Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
// SPDX-License-Identifier: GPL-2.0-only
/*
 * kexec: kexec_file_load system call
 *
 * Copyright (C) 2014 Red Hat Inc.
 * Authors:
 *      Vivek Goyal <vgoyal@redhat.com>
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/kexec.h>
#include <linux/memblock.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/ima.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/vmalloc.h>
#include "kexec_internal.h"

static int kexec_calculate_store_digests(struct kimage *image);

/*
 * Currently this is the only default function that is exported as some
 * architectures need it to do additional handlings.
 * In the future, other default functions may be exported too if required.
 */
int kexec_image_probe_default(struct kimage *image, void *buf,
			      unsigned long buf_len)
{
	const struct kexec_file_ops * const *fops;
	int ret = -ENOEXEC;

	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
		ret = (*fops)->probe(buf, buf_len);
		if (!ret) {
			image->fops = *fops;
			return ret;
		}
	}

	return ret;
}

/* Architectures can provide this probe function */
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
					 unsigned long buf_len)
{
	return kexec_image_probe_default(image, buf, buf_len);
}

static void *kexec_image_load_default(struct kimage *image)
{
	if (!image->fops || !image->fops->load)
		return ERR_PTR(-ENOEXEC);

	return image->fops->load(image, image->kernel_buf,
				 image->kernel_buf_len, image->initrd_buf,
				 image->initrd_buf_len, image->cmdline_buf,
				 image->cmdline_buf_len);
}

void * __weak arch_kexec_kernel_image_load(struct kimage *image)
{
	return kexec_image_load_default(image);
}

int kexec_image_post_load_cleanup_default(struct kimage *image)
{
	if (!image->fops || !image->fops->cleanup)
		return 0;

	return image->fops->cleanup(image->image_loader_data);
}

int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
{
	return kexec_image_post_load_cleanup_default(image);
}

#ifdef CONFIG_KEXEC_SIG
static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
					  unsigned long buf_len)
{
	if (!image->fops || !image->fops->verify_sig) {
		pr_debug("kernel loader does not support signature verification.\n");
		return -EKEYREJECTED;
	}

	return image->fops->verify_sig(buf, buf_len);
}

int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
					unsigned long buf_len)
{
	return kexec_image_verify_sig_default(image, buf, buf_len);
}
#endif

/*
 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 * @pi:		Purgatory to be relocated.
 * @section:	Section relocations applying to.
 * @relsec:	Section containing RELAs.
 * @symtab:	Corresponding symtab.
 *
 * Return: 0 on success, negative errno on error.
 */
int __weak
arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
{
	pr_err("RELA relocation unsupported.\n");
	return -ENOEXEC;
}

/*
 * arch_kexec_apply_relocations - apply relocations of type REL
 * @pi:		Purgatory to be relocated.
 * @section:	Section relocations applying to.
 * @relsec:	Section containing RELs.
 * @symtab:	Corresponding symtab.
 *
 * Return: 0 on success, negative errno on error.
 */
int __weak
arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
{
	pr_err("REL relocation unsupported.\n");
	return -ENOEXEC;
}

/*
 * Free up memory used by kernel, initrd, and command line. This is temporary
 * memory allocation which is not needed any more after these buffers have
 * been loaded into separate segments and have been copied elsewhere.
 */
void kimage_file_post_load_cleanup(struct kimage *image)
{
	struct purgatory_info *pi = &image->purgatory_info;

	vfree(image->kernel_buf);
	image->kernel_buf = NULL;

	vfree(image->initrd_buf);
	image->initrd_buf = NULL;

	kfree(image->cmdline_buf);
	image->cmdline_buf = NULL;

	vfree(pi->purgatory_buf);
	pi->purgatory_buf = NULL;

	vfree(pi->sechdrs);
	pi->sechdrs = NULL;

	/* See if architecture has anything to cleanup post load */
	arch_kimage_file_post_load_cleanup(image);

	/*
	 * Above call should have called into bootloader to free up
	 * any data stored in kimage->image_loader_data. It should
	 * be ok now to free it up.
	 */
	kfree(image->image_loader_data);
	image->image_loader_data = NULL;
}

