Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*
 * ChaCha/XChaCha NEON helper functions
 *
 * Copyright (C) 2016-2018 Linaro, Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Originally based on:
 * ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSSE3 functions
 *
 * Copyright (C) 2015 Martin Willi
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/cache.h>

	.text
	.align		6

/*
 * chacha_permute - permute one block
 *
 * Permute one 64-byte block where the state matrix is stored in the four NEON
 * registers v0-v3.  It performs matrix operations on four words in parallel,
 * but requires shuffling to rearrange the words after each round.
 *
 * The round count is given in w3.
 *
 * Clobbers: w3, x10, v4, v12
 */
chacha_permute:

	adr_l		x10, ROT8
	ld1		{v12.4s}, [x10]

.Ldoubleround:
	// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
	add		v0.4s, v0.4s, v1.4s
	eor		v3.16b, v3.16b, v0.16b
	rev32		v3.8h, v3.8h

	// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
	add		v2.4s, v2.4s, v3.4s
	eor		v4.16b, v1.16b, v2.16b
	shl		v1.4s, v4.4s, #12
	sri		v1.4s, v4.4s, #20

	// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
	add		v0.4s, v0.4s, v1.4s
	eor		v3.16b, v3.16b, v0.16b
	tbl		v3.16b, {v3.16b}, v12.16b

	// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
	add		v2.4s, v2.4s, v3.4s
	eor		v4.16b, v1.16b, v2.16b
	shl		v1.4s, v4.4s, #7
	sri		v1.4s, v4.4s, #25

	// x1 = shuffle32(x1, MASK(0, 3, 2, 1))
	ext		v1.16b, v1.16b, v1.16b, #4
	// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
	ext		v2.16b, v2.16b, v2.16b, #8
	// x3 = shuffle32(x3, MASK(2, 1, 0, 3))
	ext		v3.16b, v3.16b, v3.16b, #12

	// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
	add		v0.4s, v0.4s, v1.4s
	eor		v3.16b, v3.16b, v0.16b
	rev32		v3.8h, v3.8h

	// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
	add		v2.4s, v2.4s, v3.4s
	eor		v4.16b, v1.16b, v2.16b
	shl		v1.4s, v4.4s, #12
	sri		v1.4s, v4.4s, #20

	// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
	add		v0.4s, v0.4s, v1.4s
	eor		v3.16b, v3.16b, v0.16b
	tbl		v3.16b, {v3.16b}, v12.16b

	// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
	add		v2.4s, v2.4s, v3.4s
	eor		v4.16b, v1.16b, v2.16b
	shl		v1.4s, v4.4s, #7
	sri		v1.4s, v4.4s, #25

	// x1 = shuffle32(x1, MASK(2, 1, 0, 3))
	ext		v1.16b, v1.16b, v1.16b, #12
	// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
	ext		v2.16b, v2.16b, v2.16b, #8
	// x3 = shuffle32(x3, MASK(0, 3, 2, 1))
	ext		v3.16b, v3.16b, v3.16b, #4

	subs		w3, w3, #2
	b.ne		.Ldoubleround

	ret
ENDPROC(chacha_permute)

ENTRY(chacha_block_xor_neon)
	// x0: Input state matrix, s
	// x1: 1 data block output, o
	// x2: 1 data block input, i
	// w3: nrounds

	stp		x29, x30, [sp, #-16]!
	mov		x29, sp

	// x0..3 = s0..3
	ld1		{v0.4s-v3.4s}, [x0]
	ld1		{v8.4s-v11.4s}, [x0]

	bl		chacha_permute

	ld1		{v4.16b-v7.16b}, [x2]

	// o0 = i0 ^ (x0 + s0)
	add		v0.4s, v0.4s, v8.4s
	eor		v0.16b, v0.16b, v4.16b

	// o1 = i1 ^ (x1 + s1)
	add		v1.4s, v1.4s, v9.4s
	eor		v1.16b, v1.16b, v5.16b

	// o2 = i2 ^ (x2 + s2)
	add		v2.4s, v2.4s, v10.4s
	eor		v2.16b, v2.16b, v6.16b

	// o3 = i3 ^ (x3 + s3)
	add		v3.4s, v3.4s, v11.4s
	eor		v3.16b, v3.16b, v7.16b

	st1		{v0.16b-v3.16b}, [x1]

	ldp		x29, x30, [sp], #16
	ret
ENDPROC(chacha_block_xor_neon)

