/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dc.h"
#include "reg_helper.h"
#include "dcn10_dpp.h"
#include "dcn10_cm_common.h"
#include "custom_float.h"
#define REG(reg) reg
#define CTX \
ctx
#undef FN
#define FN(reg_name, field_name) \
reg->shifts.field_name, reg->masks.field_name
void cm_helper_program_color_matrices(
struct dc_context *ctx,
const uint16_t *regval,
const struct color_matrices_reg *reg)
{
uint32_t cur_csc_reg;
unsigned int i = 0;
for (cur_csc_reg = reg->csc_c11_c12;
cur_csc_reg <= reg->csc_c33_c34;
cur_csc_reg++) {
const uint16_t *regval0 = &(regval[2 * i]);
const uint16_t *regval1 = &(regval[(2 * i) + 1]);
REG_SET_2(cur_csc_reg, 0,
csc_c11, *regval0,
csc_c12, *regval1);
i++;
}
}
void cm_helper_program_xfer_func(
struct dc_context *ctx,
const struct pwl_params *params,
const struct xfer_func_reg *reg)
{
uint32_t reg_region_cur;
unsigned int i = 0;
REG_SET_2(reg->start_cntl_b, 0,
exp_region_start, params->corner_points[0].blue.custom_float_x,
exp_resion_start_segment, 0);
REG_SET_2(reg->start_cntl_g, 0,
exp_region_start, params->corner_points[0].green.custom_float_x,
exp_resion_start_segment, 0);
REG_SET_2(reg->start_cntl_r, 0,
exp_region_start, params->corner_points[0].red.custom_float_x,
exp_resion_start_segment, 0);
REG_SET(reg->start_slope_cntl_b, 0,
field_region_linear_slope, params->corner_points[0].blue.custom_float_slope);
REG_SET(reg->start_slope_cntl_g, 0,
field_region_linear_slope, params->corner_points[0].green.custom_float_slope);
REG_SET(reg->start_slope_cntl_r, 0,
field_region_linear_slope, params->corner_points[0].red.custom_float_slope);
REG_SET(reg->start_end_cntl1_b, 0,
field_region_end, params->corner_points[1].blue.custom_float_x);
REG_SET_2(reg->start_end_cntl2_b, 0,
field_region_end_slope, params->corner_points[1].blue.custom_float_slope,
field_region_end_base, params->corner_points[1].blue.custom_float_y);
REG_SET(reg->start_end_cntl1_g, 0,
field_region_end, params->corner_points[1].green.custom_float_x);
REG_SET_2(reg->start_end_cntl2_g, 0,
field_region_end_slope, params->corner_points[1].green.custom_float_slope,
field_region_end_base, params->corner_points[1].green.custom_float_y);
REG_SET(reg->start_end_cntl1_r, 0,
field_region_end, params->corner_points[1].red.custom_float_x);
REG_SET_2(reg->start_end_cntl2_r, 0,
field_region_end_slope, params->corner_points[1].red.custom_float_slope,
field_region_end_base, params->corner_points[1].red.custom_float_y);
for (reg_region_cur = reg->region_start;
reg_region_cur <= reg->region_end;
reg_region_cur++) {
const struct gamma_curve *curve0 = &(params->arr_curve_points[2 * i]);
const struct gamma_curve *curve1 = &(params->arr_curve_points[(2 * i) + 1]);
REG_SET_4(reg_region_cur, 0,
exp_region0_lut_offset, curve0->offset,
exp_region0_num_segments, curve0->segments_num,
exp_region1_lut_offset, curve1->offset,
exp_region1_num_segments, curve1->segments_num);
i++;
}
}
bool cm_helper_convert_to_custom_float(
struct pwl_result_data *rgb_resulted,
struct curve_points3 *corner_points,
uint32_t hw_points_num,
bool fixpoint)
{
struct custom_float_format fmt;
struct pwl_result_data *rgb = rgb_resulted;
uint32_t i = 0;
fmt.exponenta_bits = 6;
fmt.mantissa_bits = 12;
fmt.sign = false;
/* corner_points[0] - beginning base, slope offset for R,G,B
* corner_points[1] - end base, slope offset for R,G,B
*/
if (!convert_to_custom_float_format(corner_points[0].red.x, &fmt,
&corner_points[0].red.custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].green.x, &fmt,
&corner_points[0].green.custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].blue.x, &fmt,
&corner_points[0].blue.custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].red.offset, &fmt,
&corner_points[0].red.custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].green.offset, &fmt,
&corner_points[0].green.custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].blue.offset, &fmt,
&corner_points[0].blue.custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].red.slope, &fmt,
&corner_points[0].red.custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].green.slope, &fmt,
&corner_points[0].green.custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[0].blue.slope, &fmt,
&corner_points[0].blue.custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 10;
fmt.sign = false;
if (!convert_to_custom_float_format(corner_points[1].red.x, &fmt,
&corner_points[1].red.custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[1].green.x, &fmt,
&corner_points[1].green.custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[1].blue.x, &fmt,
&corner_points[1].blue.custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (fixpoint == true) {
corner_points[1].red.custom_float_y =
dc_fixpt_clamp_u0d14(corner_points[1].red.y);