#ifdef CONFIG_KEXEC_SIG
static int
kimage_validate_signature(struct kimage *image)
{
	const char *reason;
	int ret;

	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
					   image->kernel_buf_len);
	switch (ret) {
	case 0:
		break;

		/* Certain verification errors are non-fatal if we're not
		 * checking errors, provided we aren't mandating that there
		 * must be a valid signature.
		 */
	case -ENODATA:
		reason = "kexec of unsigned image";
		goto decide;
	case -ENOPKG:
		reason = "kexec of image with unsupported crypto";
		goto decide;
	case -ENOKEY:
		reason = "kexec of image with unavailable key";
	decide:
		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
			pr_notice("%s rejected\n", reason);
			return ret;
		}

		/* If IMA is guaranteed to appraise a signature on the kexec
		 * image, permit it even if the kernel is otherwise locked
		 * down.
		 */
		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
		    security_locked_down(LOCKDOWN_KEXEC))
			return -EPERM;

		return 0;

		/* All other errors are fatal, including nomem, unparseable
		 * signatures and signature check failures - even if signatures
		 * aren't required.
		 */
	default:
		pr_notice("kernel signature verification failed (%d).\n", ret);
	}

	return ret;
}
#endif

/*
 * In file mode list of segments is prepared by kernel. Copy relevant
 * data from user space, do error checking, prepare segment list
 */
static int
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
			     const char __user *cmdline_ptr,
			     unsigned long cmdline_len, unsigned flags)
{
	int ret;
	void *ldata;
	loff_t size;

	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
				       &size, INT_MAX, READING_KEXEC_IMAGE);
	if (ret)
		return ret;
	image->kernel_buf_len = size;

	/* Call arch image probe handlers */
	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
					    image->kernel_buf_len);
	if (ret)
		goto out;

#ifdef CONFIG_KEXEC_SIG
	ret = kimage_validate_signature(image);

	if (ret)
		goto out;
#endif
	/* It is possible that there no initramfs is being loaded */
	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
					       &size, INT_MAX,
					       READING_KEXEC_INITRAMFS);
		if (ret)
			goto out;
		image->initrd_buf_len = size;
	}

	if (cmdline_len) {
		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
		if (IS_ERR(image->cmdline_buf)) {
			ret = PTR_ERR(image->cmdline_buf);
			image->cmdline_buf = NULL;
			goto out;
		}

		image->cmdline_buf_len = cmdline_len;

		/* command line should be a string with last byte null */
		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
			ret = -EINVAL;
			goto out;
		}

		ima_kexec_cmdline(image->cmdline_buf,
				  image->cmdline_buf_len - 1);
	}

	/* IMA needs to pass the measurement list to the next kernel. */
	ima_add_kexec_buffer(image);

	/* Call arch image load handlers */
	ldata = arch_kexec_kernel_image_load(image);

	if (IS_ERR(ldata)) {
		ret = PTR_ERR(ldata);
		goto out;
	}

	image->image_loader_data = ldata;
out:
	/* In case of error, free up all allocated memory in this function */
	if (ret)
		kimage_file_post_load_cleanup(image);
	return ret;
}

static int
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
		       int initrd_fd, const char __user *cmdline_ptr,
		       unsigned long cmdline_len, unsigned long flags)
{
	int ret;
	struct kimage *image;
	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;

	image = do_kimage_alloc_init();
	if (!image)
		return -ENOMEM;

	image->file_mode = 1;

	if (kexec_on_panic) {
		/* Enable special crash kernel control page alloc policy. */
		image->control_page = crashk_res.start;
		image->type = KEXEC_TYPE_CRASH;
	}

	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
					   cmdline_ptr, cmdline_len, flags);
	if (ret)
		goto out_free_image;

	ret = sanity_check_segment_list(image);
	if (ret)
		goto out_free_post_load_bufs;

	ret = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
					   get_order(KEXEC_CONTROL_PAGE_SIZE));
	if (!image->control_code_page) {
		pr_err("Could not allocate control_code_buffer\n");
		goto out_free_post_load_bufs;
	}

	if (!kexec_on_panic) {
		image->swap_page = kimage_alloc_control_pages(image, 0);
		if (!image->swap_page) {
			pr_err("Could not allocate swap buffer\n");
			goto out_free_control_pages;
		}
	}