ENTRY(hchacha_block_neon)
	// x0: Input state matrix, s
	// x1: output (8 32-bit words)
	// w2: nrounds

	stp		x29, x30, [sp, #-16]!
	mov		x29, sp

	ld1		{v0.4s-v3.4s}, [x0]

	mov		w3, w2
	bl		chacha_permute

	st1		{v0.4s}, [x1], #16
	st1		{v3.4s}, [x1]

	ldp		x29, x30, [sp], #16
	ret
ENDPROC(hchacha_block_neon)

	a0		.req	w12
	a1		.req	w13
	a2		.req	w14
	a3		.req	w15
	a4		.req	w16
	a5		.req	w17
	a6		.req	w19
	a7		.req	w20
	a8		.req	w21
	a9		.req	w22
	a10		.req	w23
	a11		.req	w24
	a12		.req	w25
	a13		.req	w26
	a14		.req	w27
	a15		.req	w28

	.align		6
ENTRY(chacha_4block_xor_neon)
	frame_push	10

	// x0: Input state matrix, s
	// x1: 4 data blocks output, o
	// x2: 4 data blocks input, i
	// w3: nrounds
	// x4: byte count

	adr_l		x10, .Lpermute
	and		x5, x4, #63
	add		x10, x10, x5
	add		x11, x10, #64

	//
	// This function encrypts four consecutive ChaCha blocks by loading
	// the state matrix in NEON registers four times. The algorithm performs
	// each operation on the corresponding word of each state matrix, hence
	// requires no word shuffling. For final XORing step we transpose the
	// matrix by interleaving 32- and then 64-bit words, which allows us to
	// do XOR in NEON registers.
	//
	// At the same time, a fifth block is encrypted in parallel using
	// scalar registers
	//
	adr_l		x9, CTRINC		// ... and ROT8
	ld1		{v30.4s-v31.4s}, [x9]

	// x0..15[0-3] = s0..3[0..3]
	add		x8, x0, #16
	ld4r		{ v0.4s- v3.4s}, [x0]
	ld4r		{ v4.4s- v7.4s}, [x8], #16
	ld4r		{ v8.4s-v11.4s}, [x8], #16
	ld4r		{v12.4s-v15.4s}, [x8]

	mov		a0, v0.s[0]
	mov		a1, v1.s[0]
	mov		a2, v2.s[0]
	mov		a3, v3.s[0]
	mov		a4, v4.s[0]
	mov		a5, v5.s[0]
	mov		a6, v6.s[0]
	mov		a7, v7.s[0]
	mov		a8, v8.s[0]
	mov		a9, v9.s[0]
	mov		a10, v10.s[0]
	mov		a11, v11.s[0]
	mov		a12, v12.s[0]
	mov		a13, v13.s[0]
	mov		a14, v14.s[0]
	mov		a15, v15.s[0]

	// x12 += counter values 1-4
	add		v12.4s, v12.4s, v30.4s

.Ldoubleround4:
	// x0 += x4, x12 = rotl32(x12 ^ x0, 16)
	// x1 += x5, x13 = rotl32(x13 ^ x1, 16)
	// x2 += x6, x14 = rotl32(x14 ^ x2, 16)
	// x3 += x7, x15 = rotl32(x15 ^ x3, 16)
	add		v0.4s, v0.4s, v4.4s
	  add		a0, a0, a4
	add		v1.4s, v1.4s, v5.4s
	  add		a1, a1, a5
	add		v2.4s, v2.4s, v6.4s
	  add		a2, a2, a6
	add		v3.4s, v3.4s, v7.4s
	  add		a3, a3, a7

	eor		v12.16b, v12.16b, v0.16b
	  eor		a12, a12, a0
	eor		v13.16b, v13.16b, v1.16b
	  eor		a13, a13, a1
	eor		v14.16b, v14.16b, v2.16b
	  eor		a14, a14, a2
	eor		v15.16b, v15.16b, v3.16b
	  eor		a15, a15, a3

	rev32		v12.8h, v12.8h
	  ror		a12, a12, #16
	rev32		v13.8h, v13.8h
	  ror		a13, a13, #16
	rev32		v14.8h, v14.8h
	  ror		a14, a14, #16
	rev32		v15.8h, v15.8h
	  ror		a15, a15, #16

