_queue_setup;
	u32				cnt_wait_prepare;
	u32				cnt_wait_finish;
	u32				cnt_start_streaming;
	u32				cnt_stop_streaming;
#endif
};

/**
 * vb2_plane_vaddr() - Return a kernel virtual address of a given plane.
 * @vb:		pointer to &struct vb2_buffer to which the plane in
 *		question belongs to.
 * @plane_no:	plane number for which the address is to be returned.
 *
 * This function returns a kernel virtual address of a given plane if
 * such a mapping exist, NULL otherwise.
 */
void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no);

/**
 * vb2_plane_cookie() - Return allocator specific cookie for the given plane.
 * @vb:		pointer to &struct vb2_buffer to which the plane in
 *		question belongs to.
 * @plane_no:	plane number for which the cookie is to be returned.
 *
 * This function returns an allocator specific cookie for a given plane if
 * available, NULL otherwise. The allocator should provide some simple static
 * inline function, which would convert this cookie to the allocator specific
 * type that can be used directly by the driver to access the buffer. This can
 * be for example physical address, pointer to scatter list or IOMMU mapping.
 */
void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no);

/**
 * vb2_buffer_done() - inform videobuf that an operation on a buffer
 *	is finished.
 * @vb:		pointer to &struct vb2_buffer to be used.
 * @state:	state of the buffer, as defined by &enum vb2_buffer_state.
 *		Either %VB2_BUF_STATE_DONE if the operation finished
 *		successfully, %VB2_BUF_STATE_ERROR if the operation finished
 *		with an error or %VB2_BUF_STATE_QUEUED.
 *
 * This function should be called by the driver after a hardware operation on
 * a buffer is finished and the buffer may be returned to userspace. The driver
 * cannot use this buffer anymore until it is queued back to it by videobuf
 * by the means of &vb2_ops->buf_queue callback. Only buffers previously queued
 * to the driver by &vb2_ops->buf_queue can be passed to this function.
 *
 * While streaming a buffer can only be returned in state DONE or ERROR.
 * The &vb2_ops->start_streaming op can also return them in case the DMA engine
 * cannot be started for some reason. In that case the buffers should be
 * returned with state QUEUED to put them back into the queue.
 */
void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state);

/**
 * vb2_discard_done() - discard all buffers marked as DONE.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *
 * This function is intended to be used with suspend/resume operations. It
 * discards all 'done' buffers as they would be too old to be requested after
 * resume.
 *
 * Drivers must stop the hardware and synchronize with interrupt handlers and/or
 * delayed works before calling this function to make sure no buffer will be
 * touched by the driver and/or hardware.
 */
void vb2_discard_done(struct vb2_queue *q);

/**
 * vb2_wait_for_all_buffers() - wait until all buffers are given back to vb2.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *
 * This function will wait until all buffers that have been given to the driver
 * by &vb2_ops->buf_queue are given back to vb2 with vb2_buffer_done(). It
 * doesn't call &vb2_ops->wait_prepare/&vb2_ops->wait_finish pair.
 * It is intended to be called with all locks taken, for example from
 * &vb2_ops->stop_streaming callback.
 */
int vb2_wait_for_all_buffers(struct vb2_queue *q);

/**
 * vb2_core_querybuf() - query video buffer information.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @index:	id number of the buffer.
 * @pb:		buffer struct passed from userspace.
 *
 * Videobuf2 core helper to implement VIDIOC_QUERYBUF() operation. It is called
 * internally by VB2 by an API-specific handler, like ``videobuf2-v4l2.h``.
 *
 * The passed buffer should have been verified.
 *
 * This function fills the relevant information for the userspace.
 *
 * Return: returns zero on success; an error code otherwise.
 */
void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb);