	*rimage = image;
	return 0;
out_free_control_pages:
	kimage_free_page_list(&image->control_pages);
out_free_post_load_bufs:
	kimage_file_post_load_cleanup(image);
out_free_image:
	kfree(image);
	return ret;
}

SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
		unsigned long, flags)
{
	int ret = 0, i;
	struct kimage **dest_image, *image;

	/* We only trust the superuser with rebooting the system. */
	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
		return -EPERM;

	/* Make sure we have a legal set of flags */
	if (flags != (flags & KEXEC_FILE_FLAGS))
		return -EINVAL;

	image = NULL;

	if (!mutex_trylock(&kexec_mutex))
		return -EBUSY;

	dest_image = &kexec_image;
	if (flags & KEXEC_FILE_ON_CRASH) {
		dest_image = &kexec_crash_image;
		if (kexec_crash_image)
			arch_kexec_unprotect_crashkres();
	}

	if (flags & KEXEC_FILE_UNLOAD)
		goto exchange;

	/*
	 * In case of crash, new kernel gets loaded in reserved region. It is
	 * same memory where old crash kernel might be loaded. Free any
	 * current crash dump kernel before we corrupt it.
	 */
	if (flags & KEXEC_FILE_ON_CRASH)
		kimage_free(xchg(&kexec_crash_image, NULL));

	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
				     cmdline_len, flags);
	if (ret)
		goto out;

	ret = machine_kexec_prepare(image);
	if (ret)
		goto out;

	/*
	 * Some architecture(like S390) may touch the crash memory before
	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
	 */
	ret = kimage_crash_copy_vmcoreinfo(image);
	if (ret)
		goto out;

	ret = kexec_calculate_store_digests(image);
	if (ret)
		goto out;

	for (i = 0; i < image->nr_segments; i++) {
		struct kexec_segment *ksegment;

		ksegment = &image->segment[i];
		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
			 ksegment->memsz);

		ret = kimage_load_segment(image, &image->segment[i]);
		if (ret)
			goto out;
	}

	kimage_terminate(image);

	/*
	 * Free up any temporary buffers allocated which are not needed
	 * after image has been loaded
	 */
	kimage_file_post_load_cleanup(image);
exchange:
	image = xchg(dest_image, image);
out:
	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
		arch_kexec_protect_crashkres();

	mutex_unlock(&kexec_mutex);
	kimage_free(image);
	return ret;
}

static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
				    struct kexec_buf *kbuf)
{
	struct kimage *image = kbuf->image;
	unsigned long temp_start, temp_end;

	temp_end = min(end, kbuf->buf_max);
	temp_start = temp_end - kbuf->memsz;

	do {
		/* align down start */
		temp_start = temp_start & (~(kbuf->buf_align - 1));

		if (temp_start < start || temp_start < kbuf->buf_min)
			return 0;

		temp_end = temp_start + kbuf->memsz - 1;

		/*
		 * Make sure this does not conflict with any of existing
		 * segments
		 */
		if (kimage_is_destination_range(image, temp_start, temp_end)) {
			temp_start = temp_start - PAGE_SIZE;
			continue;
		}

		/* We found a suitable memory range */
		break;
	} while (1);

	/* If we are here, we found a suitable memory range */
	kbuf->mem = temp_start;

	/* Success, stop navigating through remaining System RAM ranges */
	return 1;
}

static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
				     struct kexec_buf *kbuf)
{
	struct kimage *image = kbuf->image;
	unsigned long temp_start, temp_end;

	temp_start = max(start, kbuf->buf_min);

	do {
		temp_start = ALIGN(temp_start, kbuf->buf_align);
		temp_end = temp_start + kbuf->memsz - 1;

		if (temp_end > end || temp_end > kbuf->buf_max)
			return 0;
		/*
		 * Make sure this does not conflict with any of existing
		 * segments
		 */
		if (kimage_is_destination_range(image, temp_start, temp_end)) {
			temp_start = temp_start + PAGE_SIZE;
			continue;
		}

		/* We found a suitable memory range */
		break;
	} while (1);

	/* If we are here, we found a suitable memory range */
	kbuf->mem = temp_start;