	// x8 += x12, x4 = rotl32(x4 ^ x8, 12)
	// x9 += x13, x5 = rotl32(x5 ^ x9, 12)
	// x10 += x14, x6 = rotl32(x6 ^ x10, 12)
	// x11 += x15, x7 = rotl32(x7 ^ x11, 12)
	add		v8.4s, v8.4s, v12.4s
	  add		a8, a8, a12
	add		v9.4s, v9.4s, v13.4s
	  add		a9, a9, a13
	add		v10.4s, v10.4s, v14.4s
	  add		a10, a10, a14
	add		v11.4s, v11.4s, v15.4s
	  add		a11, a11, a15

	eor		v16.16b, v4.16b, v8.16b
	  eor		a4, a4, a8
	eor		v17.16b, v5.16b, v9.16b
	  eor		a5, a5, a9
	eor		v18.16b, v6.16b, v10.16b
	  eor		a6, a6, a10
	eor		v19.16b, v7.16b, v11.16b
	  eor		a7, a7, a11

	shl		v4.4s, v16.4s, #12
	shl		v5.4s, v17.4s, #12
	shl		v6.4s, v18.4s, #12
	shl		v7.4s, v19.4s, #12

	sri		v4.4s, v16.4s, #20
	  ror		a4, a4, #20
	sri		v5.4s, v17.4s, #20
	  ror		a5, a5, #20
	sri		v6.4s, v18.4s, #20
	  ror		a6, a6, #20
	sri		v7.4s, v19.4s, #20
	  ror		a7, a7, #20

	// x0 += x4, x12 = rotl32(x12 ^ x0, 8)
	// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
	// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
	// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
	add		v0.4s, v0.4s, v4.4s
	  add		a0, a0, a4
	add		v1.4s, v1.4s, v5.4s
	  add		a1, a1, a5
	add		v2.4s, v2.4s, v6.4s
	  add		a2, a2, a6
	add		v3.4s, v3.4s, v7.4s
	  add		a3, a3, a7

	eor		v12.16b, v12.16b, v0.16b
	  eor		a12, a12, a0
	eor		v13.16b, v13.16b, v1.16b
	  eor		a13, a13, a1
	eor		v14.16b, v14.16b, v2.16b
	  eor		a14, a14, a2
	eor		v15.16b, v15.16b, v3.16b
	  eor		a15, a15, a3

	tbl		v12.16b, {v12.16b}, v31.16b
	  ror		a12, a12, #24
	tbl		v13.16b, {v13.16b}, v31.16b
	  ror		a13, a13, #24
	tbl		v14.16b, {v14.16b}, v31.16b
	  ror		a14, a14, #24
	tbl		v15.16b, {v15.16b}, v31.16b
	  ror		a15, a15, #24

	// x8 += x12, x4 = rotl32(x4 ^ x8, 7)
	// x9 += x13, x5 = rotl32(x5 ^ x9, 7)
	// x10 += x14, x6 = rotl32(x6 ^ x10, 7)
	// x11 += x15, x7 = rotl32(x7 ^ x11, 7)
	add		v8.4s, v8.4s, v12.4s
	  add		a8, a8, a12
	add		v9.4s, v9.4s, v13.4s
	  add		a9, a9, a13
	add		v10.4s, v10.4s, v14.4s
	  add		a10, a10, a14
	add		v11.4s, v11.4s, v15.4s
	  add		a11, a11, a15

	eor		v16.16b, v4.16b, v8.16b
	  eor		a4, a4, a8
	eor		v17.16b, v5.16b, v9.16b
	  eor		a5, a5, a9
	eor		v18.16b, v6.16b, v10.16b
	  eor		a6, a6, a10
	eor		v19.16b, v7.16b, v11.16b
	  eor		a7, a7, a11

	shl		v4.4s, v16.4s, #7
	shl		v5.4s, v17.4s, #7
	shl		v6.4s, v18.4s, #7
	shl		v7.4s, v19.4s, #7

	sri		v4.4s, v16.4s, #25
	  ror		a4, a4, #25
	sri		v5.4s, v17.4s, #25
	  ror		a5, a5, #25
	sri		v6.4s, v18.4s, #25
	 ror		a6, a6, #25
	sri		v7.4s, v19.4s, #25
	  ror		a7, a7, #25