/**
 * vb2_core_reqbufs() - Initiate streaming.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @memory:	memory type, as defined by &enum vb2_memory.
 * @count:	requested buffer count.
 *
 * Videobuf2 core helper to implement VIDIOC_REQBUF() operation. It is called
 * internally by VB2 by an API-specific handler, like ``videobuf2-v4l2.h``.
 *
 * This function:
 *
 * #) verifies streaming parameters passed from the userspace;
 * #) sets up the queue;
 * #) negotiates number of buffers and planes per buffer with the driver
 *    to be used during streaming;
 * #) allocates internal buffer structures (&struct vb2_buffer), according to
 *    the agreed parameters;
 * #) for MMAP memory type, allocates actual video memory, using the
 *    memory handling/allocation routines provided during queue initialization.
 *
 * If req->count is 0, all the memory will be freed instead.
 *
 * If the queue has been allocated previously by a previous vb2_core_reqbufs()
 * call and the queue is not busy, memory will be reallocated.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
		unsigned int *count);

/**
 * vb2_core_create_bufs() - Allocate buffers and any required auxiliary structs
 * @q: pointer to &struct vb2_queue with videobuf2 queue.
 * @memory: memory type, as defined by &enum vb2_memory.
 * @count: requested buffer count.
 * @requested_planes: number of planes requested.
 * @requested_sizes: array with the size of the planes.
 *
 * Videobuf2 core helper to implement VIDIOC_CREATE_BUFS() operation. It is
 * called internally by VB2 by an API-specific handler, like
 * ``videobuf2-v4l2.h``.
 *
 * This function:
 *
 * #) verifies parameter sanity;
 * #) calls the &vb2_ops->queue_setup queue operation;
 * #) performs any necessary memory allocations.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
			 unsigned int *count, unsigned int requested_planes,
			 const unsigned int requested_sizes[]);

/**
 * vb2_core_prepare_buf() - Pass ownership of a buffer from userspace
 *			to the kernel.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @index:	id number of the buffer.
 * @pb:		buffer structure passed from userspace to
 *		&v4l2_ioctl_ops->vidioc_prepare_buf handler in driver.
 *
 * Videobuf2 core helper to implement VIDIOC_PREPARE_BUF() operation. It is
 * called internally by VB2 by an API-specific handler, like
 * ``videobuf2-v4l2.h``.
 *
 * The passed buffer should have been verified.
 *
 * This function calls vb2_ops->buf_prepare callback in the driver
 * (if provided), in which driver-specific buffer initialization can
 * be performed.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb);

/**
 * vb2_core_qbuf() - Queue a buffer from userspace
 *
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @index:	id number of the buffer
 * @pb:		buffer structure passed from userspace to
 *		v4l2_ioctl_ops->vidioc_qbuf handler in driver
 * @req:	pointer to &struct media_request, may be NULL.
 *
 * Videobuf2 core helper to implement VIDIOC_QBUF() operation. It is called
 * internally by VB2 by an API-specific handler, like ``videobuf2-v4l2.h``.
 *
 * This function:
 *
 * #) If @req is non-NULL, then the buffer will be bound to this
 *    media request and it returns. The buffer will be prepared and
 *    queued to the driver (i.e. the next two steps) when the request
 *    itself is queued.
 * #) if necessary, calls &vb2_ops->buf_prepare callback in the driver
 *    (if provided), in which driver-specific buffer initialization can
 *    be performed;
 * #) if streaming is on, queues the buffer in driver by the means of
 *    &vb2_ops->buf_queue callback for processing.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
		  struct media_request *req);

/**
 * vb2_core_dqbuf() - Dequeue a buffer to the userspace
 * @q:		pointer to &struct vb2_queue with videobuf2 queue
 * @pindex:	pointer to the buffer index. May be NULL
 * @pb:		buffer structure passed from userspace to
 *		v4l2_ioctl_ops->vidioc_dqbuf handler in driver.
 * @nonblocking: if true, this call will not sleep waiting for a buffer if no
 *		 buffers ready for dequeuing are present. Normally the driver
 *		 would be passing (file->f_flags & O_NONBLOCK) here.
 *
 * Videobuf2 core helper to implement VIDIOC_DQBUF() operation. It is called
 * internally by VB2 by an API-specific handler, like ``videobuf2-v4l2.h``.
 *
 * This function:
 *
 * #) calls buf_finish callback in the driver (if provided), in which
 *    driver can perform any additional operations that may be required before
 *    returning the buffer to userspace, such as cache sync,
 * #) the buffer struct members are filled with relevant information for
 *    the userspace.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
		   bool nonblocking);