	/* Success, stop navigating through remaining System RAM ranges */
	return 1;
}

static int locate_mem_hole_callback(struct resource *res, void *arg)
{
	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
	u64 start = res->start, end = res->end;
	unsigned long sz = end - start + 1;

	/* Returning 0 will take to next memory range */
	if (sz < kbuf->memsz)
		return 0;

	if (end < kbuf->buf_min || start > kbuf->buf_max)
		return 0;

	/*
	 * Allocate memory top down with-in ram range. Otherwise bottom up
	 * allocation.
	 */
	if (kbuf->top_down)
		return locate_mem_hole_top_down(start, end, kbuf);
	return locate_mem_hole_bottom_up(start, end, kbuf);
}

#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
static int kexec_walk_memblock(struct kexec_buf *kbuf,
			       int (*func)(struct resource *, void *))
{
	int ret = 0;
	u64 i;
	phys_addr_t mstart, mend;
	struct resource res = { };

	if (kbuf->image->type == KEXEC_TYPE_CRASH)
		return func(&crashk_res, kbuf);

	if (kbuf->top_down) {
		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
						&mstart, &mend, NULL) {
			/*
			 * In memblock, end points to the first byte after the
			 * range while in kexec, end points to the last byte
			 * in the range.
			 */
			res.start = mstart;
			res.end = mend - 1;
			ret = func(&res, kbuf);
			if (ret)
				break;
		}
	} else {
		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
					&mstart, &mend, NULL) {
			/*
			 * In memblock, end points to the first byte after the
			 * range while in kexec, end points to the last byte
			 * in the range.
			 */
			res.start = mstart;
			res.end = mend - 1;
			ret = func(&res, kbuf);
			if (ret)
				break;
		}
	}

	return ret;
}
#else
static int kexec_walk_memblock(struct kexec_buf *kbuf,
			       int (*func)(struct resource *, void *))
{
	return 0;
}
#endif

/**
 * kexec_walk_resources - call func(data) on free memory regions
 * @kbuf:	Context info for the search. Also passed to @func.
 * @func:	Function to call for each memory region.
 *
 * Return: The memory walk will stop when func returns a non-zero value
 * and that value will be returned. If all free regions are visited without
 * func returning non-zero, then zero will be returned.
 */
static int kexec_walk_resources(struct kexec_buf *kbuf,
				int (*func)(struct resource *, void *))
{
	if (kbuf->image->type == KEXEC_TYPE_CRASH)
		return walk_iomem_res_desc(crashk_res.desc,
					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
					   crashk_res.start, crashk_res.end,
					   kbuf, func);
	else
		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
}

/**
 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 * @kbuf:	Parameters for the memory search.
 *
 * On success, kbuf->mem will have the start address of the memory region found.
 *
 * Return: 0 on success, negative errno on error.
 */
int kexec_locate_mem_hole(struct kexec_buf *kbuf)
{
	int ret;

	/* Arch knows where to place */
	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
		return 0;

	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
	else
		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);

	return ret == 1 ? 0 : -EADDRNOTAVAIL;
}

/**
 * kexec_add_buffer - place a buffer in a kexec segment
 * @kbuf:	Buffer contents and memory parameters.
 *
 * This function assumes that kexec_mutex is held.
 * On successful return, @kbuf->mem will have the physical address of
 * the buffer in memory.
 *
 * Return: 0 on success, negative errno on error.
 */
int kexec_add_buffer(struct kexec_buf *kbuf)
{

	struct kexec_segment *ksegment;
	int ret;

	/* Currently adding segment this way is allowed only in file mode */
	if (!kbuf->image->file_mode)
		return -EINVAL;

	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
		return -EINVAL;

	/*
	 * Make sure we are not trying to add buffer after allocating
	 * control pages. All segments need to be placed first before
	 * any control pages are allocated. As control page allocation
	 * logic goes through list of segments to make sure there are
	 * no destination overlaps.
	 */
	if (!list_empty(&kbuf->image->control_pages)) {
		WARN_ON(1);
		return -EINVAL;
	}

	/* Ensure minimum alignment needed for segments. */
	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);