	// x0 += x5, x15 = rotl32(x15 ^ x0, 16)
	// x1 += x6, x12 = rotl32(x12 ^ x1, 16)
	// x2 += x7, x13 = rotl32(x13 ^ x2, 16)
	// x3 += x4, x14 = rotl32(x14 ^ x3, 16)
	add		v0.4s, v0.4s, v5.4s
	  add		a0, a0, a5
	add		v1.4s, v1.4s, v6.4s
	  add		a1, a1, a6
	add		v2.4s, v2.4s, v7.4s
	  add		a2, a2, a7
	add		v3.4s, v3.4s, v4.4s
	  add		a3, a3, a4

	eor		v15.16b, v15.16b, v0.16b
	  eor		a15, a15, a0
	eor		v12.16b, v12.16b, v1.16b
	  eor		a12, a12, a1
	eor		v13.16b, v13.16b, v2.16b
	  eor		a13, a13, a2
	eor		v14.16b, v14.16b, v3.16b
	  eor		a14, a14, a3

	rev32		v15.8h, v15.8h
	  ror		a15, a15, #16
	rev32		v12.8h, v12.8h
	  ror		a12, a12, #16
	rev32		v13.8h, v13.8h
	  ror		a13, a13, #16
	rev32		v14.8h, v14.8h
	  ror		a14, a14, #16

	// x10 += x15, x5 = rotl32(x5 ^ x10, 12)
	// x11 += x12, x6 = rotl32(x6 ^ x11, 12)
	// x8 += x13, x7 = rotl32(x7 ^ x8, 12)
	// x9 += x14, x4 = rotl32(x4 ^ x9, 12)
	add		v10.4s, v10.4s, v15.4s
	  add		a10, a10, a15
	add		v11.4s, v11.4s, v12.4s
	  add		a11, a11, a12
	add		v8.4s, v8.4s, v13.4s
	  add		a8, a8, a13
	add		v9.4s, v9.4s, v14.4s
	  add		a9, a9, a14

	eor		v16.16b, v5.16b, v10.16b
	  eor		a5, a5, a10
	eor		v17.16b, v6.16b, v11.16b
	  eor		a6, a6, a11
	eor		v18.16b, v7.16b, v8.16b
	  eor		a7, a7, a8
	eor		v19.16b, v4.16b, v9.16b
	  eor		a4, a4, a9

	shl		v5.4s, v16.4s, #12
	shl		v6.4s, v17.4s, #12
	shl		v7.4s, v18.4s, #12
	shl		v4.4s, v19.4s, #12

	sri		v5.4s, v16.4s, #20
	  ror		a5, a5, #20
	sri		v6.4s, v17.4s, #20
	  ror		a6, a6, #20
	sri		v7.4s, v18.4s, #20
	  ror		a7, a7, #20
	sri		v4.4s, v19.4s, #20
	  ror		a4, a4, #20

	// x0 += x5, x15 = rotl32(x15 ^ x0, 8)
	// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
	// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
	// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
	add		v0.4s, v0.4s, v5.4s
	  add		a0, a0, a5
	add		v1.4s, v1.4s, v6.4s
	  add		a1, a1, a6
	add		v2.4s, v2.4s, v7.4s
	  add		a2, a2, a7
	add		v3.4s, v3.4s, v4.4s
	  add		a3, a3, a4

	eor		v15.16b, v15.16b, v0.16b
	  eor		a15, a15, a0
	eor		v12.16b, v12.16b, v1.16b
	  eor		a12, a12, a1
	eor		v13.16b, v13.16b, v2.16b
	  eor		a13, a13, a2
	eor		v14.16b, v14.16b, v3.16b
	  eor		a14, a14, a3

	tbl		v15.16b, {v15.16b}, v31.16b
	  ror		a15, a15, #24
	tbl		v12.16b, {v12.16b}, v31.16b
	  ror		a12, a12, #24
	tbl		v13.16b, {v13.16b}, v31.16b
	  ror		a13, a13, #24
	tbl		v14.16b, {v14.16b}, v31.16b
	  ror		a14, a14, #24