corner_points[1].green.custom_float_y =
dc_fixpt_clamp_u0d14(corner_points[1].green.y);
corner_points[1].blue.custom_float_y =
dc_fixpt_clamp_u0d14(corner_points[1].blue.y);
} else {
if (!convert_to_custom_float_format(corner_points[1].red.y,
&fmt, &corner_points[1].red.custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[1].green.y,
&fmt, &corner_points[1].green.custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[1].blue.y,
&fmt, &corner_points[1].blue.custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
}
if (!convert_to_custom_float_format(corner_points[1].red.slope, &fmt,
&corner_points[1].red.custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[1].green.slope, &fmt,
&corner_points[1].green.custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(corner_points[1].blue.slope, &fmt,
&corner_points[1].blue.custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
if (hw_points_num == 0 || rgb_resulted == NULL || fixpoint == true)
return true;
fmt.mantissa_bits = 12;
fmt.sign = true;
while (i != hw_points_num) {
if (!convert_to_custom_float_format(rgb->red, &fmt,
&rgb->red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->green, &fmt,
&rgb->green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->blue, &fmt,
&rgb->blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
&rgb->delta_red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
&rgb->delta_green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
&rgb->delta_blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
++rgb;
++i;
}
return true;
}
/* driver uses 32 regions or less, but DCN HW has 34, extra 2 are set to 0 */
#define MAX_REGIONS_NUMBER 34
#define MAX_LOW_POINT 25
#define NUMBER_REGIONS 32
#define NUMBER_SW_SEGMENTS 16
bool cm_helper_translate_curve_to_hw_format(
const struct dc_transfer_func *output_tf,
struct pwl_params *lut_params, bool fixpoint)
{
struct curve_points3 *corner_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
int32_t region_start, region_end;
int32_t i;
uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;
if (output_tf == NULL || lut_params == NULL || output_tf->type == TF_TYPE_BYPASS)
return false;
PERF_TRACE_CTX(output_tf->ctx);
corner_points = lut_params->corner_points;
rgb_resulted = lut_params->rgb_resulted;
hw_points = 0;
memset(lut_params, 0, sizeof(struct pwl_params));
memset(seg_distr, 0, sizeof(seg_distr));
if (output_tf->tf == TRANSFER_FUNCTION_PQ || output_tf->tf == TRANSFER_FUNCTION_GAMMA22) {
/* 32 segments
* segments are from 2^-25 to 2^7
*/
for (i = 0; i < NUMBER_REGIONS ; i++)
seg_distr[i] = 3;
region_start = -MAX_LOW_POINT;
region_end = NUMBER_REGIONS - MAX_LOW_POINT;
} else {
/* 11 segments
* segment is from 2^-10 to 2^1
* There are less than 256 points, for optimization
*/
seg_distr[0] = 3;
seg_distr[1] = 4;
seg_distr[2] = 4;
seg_distr[3] = 4;
seg_distr[4] = 4;
seg_distr[5] = 4;
seg_distr[6] = 4;
seg_distr[7] = 4;
seg_distr[8] = 4;
seg_distr[9] = 4;
seg_distr[10] = 1;
region_start = -10;
region_end = 1;
}
for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++)
seg_distr[i] = -1;
for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (region_end - region_start); k++) {
increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
start_index = (region_start + k + MAX_LOW_POINT) *
NUMBER_SW_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
rgb_resulted[hw_points].red = rgb_resulted[hw_points - 1].red;
rgb_resulted[hw_points].green = rgb_resulted[hw_points - 1].green;
rgb_resulted[hw_points].blue = rgb_resulted[hw_points - 1].blue;
// All 3 color channels have same x
corner_points[0].red.x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_start));
corner_points[0].green.x = corner_points[0].red.x;
corner_points[0].blue.x = corner_points[0].red.x;
corner_points[1].red.x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_end));
corner_points[1].green.x = corner_points[1].red.x;
corner_points[1].blue.x = corner_points[1].red.x;
corner_points[0].red.y = rgb_resulted[0].red;
corner_points[0].green.y = rgb_resulted[0].green;
corner_points[0].blue.y = rgb_resulted[0].blue;
corner_points[0].red.slope = dc_fixpt_div(corner_points[0].red.y,
corner_points[0].red.x);
corner_points[0].green.slope = dc_fixpt_div(corner_points[0].green.y,
corner_points[0].green.x);
corner_points[0].blue.slope = dc_fixpt_div(corner_points[0].blue.y,
corner_points[0].blue.x);
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
corner_points[1].red.y = rgb_resulted[hw_points - 1].red;
corner_points[1].green.y = rgb_resulted[hw_points - 1].green;
corner_points[1].blue.y = rgb_resulted[hw_points - 1].blue;
corner_points[1].red.slope = dc_fixpt_zero;
corner_points[1].green.slope = dc_fixpt_zero;
corner_points[1].blue.slope = dc_fixpt_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value =