/**
 * vb2_core_streamon() - Implements VB2 stream ON logic
 *
 * @q:		pointer to &struct vb2_queue with videobuf2 queue
 * @type:	type of the queue to be started.
 *		For V4L2, this is defined by &enum v4l2_buf_type type.
 *
 * Videobuf2 core helper to implement VIDIOC_STREAMON() operation. It is called
 * internally by VB2 by an API-specific handler, like ``videobuf2-v4l2.h``.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_streamon(struct vb2_queue *q, unsigned int type);

/**
 * vb2_core_streamoff() - Implements VB2 stream OFF logic
 *
 * @q:		pointer to &struct vb2_queue with videobuf2 queue
 * @type:	type of the queue to be started.
 *		For V4L2, this is defined by &enum v4l2_buf_type type.
 *
 * Videobuf2 core helper to implement VIDIOC_STREAMOFF() operation. It is
 * called internally by VB2 by an API-specific handler, like
 * ``videobuf2-v4l2.h``.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_streamoff(struct vb2_queue *q, unsigned int type);

/**
 * vb2_core_expbuf() - Export a buffer as a file descriptor.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @fd:		pointer to the file descriptor associated with DMABUF
 *		(set by driver).
 * @type:	buffer type.
 * @index:	id number of the buffer.
 * @plane:	index of the plane to be exported, 0 for single plane queues
 * @flags:	file flags for newly created file, as defined at
 *		include/uapi/asm-generic/fcntl.h.
 *		Currently, the only used flag is %O_CLOEXEC.
 *		is supported, refer to manual of open syscall for more details.
 *
 *
 * Videobuf2 core helper to implement VIDIOC_EXPBUF() operation. It is called
 * internally by VB2 by an API-specific handler, like ``videobuf2-v4l2.h``.
 *
 * Return: returns zero on success; an error code otherwise.
 */
int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
		unsigned int index, unsigned int plane, unsigned int flags);

/**
 * vb2_core_queue_init() - initialize a videobuf2 queue
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *		This structure should be allocated in driver
 *
 * The &vb2_queue structure should be allocated by the driver. The driver is
 * responsible of clearing it's content and setting initial values for some
 * required entries before calling this function.
 *
 * .. note::
 *
 *    The following fields at @q should be set before calling this function:
 *    &vb2_queue->ops, &vb2_queue->mem_ops, &vb2_queue->type.
 */
int vb2_core_queue_init(struct vb2_queue *q);

/**
 * vb2_core_queue_release() - stop streaming, release the queue and free memory
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *
 * This function stops streaming and performs necessary clean ups, including
 * freeing video buffer memory. The driver is responsible for freeing
 * the &struct vb2_queue itself.
 */
void vb2_core_queue_release(struct vb2_queue *q);

/**
 * vb2_queue_error() - signal a fatal error on the queue
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *
 * Flag that a fatal unrecoverable error has occurred and wake up all processes
 * waiting on the queue. Polling will now set %EPOLLERR and queuing and dequeuing
 * buffers will return %-EIO.
 *
 * The error flag will be cleared when canceling the queue, either from
 * vb2_streamoff() or vb2_queue_release(). Drivers should thus not call this
 * function before starting the stream, otherwise the error flag will remain set
 * until the queue is released when closing the device node.
 */
void vb2_queue_error(struct vb2_queue *q);

/**
 * vb2_mmap() - map video buffers into application address space.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @vma:	pointer to &struct vm_area_struct with the vma passed
 *		to the mmap file operation handler in the driver.
 *
 * Should be called from mmap file operation handler of a driver.
 * This function maps one plane of one of the available video buffers to
 * userspace. To map whole video memory allocated on reqbufs, this function
 * has to be called once per each plane per each buffer previously allocated.
 *
 * When the userspace application calls mmap, it passes to it an offset returned
 * to it earlier by the means of &v4l2_ioctl_ops->vidioc_querybuf handler.
 * That offset acts as a "cookie", which is then used to identify the plane
 * to be mapped.
 *
 * This function finds a plane with a matching offset and a mapping is performed
 * by the means of a provided memory operation.
 *
 * The return values from this function are intended to be directly returned
 * from the mmap handler in driver.
 */
int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma);