	// x10 += x15, x5 = rotl32(x5 ^ x10, 7)
	// x11 += x12, x6 = rotl32(x6 ^ x11, 7)
	// x8 += x13, x7 = rotl32(x7 ^ x8, 7)
	// x9 += x14, x4 = rotl32(x4 ^ x9, 7)
	add		v10.4s, v10.4s, v15.4s
	  add		a10, a10, a15
	add		v11.4s, v11.4s, v12.4s
	  add		a11, a11, a12
	add		v8.4s, v8.4s, v13.4s
	  add		a8, a8, a13
	add		v9.4s, v9.4s, v14.4s
	  add		a9, a9, a14

	eor		v16.16b, v5.16b, v10.16b
	  eor		a5, a5, a10
	eor		v17.16b, v6.16b, v11.16b
	  eor		a6, a6, a11
	eor		v18.16b, v7.16b, v8.16b
	  eor		a7, a7, a8
	eor		v19.16b, v4.16b, v9.16b
	  eor		a4, a4, a9

	shl		v5.4s, v16.4s, #7
	shl		v6.4s, v17.4s, #7
	shl		v7.4s, v18.4s, #7
	shl		v4.4s, v19.4s, #7

	sri		v5.4s, v16.4s, #25
	  ror		a5, a5, #25
	sri		v6.4s, v17.4s, #25
	  ror		a6, a6, #25
	sri		v7.4s, v18.4s, #25
	  ror		a7, a7, #25
	sri		v4.4s, v19.4s, #25
	  ror		a4, a4, #25

	subs		w3, w3, #2
	b.ne		.Ldoubleround4

	ld4r		{v16.4s-v19.4s}, [x0], #16
	ld4r		{v20.4s-v23.4s}, [x0], #16

	// x12 += counter values 0-3
	add		v12.4s, v12.4s, v30.4s

	// x0[0-3] += s0[0]
	// x1[0-3] += s0[1]
	// x2[0-3] += s0[2]
	// x3[0-3] += s0[3]
	add		v0.4s, v0.4s, v16.4s
	  mov		w6, v16.s[0]
	  mov		w7, v17.s[0]
	add		v1.4s, v1.4s, v17.4s
	  mov		w8, v18.s[0]
	  mov		w9, v19.s[0]
	add		v2.4s, v2.4s, v18.4s
	  add		a0, a0, w6
	  add		a1, a1, w7
	add		v3.4s, v3.4s, v19.4s
	  add		a2, a2, w8
	  add		a3, a3, w9
CPU_BE(	  rev		a0, a0		)
CPU_BE(	  rev		a1, a1		)
CPU_BE(	  rev		a2, a2		)
CPU_BE(	  rev		a3, a3		)

	ld4r		{v24.4s-v27.4s}, [x0], #16
	ld4r		{v28.4s-v31.4s}, [x0]

	// x4[0-3] += s1[0]
	// x5[0-3] += s1[1]
	// x6[0-3] += s1[2]
	// x7[0-3] += s1[3]
	add		v4.4s, v4.4s, v20.4s
	  mov		w6, v20.s[0]
	  mov		w7, v21.s[0]
	add		v5.4s, v5.4s, v21.4s
	  mov		w8, v22.s[0]
	  mov		w9, v23.s[0]
	add		v6.4s, v6.4s, v22.4s
	  add		a4, a4, w6
	  add		a5, a5, w7
	add		v7.4s, v7.4s, v23.4s
	  add		a6, a6, w8
	  add		a7, a7, w9
CPU_BE(	  rev		a4, a4		)
CPU_BE(	  rev		a5, a5		)
CPU_BE(	  rev		a6, a6		)
CPU_BE(	  rev		a7, a7		)

	// x8[0-3] += s2[0]
	// x9[0-3] += s2[1]
	// x10[0-3] += s2[2]
	// x11[0-3] += s2[3]
	add		v8.4s, v8.4s, v24.4s
	  mov		w6, v24.s[0]
	  mov		w7, v25.s[0]
	add		v9.4s, v9.4s, v25.4s
	  mov		w8, v26.s[0]
	  mov		w9, v27.s[0]
	add		v10.4s, v10.4s, v26.4s
	  add		a8, a8, w6
	  add		a9, a9, w7
	add		v11.4s, v11.4s, v27.4s
	  add		a10, a10, w8
	  add		a11, a11, w9
CPU_BE(	  rev		a8, a8		)
CPU_BE(	  rev		a9, a9		)
CPU_BE(	  rev		a10, a10	)
CPU_BE(	  rev		a11, a11	)