	/* Walk the RAM ranges and allocate a suitable range for the buffer */
	ret = kexec_locate_mem_hole(kbuf);
	if (ret)
		return ret;

	/* Found a suitable memory range */
	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
	ksegment->kbuf = kbuf->buffer;
	ksegment->bufsz = kbuf->bufsz;
	ksegment->mem = kbuf->mem;
	ksegment->memsz = kbuf->memsz;
	kbuf->image->nr_segments++;
	return 0;
}

/* Calculate and store the digest of segments */
static int kexec_calculate_store_digests(struct kimage *image)
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
	size_t desc_size, nullsz;
	char *digest;
	void *zero_buf;
	struct kexec_sha_region *sha_regions;
	struct purgatory_info *pi = &image->purgatory_info;

	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
		return 0;

	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
	zero_buf_sz = PAGE_SIZE;

	tfm = crypto_alloc_shash("sha256", 0, 0);
	if (IS_ERR(tfm)) {
		ret = PTR_ERR(tfm);
		goto out;
	}

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	desc = kzalloc(desc_size, GFP_KERNEL);
	if (!desc) {
		ret = -ENOMEM;
		goto out_free_tfm;
	}

	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
	sha_regions = vzalloc(sha_region_sz);
	if (!sha_regions)
		goto out_free_desc;

	desc->tfm   = tfm;

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto out_free_sha_regions;

	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
	if (!digest) {
		ret = -ENOMEM;
		goto out_free_sha_regions;
	}

	for (j = i = 0; i < image->nr_segments; i++) {
		struct kexec_segment *ksegment;

		ksegment = &image->segment[i];
		/*
		 * Skip purgatory as it will be modified once we put digest
		 * info in purgatory.
		 */
		if (ksegment->kbuf == pi->purgatory_buf)
			continue;

		ret = crypto_shash_update(desc, ksegment->kbuf,
					  ksegment->bufsz);
		if (ret)
			break;

		/*
		 * Assume rest of the buffer is filled with zero and
		 * update digest accordingly.
		 */
		nullsz = ksegment->memsz - ksegment->bufsz;
		while (nullsz) {
			unsigned long bytes = nullsz;

			if (bytes > zero_buf_sz)
				bytes = zero_buf_sz;
			ret = crypto_shash_update(desc, zero_buf, bytes);
			if (ret)
				break;
			nullsz -= bytes;
		}

		if (ret)
			break;

		sha_regions[j].start = ksegment->mem;
		sha_regions[j].len = ksegment->memsz;
		j++;
	}

	if (!ret) {
		ret = crypto_shash_final(desc, digest);
		if (ret)
			goto out_free_digest;
		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
						     sha_regions, sha_region_sz, 0);
		if (ret)
			goto out_free_digest;

		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
						     digest, SHA256_DIGEST_SIZE, 0);
		if (ret)
			goto out_free_digest;
	}

out_free_digest:
	kfree(digest);
out_free_sha_regions:
	vfree(sha_regions);
out_free_desc:
	kfree(desc);
out_free_tfm:
	kfree(tfm);
out:
	return ret;
}

#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
/*
 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 * @pi:		Purgatory to be loaded.
 * @kbuf:	Buffer to setup.
 *
 * Allocates the memory needed for the buffer. Caller is responsible to free
 * the memory after use.
 *
 * Return: 0 on success, negative errno on error.
 */
static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
				      struct kexec_buf *kbuf)
{
	const Elf_Shdr *sechdrs;
	unsigned long bss_align;
	unsigned long bss_sz;
	unsigned long align;
	int i, ret;

	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
	kbuf->buf_align = bss_align = 1;
	kbuf->bufsz = bss_sz = 0;

	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;

		align = sechdrs[i].sh_addralign;
		if (sechdrs[i].sh_type != SHT_NOBITS) {
			if (kbuf->buf_align < align)
				kbuf->buf_align = align;
			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
			kbuf->bufsz += sechdrs[i].sh_size;
		} else {
			if (bss_align < align)
				bss_align = align;
			bss_sz = ALIGN(bss_sz, align);
			bss_sz += sechdrs[i].sh_size;
		}
	}
	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
	kbuf->memsz = kbuf->bufsz + bss_sz;
	if (kbuf->buf_align < bss_align)
		kbuf->buf_align = bss_align;

	kbuf->buffer = vzalloc(kbuf->bufsz);
	if (!kbuf->buffer)
		return -ENOMEM;
	pi->purgatory_buf = kbuf->buffer;

	ret = kexec_add_buffer(kbuf);
	if (ret)
		goto out;

	return 0;
out:
	vfree(pi->purgatory_buf);
	pi->purgatory_buf = NULL;
	return ret;
}