#ifndef CONFIG_MMU
/**
 * vb2_get_unmapped_area - map video buffers into application address space.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @addr:	memory address.
 * @len:	buffer size.
 * @pgoff:	page offset.
 * @flags:	memory flags.
 *
 * This function is used in noMMU platforms to propose address mapping
 * for a given buffer. It's intended to be used as a handler for the
 * &file_operations->get_unmapped_area operation.
 *
 * This is called by the mmap() syscall routines will call this
 * to get a proposed address for the mapping, when ``!CONFIG_MMU``.
 */
unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
				    unsigned long addr,
				    unsigned long len,
				    unsigned long pgoff,
				    unsigned long flags);
#endif

/**
 * vb2_core_poll() - implements poll syscall() logic.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @file:	&struct file argument passed to the poll
 *		file operation handler.
 * @wait:	&poll_table wait argument passed to the poll
 *		file operation handler.
 *
 * This function implements poll file operation handler for a driver.
 * For CAPTURE queues, if a buffer is ready to be dequeued, the userspace will
 * be informed that the file descriptor of a video device is available for
 * reading.
 * For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor
 * will be reported as available for writing.
 *
 * The return values from this function are intended to be directly returned
 * from poll handler in driver.
 */
__poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
			   poll_table *wait);

/**
 * vb2_read() - implements read() syscall logic.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @data:	pointed to target userspace buffer
 * @count:	number of bytes to read
 * @ppos:	file handle position tracking pointer
 * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
 */
size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
		loff_t *ppos, int nonblock);
/**
 * vb2_read() - implements write() syscall logic.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @data:	pointed to target userspace buffer
 * @count:	number of bytes to write
 * @ppos:	file handle position tracking pointer
 * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
 */
size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
		loff_t *ppos, int nonblock);

/**
 * typedef vb2_thread_fnc - callback function for use with vb2_thread.
 *
 * @vb: pointer to struct &vb2_buffer.
 * @priv: pointer to a private data.
 *
 * This is called whenever a buffer is dequeued in the thread.
 */
typedef int (*vb2_thread_fnc)(struct vb2_buffer *vb, void *priv);

/**
 * vb2_thread_start() - start a thread for the given queue.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @fnc:	&vb2_thread_fnc callback function.
 * @priv:	priv pointer passed to the callback function.
 * @thread_name:the name of the thread. This will be prefixed with "vb2-".
 *
 * This starts a thread that will queue and dequeue until an error occurs
 * or vb2_thread_stop() is called.
 *
 * .. attention::
 *
 *   This function should not be used for anything else but the videobuf2-dvb
 *   support. If you think you have another good use-case for this, then please
 *   contact the linux-media mailing list first.
 */
int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
		     const char *thread_name);

/**
 * vb2_thread_stop() - stop the thread for the given queue.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 */
int vb2_thread_stop(struct vb2_queue *q);

/**
 * vb2_is_streaming() - return streaming status of the queue.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 */
static inline bool vb2_is_streaming(struct vb2_queue *q)
{
	return q->streaming;
}

/**
 * vb2_fileio_is_active() - return true if fileio is active.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *
 * This returns true if read() or write() is used to stream the data
 * as opposed to stream I/O. This is almost never an important distinction,
 * except in rare cases. One such case is that using read() or write() to
 * stream a format using %V4L2_FIELD_ALTERNATE is not allowed since there
 * is no way you can pass the field information of each buffer to/from
 * userspace. A driver that supports this field format should check for
 * this in the &vb2_ops->queue_setup op and reject it if this function returns
 * true.
 */
static inline bool vb2_fileio_is_active(struct vb2_queue *q)
{
	return q->fileio;
}