	// x12[0-3] += s3[0]
	// x13[0-3] += s3[1]
	// x14[0-3] += s3[2]
	// x15[0-3] += s3[3]
	add		v12.4s, v12.4s, v28.4s
	  mov		w6, v28.s[0]
	  mov		w7, v29.s[0]
	add		v13.4s, v13.4s, v29.4s
	  mov		w8, v30.s[0]
	  mov		w9, v31.s[0]
	add		v14.4s, v14.4s, v30.4s
	  add		a12, a12, w6
	  add		a13, a13, w7
	add		v15.4s, v15.4s, v31.4s
	  add		a14, a14, w8
	  add		a15, a15, w9
CPU_BE(	  rev		a12, a12	)
CPU_BE(	  rev		a13, a13	)
CPU_BE(	  rev		a14, a14	)
CPU_BE(	  rev		a15, a15	)

	// interleave 32-bit words in state n, n+1
	  ldp		w6, w7, [x2], #64
	zip1		v16.4s, v0.4s, v1.4s
	  ldp		w8, w9, [x2, #-56]
	  eor		a0, a0, w6
	zip2		v17.4s, v0.4s, v1.4s
	  eor		a1, a1, w7
	zip1		v18.4s, v2.4s, v3.4s
	  eor		a2, a2, w8
	zip2		v19.4s, v2.4s, v3.4s
	  eor		a3, a3, w9
	  ldp		w6, w7, [x2, #-48]
	zip1		v20.4s, v4.4s, v5.4s
	  ldp		w8, w9, [x2, #-40]
	  eor		a4, a4, w6
	zip2		v21.4s, v4.4s, v5.4s
	  eor		a5, a5, w7
	zip1		v22.4s, v6.4s, v7.4s
	  eor		a6, a6, w8
	zip2		v23.4s, v6.4s, v7.4s
	  eor		a7, a7, w9
	  ldp		w6, w7, [x2, #-32]
	zip1		v24.4s, v8.4s, v9.4s
	  ldp		w8, w9, [x2, #-24]
	  eor		a8, a8, w6
	zip2		v25.4s, v8.4s, v9.4s
	  eor		a9, a9, w7
	zip1		v26.4s, v10.4s, v11.4s
	  eor		a10, a10, w8
	zip2		v27.4s, v10.4s, v11.4s
	  eor		a11, a11, w9
	  ldp		w6, w7, [x2, #-16]
	zip1		v28.4s, v12.4s, v13.4s
	  ldp		w8, w9, [x2, #-8]
	  eor		a12, a12, w6
	zip2		v29.4s, v12.4s, v13.4s
	  eor		a13, a13, w7
	zip1		v30.4s, v14.4s, v15.4s
	  eor		a14, a14, w8
	zip2		v31.4s, v14.4s, v15.4s
	  eor		a15, a15, w9

	mov		x3, #64
	subs		x5, x4, #128
	add		x6, x5, x2
	csel		x3, x3, xzr, ge
	csel		x2, x2, x6, ge

	// interleave 64-bit words in state n, n+2
	zip1		v0.2d, v16.2d, v18.2d
	zip2		v4.2d, v16.2d, v18.2d
	  stp		a0, a1, [x1], #64
	zip1		v8.2d, v17.2d, v19.2d
	zip2		v12.2d, v17.2d, v19.2d
	  stp		a2, a3, [x1, #-56]
	ld1		{v16.16b-v19.16b}, [x2], x3

	subs		x6, x4, #192
	ccmp		x3, xzr, #4, lt
	add		x7, x6, x2
	csel		x3, x3, xzr, eq
	csel		x2, x2, x7, eq

	zip1		v1.2d, v20.2d, v22.2d
	zip2		v5.2d, v20.2d, v22.2d
	  stp		a4, a5, [x1, #-48]
	zip1		v9.2d, v21.2d, v23.2d
	zip2		v13.2d, v21.2d, v23.2d
	  stp		a6, a7, [x1, #-40]
	ld1		{v20.16b-v23.16b}, [x2], x3

	subs		x7, x4, #256
	ccmp		x3, xzr, #4, lt
	add		x8, x7, x2
	csel		x3, x3, xzr, eq
	csel		x2, x2, x8, eq