/*
 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 * @pi:		Purgatory to be loaded.
 * @kbuf:	Buffer prepared to store purgatory.
 *
 * Allocates the memory needed for the buffer. Caller is responsible to free
 * the memory after use.
 *
 * Return: 0 on success, negative errno on error.
 */
static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
					 struct kexec_buf *kbuf)
{
	unsigned long bss_addr;
	unsigned long offset;
	Elf_Shdr *sechdrs;
	int i;

	/*
	 * The section headers in kexec_purgatory are read-only. In order to
	 * have them modifiable make a temporary copy.
	 */
	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
	if (!sechdrs)
		return -ENOMEM;
	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
	pi->sechdrs = sechdrs;

	offset = 0;
	bss_addr = kbuf->mem + kbuf->bufsz;
	kbuf->image->start = pi->ehdr->e_entry;

	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		unsigned long align;
		void *src, *dst;

		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;

		align = sechdrs[i].sh_addralign;
		if (sechdrs[i].sh_type == SHT_NOBITS) {
			bss_addr = ALIGN(bss_addr, align);
			sechdrs[i].sh_addr = bss_addr;
			bss_addr += sechdrs[i].sh_size;
			continue;
		}

		offset = ALIGN(offset, align);
		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
					 + sechdrs[i].sh_size)) {
			kbuf->image->start -= sechdrs[i].sh_addr;
			kbuf->image->start += kbuf->mem + offset;
		}

		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
		dst = pi->purgatory_buf + offset;
		memcpy(dst, src, sechdrs[i].sh_size);

		sechdrs[i].sh_addr = kbuf->mem + offset;
		sechdrs[i].sh_offset = offset;
		offset += sechdrs[i].sh_size;
	}

	return 0;
}

static int kexec_apply_relocations(struct kimage *image)
{
	int i, ret;
	struct purgatory_info *pi = &image->purgatory_info;
	const Elf_Shdr *sechdrs;

	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;

	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		const Elf_Shdr *relsec;
		const Elf_Shdr *symtab;
		Elf_Shdr *section;

		relsec = sechdrs + i;

		if (relsec->sh_type != SHT_RELA &&
		    relsec->sh_type != SHT_REL)
			continue;

		/*
		 * For section of type SHT_RELA/SHT_REL,
		 * ->sh_link contains section header index of associated
		 * symbol table. And ->sh_info contains section header
		 * index of section to which relocations apply.
		 */
		if (relsec->sh_info >= pi->ehdr->e_shnum ||
		    relsec->sh_link >= pi->ehdr->e_shnum)
			return -ENOEXEC;

		section = pi->sechdrs + relsec->sh_info;
		symtab = sechdrs + relsec->sh_link;

		if (!(section->sh_flags & SHF_ALLOC))
			continue;

		/*
		 * symtab->sh_link contain section header index of associated
		 * string table.
		 */
		if (symtab->sh_link >= pi->ehdr->e_shnum)
			/* Invalid section number? */
			continue;

		/*
		 * Respective architecture needs to provide support for applying
		 * relocations of type SHT_RELA/SHT_REL.
		 */
		if (relsec->sh_type == SHT_RELA)
			ret = arch_kexec_apply_relocations_add(pi, section,
							       relsec, symtab);
		else if (relsec->sh_type == SHT_REL)
			ret = arch_kexec_apply_relocations(pi, section,
							   relsec, symtab);
		if (ret)
			return ret;
	}

	return 0;
}

/*
 * kexec_load_purgatory - Load and relocate the purgatory object.
 * @image:	Image to add the purgatory to.
 * @kbuf:	Memory parameters to use.
 *
 * Allocates the memory needed for image->purgatory_info.sechdrs and
 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 * to free the memory after use.
 *
 * Return: 0 on success, negative errno on error.
 */
int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
{
	struct purgatory_info *pi = &image->purgatory_info;
	int ret;

	if (kexec_purgatory_size <= 0)
		return -EINVAL;