/**
 * vb2_is_busy() - return busy status of the queue.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 *
 * This function checks if queue has any buffers allocated.
 */
static inline bool vb2_is_busy(struct vb2_queue *q)
{
	return (q->num_buffers > 0);
}

/**
 * vb2_get_drv_priv() - return driver private data associated with the queue.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 */
static inline void *vb2_get_drv_priv(struct vb2_queue *q)
{
	return q->drv_priv;
}

/**
 * vb2_set_plane_payload() - set bytesused for the plane @plane_no.
 * @vb:		pointer to &struct vb2_buffer to which the plane in
 *		question belongs to.
 * @plane_no:	plane number for which payload should be set.
 * @size:	payload in bytes.
 */
static inline void vb2_set_plane_payload(struct vb2_buffer *vb,
				 unsigned int plane_no, unsigned long size)
{
	if (plane_no < vb->num_planes)
		vb->planes[plane_no].bytesused = size;
}

/**
 * vb2_get_plane_payload() - get bytesused for the plane plane_no
 * @vb:		pointer to &struct vb2_buffer to which the plane in
 *		question belongs to.
 * @plane_no:	plane number for which payload should be set.
 */
static inline unsigned long vb2_get_plane_payload(struct vb2_buffer *vb,
				 unsigned int plane_no)
{
	if (plane_no < vb->num_planes)
		return vb->planes[plane_no].bytesused;
	return 0;
}

/**
 * vb2_plane_size() - return plane size in bytes.
 * @vb:		pointer to &struct vb2_buffer to which the plane in
 *		question belongs to.
 * @plane_no:	plane number for which size should be returned.
 */
static inline unsigned long
vb2_plane_size(struct vb2_buffer *vb, unsigned int plane_no)
{
	if (plane_no < vb->num_planes)
		return vb->planes[plane_no].length;
	return 0;
}

/**
 * vb2_start_streaming_called() - return streaming status of driver.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 */
static inline bool vb2_start_streaming_called(struct vb2_queue *q)
{
	return q->start_streaming_called;
}

/**
 * vb2_clear_last_buffer_dequeued() - clear last buffer dequeued flag of queue.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 */
static inline void vb2_clear_last_buffer_dequeued(struct vb2_queue *q)
{
	q->last_buffer_dequeued = false;
}

/**
 * vb2_get_buffer() - get a buffer from a queue
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @index:	buffer index
 *
 * This function obtains a buffer from a queue, by its index.
 * Keep in mind that there is no refcounting involved in this
 * operation, so the buffer lifetime should be taken into
 * consideration.
 */
static inline struct vb2_buffer *vb2_get_buffer(struct vb2_queue *q,
						unsigned int index)
{
	if (index < q->num_buffers)
		return q->bufs[index];
	return NULL;
}

/*
 * The following functions are not part of the vb2 core API, but are useful
 * functions for videobuf2-*.
 */

/**
 * vb2_buffer_in_use() - return true if the buffer is in use and
 * the queue cannot be freed (by the means of VIDIOC_REQBUFS(0)) call.
 *
 * @vb:		buffer for which plane size should be returned.
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 */
bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb);

/**
 * vb2_verify_memory_type() - Check whether the memory type and buffer type
 * passed to a buffer operation are compatible with the queue.
 *
 * @q:		pointer to &struct vb2_queue with videobuf2 queue.
 * @memory:	memory model, as defined by enum &vb2_memory.
 * @type:	private buffer type whose content is defined by the vb2-core
 *		caller. For example, for V4L2, it should match
 *		the types defined on enum &v4l2_buf_type.
 */
int vb2_verify_memory_type(struct vb2_queue *q,
		enum vb2_memory memory, unsigned int type);

/**
 * vb2_request_object_is_buffer() - return true if the object is a buffer
 *
 * @obj:	the request object.
 */
bool vb2_request_object_is_buffer(struct media_request_object *obj);

/**
 * vb2_request_buffer_cnt() - return the number of buffers in the request
 *
 * @req:	the request.
 */
unsigned int vb2_request_buffer_cnt(struct media_request *req);

#endif /* _MEDIA_VIDEOBUF2_CORE_H */