	zip1		v2.2d, v24.2d, v26.2d
	zip2		v6.2d, v24.2d, v26.2d
	  stp		a8, a9, [x1, #-32]
	zip1		v10.2d, v25.2d, v27.2d
	zip2		v14.2d, v25.2d, v27.2d
	  stp		a10, a11, [x1, #-24]
	ld1		{v24.16b-v27.16b}, [x2], x3

	subs		x8, x4, #320
	ccmp		x3, xzr, #4, lt
	add		x9, x8, x2
	csel		x2, x2, x9, eq

	zip1		v3.2d, v28.2d, v30.2d
	zip2		v7.2d, v28.2d, v30.2d
	  stp		a12, a13, [x1, #-16]
	zip1		v11.2d, v29.2d, v31.2d
	zip2		v15.2d, v29.2d, v31.2d
	  stp		a14, a15, [x1, #-8]
	ld1		{v28.16b-v31.16b}, [x2]

	// xor with corresponding input, write to output
	tbnz		x5, #63, 0f
	eor		v16.16b, v16.16b, v0.16b
	eor		v17.16b, v17.16b, v1.16b
	eor		v18.16b, v18.16b, v2.16b
	eor		v19.16b, v19.16b, v3.16b
	st1		{v16.16b-v19.16b}, [x1], #64
	cbz		x5, .Lout

	tbnz		x6, #63, 1f
	eor		v20.16b, v20.16b, v4.16b
	eor		v21.16b, v21.16b, v5.16b
	eor		v22.16b, v22.16b, v6.16b
	eor		v23.16b, v23.16b, v7.16b
	st1		{v20.16b-v23.16b}, [x1], #64
	cbz		x6, .Lout

	tbnz		x7, #63, 2f
	eor		v24.16b, v24.16b, v8.16b
	eor		v25.16b, v25.16b, v9.16b
	eor		v26.16b, v26.16b, v10.16b
	eor		v27.16b, v27.16b, v11.16b
	st1		{v24.16b-v27.16b}, [x1], #64
	cbz		x7, .Lout

	tbnz		x8, #63, 3f
	eor		v28.16b, v28.16b, v12.16b
	eor		v29.16b, v29.16b, v13.16b
	eor		v30.16b, v30.16b, v14.16b
	eor		v31.16b, v31.16b, v15.16b
	st1		{v28.16b-v31.16b}, [x1]

.Lout:	frame_pop
	ret

	// fewer than 128 bytes of in/output
0:	ld1		{v8.16b}, [x10]
	ld1		{v9.16b}, [x11]
	movi		v10.16b, #16
	sub		x2, x1, #64
	add		x1, x1, x5
	ld1		{v16.16b-v19.16b}, [x2]
	tbl		v4.16b, {v0.16b-v3.16b}, v8.16b
	tbx		v20.16b, {v16.16b-v19.16b}, v9.16b
	add		v8.16b, v8.16b, v10.16b
	add		v9.16b, v9.16b, v10.16b
	tbl		v5.16b, {v0.16b-v3.16b}, v8.16b
	tbx		v21.16b, {v16.16b-v19.16b}, v9.16b
	add		v8.16b, v8.16b, v10.16b
	add		v9.16b, v9.16b, v10.16b
	tbl		v6.16b, {v0.16b-v3.16b}, v8.16b
	tbx		v22.16b, {v16.16b-v19.16b}, v9.16b
	add		v8.16b, v8.16b, v10.16b
	add		v9.16b, v9.16b, v10.16b
	tbl		v7.16b, {v0.16b-v3.16b}, v8.16b
	tbx		v23.16b, {v16.16b-v19.16b}, v9.16b

	eor		v20.16b, v20.16b, v4.16b
	eor		v21.16b, v21.16b, v5.16b
	eor		v22.16b, v22.16b, v6.16b
	eor		v23.16b, v23.16b, v7.16b
	st1		{v20.16b-v23.16b}, [x1]
	b		.Lout