	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;

	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
	if (ret)
		return ret;

	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
	if (ret)
		goto out_free_kbuf;

	ret = kexec_apply_relocations(image);
	if (ret)
		goto out;

	return 0;
out:
	vfree(pi->sechdrs);
	pi->sechdrs = NULL;
out_free_kbuf:
	vfree(pi->purgatory_buf);
	pi->purgatory_buf = NULL;
	return ret;
}

/*
 * kexec_purgatory_find_symbol - find a symbol in the purgatory
 * @pi:		Purgatory to search in.
 * @name:	Name of the symbol.
 *
 * Return: pointer to symbol in read-only symtab on success, NULL on error.
 */
static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
						  const char *name)
{
	const Elf_Shdr *sechdrs;
	const Elf_Ehdr *ehdr;
	const Elf_Sym *syms;
	const char *strtab;
	int i, k;

	if (!pi->ehdr)
		return NULL;

	ehdr = pi->ehdr;
	sechdrs = (void *)ehdr + ehdr->e_shoff;

	for (i = 0; i < ehdr->e_shnum; i++) {
		if (sechdrs[i].sh_type != SHT_SYMTAB)
			continue;

		if (sechdrs[i].sh_link >= ehdr->e_shnum)
			/* Invalid strtab section number */
			continue;
		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
		syms = (void *)ehdr + sechdrs[i].sh_offset;

		/* Go through symbols for a match */
		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
				continue;

			if (strcmp(strtab + syms[k].st_name, name) != 0)
				continue;

			if (syms[k].st_shndx == SHN_UNDEF ||
			    syms[k].st_shndx >= ehdr->e_shnum) {
				pr_debug("Symbol: %s has bad section index %d.\n",
						name, syms[k].st_shndx);
				return NULL;
			}

			/* Found the symbol we are looking for */
			return &syms[k];
		}
	}

	return NULL;
}

void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
{
	struct purgatory_info *pi = &image->purgatory_info;
	const Elf_Sym *sym;
	Elf_Shdr *sechdr;

	sym = kexec_purgatory_find_symbol(pi, name);
	if (!sym)
		return ERR_PTR(-EINVAL);

	sechdr = &pi->sechdrs[sym->st_shndx];

	/*
	 * Returns the address where symbol will finally be loaded after
	 * kexec_load_segment()
	 */
	return (void *)(sechdr->sh_addr + sym->st_value);
}

/*
 * Get or set value of a symbol. If "get_value" is true, symbol value is
 * returned in buf otherwise symbol value is set based on value in buf.
 */
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
				   void *buf, unsigned int size, bool get_value)
{
	struct purgatory_info *pi = &image->purgatory_info;
	const Elf_Sym *sym;
	Elf_Shdr *sec;
	char *sym_buf;

	sym = kexec_purgatory_find_symbol(pi, name);
	if (!sym)
		return -EINVAL;

	if (sym->st_size != size) {
		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
		       name, (unsigned long)sym->st_size, size);
		return -EINVAL;
	}

	sec = pi->sechdrs + sym->st_shndx;

	if (sec->sh_type == SHT_NOBITS) {
		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
		       get_value ? "get" : "set");
		return -EINVAL;
	}

	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;

	if (get_value)
		memcpy((void *)buf, sym_buf, size);
	else
		memcpy((void *)sym_buf, buf, size);

	return 0;
}
#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */

int crash_exclude_mem_range(struct crash_mem *mem,
			    unsigned long long mstart, unsigned long long mend)
{
	int i, j;
	unsigned long long start, end;
	struct crash_mem_range temp_range = {0, 0};

	for (i = 0; i < mem->nr_ranges; i++) {
		start = mem->ranges[i].start;
		end = mem->ranges[i].end;

		if (mstart > end || mend < start)
			continue;

		/* Truncate any area outside of range */
		if (mstart < start)
			mstart = start;
		if (mend > end)
			mend = end;