dc_fixpt_from_int(125);
corner_points[1].red.slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, corner_points[1].red.y),
dc_fixpt_sub(end_value, corner_points[1].red.x));
corner_points[1].green.slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, corner_points[1].green.y),
dc_fixpt_sub(end_value, corner_points[1].green.x));
corner_points[1].blue.slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, corner_points[1].blue.y),
dc_fixpt_sub(end_value, corner_points[1].blue.x));
}
lut_params->hw_points_num = hw_points;
k = 0;
for (i = 1; i < MAX_REGIONS_NUMBER; i++) {
if (seg_distr[k] != -1) {
lut_params->arr_curve_points[k].segments_num =
seg_distr[k];
lut_params->arr_curve_points[i].offset =
lut_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
}
k++;
}
if (seg_distr[k] != -1)
lut_params->arr_curve_points[k].segments_num = seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
if (fixpoint == true) {
rgb->delta_red_reg = dc_fixpt_clamp_u0d10(rgb->delta_red);
rgb->delta_green_reg = dc_fixpt_clamp_u0d10(rgb->delta_green);
rgb->delta_blue_reg = dc_fixpt_clamp_u0d10(rgb->delta_blue);
rgb->red_reg = dc_fixpt_clamp_u0d14(rgb->red);
rgb->green_reg = dc_fixpt_clamp_u0d14(rgb->green);
rgb->blue_reg = dc_fixpt_clamp_u0d14(rgb->blue);
}
++rgb_plus_1;
++rgb;
++i;
}
cm_helper_convert_to_custom_float(rgb_resulted,
lut_params->corner_points,
hw_points, fixpoint);
return true;
}
#define NUM_DEGAMMA_REGIONS 12
bool cm_helper_translate_curve_to_degamma_hw_format(
const struct dc_transfer_func *output_tf,
struct pwl_params *lut_params)
{
struct curve_points3 *corner_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
int32_t region_start, region_end;
int32_t i;
uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;
if (output_tf == NULL || lut_params == NULL || output_tf->type == TF_TYPE_BYPASS)
return false;
PERF_TRACE_CTX(output_tf->ctx);
corner_points = lut_params->corner_points;
rgb_resulted = lut_params->rgb_resulted;
hw_points = 0;
memset(lut_params, 0, sizeof(struct pwl_params));
memset(seg_distr, 0, sizeof(seg_distr));
region_start = -NUM_DEGAMMA_REGIONS;
region_end = 0;
for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++)
seg_distr[i] = -1;
/* 12 segments
* segments are from 2^-12 to 0
*/
for (i = 0; i < NUM_DEGAMMA_REGIONS ; i++)
seg_distr[i] = 4;
for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (region_end - region_start); k++) {
increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
start_index = (region_start + k + MAX_LOW_POINT) *
NUMBER_SW_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
rgb_resulted[hw_points].red = rgb_resulted[hw_points - 1].red;
rgb_resulted[hw_points].green = rgb_resulted[hw_points - 1].green;
rgb_resulted[hw_points].blue = rgb_resulted[hw_points - 1].blue;
corner_points[0].red.x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_start));
corner_points[0].green.x = corner_points[0].red.x;
corner_points[0].blue.x = corner_points[0].red.x;
corner_points[1].red.x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_end));
corner_points[1].green.x = corner_points[1].red.x;
corner_points[1].blue.x = corner_points[1].red.x;
corner_points[0].red.y = rgb_resulted[0].red;
corner_points[0].green.y = rgb_resulted[0].green;
corner_points[0].blue.y = rgb_resulted[0].blue;
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
corner_points[1].red.y = rgb_resulted[hw_points - 1].red;
corner_points[1].green.y = rgb_resulted[hw_points - 1].green;
corner_points[1].blue.y = rgb_resulted[hw_points - 1].blue;
corner_points[1].red.slope = dc_fixpt_zero;
corner_points[1].green.slope = dc_fixpt_zero;
corner_points[1].blue.slope = dc_fixpt_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value =
dc_fixpt_from_int(125);
corner_points[1].red.slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, corner_points[1].red.y),
dc_fixpt_sub(end_value, corner_points[1].red.x));
corner_points[1].green.slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, corner_points[1].green.y),
dc_fixpt_sub(end_value, corner_points[1].green.x));
corner_points[1].blue.slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, corner_points[1].blue.y),
dc_fixpt_sub(end_value, corner_points[1].blue.x));
}
lut_params->hw_points_num = hw_points;
k = 0;
for (i = 1; i < MAX_REGIONS_NUMBER; i++) {
if (seg_distr[k] != -1) {
lut_params->arr_curve_points[k].segments_num =
seg_distr[k];
lut_params->arr_curve_points[i].offset =
lut_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
}
k++;
}
if (seg_distr[k] != -1)
lut_params->arr_curve_points[k].segments_num = seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
++rgb_plus_1;
++rgb;
++i;
}
cm_helper_convert_to_custom_float(rgb_resulted,
lut_params->corner_points,
hw_points, false);
return true;
}