	// fewer than 192 bytes of in/output
1:	ld1		{v8.16b}, [x10]
	ld1		{v9.16b}, [x11]
	movi		v10.16b, #16
	add		x1, x1, x6
	tbl		v0.16b, {v4.16b-v7.16b}, v8.16b
	tbx		v20.16b, {v16.16b-v19.16b}, v9.16b
	add		v8.16b, v8.16b, v10.16b
	add		v9.16b, v9.16b, v10.16b
	tbl		v1.16b, {v4.16b-v7.16b}, v8.16b
	tbx		v21.16b, {v16.16b-v19.16b}, v9.16b
	add		v8.16b, v8.16b, v10.16b
	add		v9.16b, v9.16b, v10.16b
	tbl		v2.16b, {v4.16b-v7.16b}, v8.16b
	tbx		v22.16b, {v16.16b-v19.16b}, v9.16b
	add		v8.16b, v8.16b, v10.16b
	add		v9.16b, v9.16b, v10.16b
	tbl		v3.16b, {v4.16b-v7.16b}, v8.16b
	tbx		v23.16b, {v16.16b-v19.16b}, v9.16b

	eor		v20.16b, v20.16b, v0.16b
	eor		v21.16b, v21.16b, v1.16b
	eor		v22.16b, v22.16b, v2.16b
	eor		v23.16b, v23.16b, v3.16b
	st1		{v20.16b-v23.16b}, [x1]
	b		.Lout

	// fewer than 256 bytes of in/output
2:	ld1		{v4.16b}, [x10]
	ld1		{v5.16b}, [x11]
	movi		v6.16b, #16
	add		x1, x1, x7
	tbl		v0.16b, {v8.16b-v11.16b}, v4.16b
	tbx		v24.16b, {v20.16b-v23.16b}, v5.16b
	add		v4.16b, v4.16b, v6.16b
	add		v5.16b, v5.16b, v6.16b
	tbl		v1.16b, {v8.16b-v11.16b}, v4.16b
	tbx		v25.16b, {v20.16b-v23.16b}, v5.16b
	add		v4.16b, v4.16b, v6.16b
	add		v5.16b, v5.16b, v6.16b
	tbl		v2.16b, {v8.16b-v11.16b}, v4.16b
	tbx		v26.16b, {v20.16b-v23.16b}, v5.16b
	add		v4.16b, v4.16b, v6.16b
	add		v5.16b, v5.16b, v6.16b
	tbl		v3.16b, {v8.16b-v11.16b}, v4.16b
	tbx		v27.16b, {v20.16b-v23.16b}, v5.16b

	eor		v24.16b, v24.16b, v0.16b
	eor		v25.16b, v25.16b, v1.16b
	eor		v26.16b, v26.16b, v2.16b
	eor		v27.16b, v27.16b, v3.16b
	st1		{v24.16b-v27.16b}, [x1]
	b		.Lout

	// fewer than 320 bytes of in/output
3:	ld1		{v4.16b}, [x10]
	ld1		{v5.16b}, [x11]
	movi		v6.16b, #16
	add		x1, x1, x8
	tbl		v0.16b, {v12.16b-v15.16b}, v4.16b
	tbx		v28.16b, {v24.16b-v27.16b}, v5.16b
	add		v4.16b, v4.16b, v6.16b
	add		v5.16b, v5.16b, v6.16b
	tbl		v1.16b, {v12.16b-v15.16b}, v4.16b
	tbx		v29.16b, {v24.16b-v27.16b}, v5.16b
	add		v4.16b, v4.16b, v6.16b
	add		v5.16b, v5.16b, v6.16b
	tbl		v2.16b, {v12.16b-v15.16b}, v4.16b
	tbx		v30.16b, {v24.16b-v27.16b}, v5.16b
	add		v4.16b, v4.16b, v6.16b
	add		v5.16b, v5.16b, v6.16b
	tbl		v3.16b, {v12.16b-v15.16b}, v4.16b
	tbx		v31.16b, {v24.16b-v27.16b}, v5.16b

	eor		v28.16b, v28.16b, v0.16b
	eor		v29.16b, v29.16b, v1.16b
	eor		v30.16b, v30.16b, v2.16b
	eor		v31.16b, v31.16b, v3.16b
	st1		{v28.16b-v31.16b}, [x1]
	b		.Lout
ENDPROC(chacha_4block_xor_neon)

	.section	".rodata", "a", %progbits
	.align		L1_CACHE_SHIFT
.Lpermute:
	.set		.Li, 0
	.rept		192
	.byte		(.Li - 64)
	.set		.Li, .Li + 1
	.endr

CTRINC:	.word		1, 2, 3, 4
ROT8:	.word		0x02010003, 0x06050407, 0x0a09080b, 0x0e0d0c0f