		/* Found completely overlapping range */
		if (mstart == start && mend == end) {
			mem->ranges[i].start = 0;
			mem->ranges[i].end = 0;
			if (i < mem->nr_ranges - 1) {
				/* Shift rest of the ranges to left */
				for (j = i; j < mem->nr_ranges - 1; j++) {
					mem->ranges[j].start =
						mem->ranges[j+1].start;
					mem->ranges[j].end =
							mem->ranges[j+1].end;
				}
			}
			mem->nr_ranges--;
			return 0;
		}

		if (mstart > start && mend < end) {
			/* Split original range */
			mem->ranges[i].end = mstart - 1;
			temp_range.start = mend + 1;
			temp_range.end = end;
		} else if (mstart != start)
			mem->ranges[i].end = mstart - 1;
		else
			mem->ranges[i].start = mend + 1;
		break;
	}

	/* If a split happened, add the split to array */
	if (!temp_range.end)
		return 0;

	/* Split happened */
	if (i == mem->max_nr_ranges - 1)
		return -ENOMEM;

	/* Location where new range should go */
	j = i + 1;
	if (j < mem->nr_ranges) {
		/* Move over all ranges one slot towards the end */
		for (i = mem->nr_ranges - 1; i >= j; i--)
			mem->ranges[i + 1] = mem->ranges[i];
	}

	mem->ranges[j].start = temp_range.start;
	mem->ranges[j].end = temp_range.end;
	mem->nr_ranges++;
	return 0;
}

int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
			  void **addr, unsigned long *sz)
{
	Elf64_Ehdr *ehdr;
	Elf64_Phdr *phdr;
	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
	unsigned char *buf;
	unsigned int cpu, i;
	unsigned long long notes_addr;
	unsigned long mstart, mend;

	/* extra phdr for vmcoreinfo elf note */
	nr_phdr = nr_cpus + 1;
	nr_phdr += mem->nr_ranges;

	/*
	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
	 * I think this is required by tools like gdb. So same physical
	 * memory will be mapped in two elf headers. One will contain kernel
	 * text virtual addresses and other will have __va(physical) addresses.
	 */

	nr_phdr++;
	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);

	buf = vzalloc(elf_sz);
	if (!buf)
		return -ENOMEM;

	ehdr = (Elf64_Ehdr *)buf;
	phdr = (Elf64_Phdr *)(ehdr + 1);
	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
	ehdr->e_type = ET_CORE;
	ehdr->e_machine = ELF_ARCH;
	ehdr->e_version = EV_CURRENT;
	ehdr->e_phoff = sizeof(Elf64_Ehdr);
	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
	ehdr->e_phentsize = sizeof(Elf64_Phdr);

	/* Prepare one phdr of type PT_NOTE for each present cpu */
	for_each_present_cpu(cpu) {
		phdr->p_type = PT_NOTE;
		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
		phdr->p_offset = phdr->p_paddr = notes_addr;
		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
		(ehdr->e_phnum)++;
		phdr++;
	}

	/* Prepare one PT_NOTE header for vmcoreinfo */
	phdr->p_type = PT_NOTE;
	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
	(ehdr->e_phnum)++;
	phdr++;

	/* Prepare PT_LOAD type program header for kernel text region */
	if (kernel_map) {
		phdr->p_type = PT_LOAD;
		phdr->p_flags = PF_R|PF_W|PF_X;
		phdr->p_vaddr = (Elf64_Addr)_text;
		phdr->p_filesz = phdr->p_memsz = _end - _text;
		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
		ehdr->e_phnum++;
		phdr++;
	}

	/* Go through all the ranges in mem->ranges[] and prepare phdr */
	for (i = 0; i < mem->nr_ranges; i++) {
		mstart = mem->ranges[i].start;
		mend = mem->ranges[i].end;

		phdr->p_type = PT_LOAD;
		phdr->p_flags = PF_R|PF_W|PF_X;
		phdr->p_offset  = mstart;

		phdr->p_paddr = mstart;
		phdr->p_vaddr = (unsigned long long) __va(mstart);
		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
		phdr->p_align = 0;
		ehdr->e_phnum++;
		phdr++;
		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
			ehdr->e_phnum, phdr->p_offset);
	}

	*addr = buf;
	*sz = elf_sz;
	return 0;
}