Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*
 * Copyright 2013 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */
#define gk104_clk(p) container_of((p), struct gk104_clk, base)
#include "priv.h"
#include "pll.h"

#include <subdev/timer.h>
#include <subdev/bios.h>
#include <subdev/bios/pll.h>

struct gk104_clk_info {
	u32 freq;
	u32 ssel;
	u32 mdiv;
	u32 dsrc;
	u32 ddiv;
	u32 coef;
};

struct gk104_clk {
	struct nvkm_clk base;
	struct gk104_clk_info eng[16];
};

static u32 read_div(struct gk104_clk *, int, u32, u32);
static u32 read_pll(struct gk104_clk *, u32);

static u32
read_vco(struct gk104_clk *clk, u32 dsrc)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 ssrc = nvkm_rd32(device, dsrc);
	if (!(ssrc & 0x00000100))
		return read_pll(clk, 0x00e800);
	return read_pll(clk, 0x00e820);
}

static u32
read_pll(struct gk104_clk *clk, u32 pll)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 ctrl = nvkm_rd32(device, pll + 0x00);
	u32 coef = nvkm_rd32(device, pll + 0x04);
	u32 P = (coef & 0x003f0000) >> 16;
	u32 N = (coef & 0x0000ff00) >> 8;
	u32 M = (coef & 0x000000ff) >> 0;
	u32 sclk;
	u16 fN = 0xf000;

	if (!(ctrl & 0x00000001))
		return 0;

	switch (pll) {
	case 0x00e800:
	case 0x00e820:
		sclk = device->crystal;
		P = 1;
		break;
	case 0x132000:
		sclk = read_pll(clk, 0x132020);
		P = (coef & 0x10000000) ? 2 : 1;
		break;
	case 0x132020:
		sclk = read_div(clk, 0, 0x137320, 0x137330);
		fN   = nvkm_rd32(device, pll + 0x10) >> 16;
		break;
	case 0x137000:
	case 0x137020:
	case 0x137040:
	case 0x1370e0:
		sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
		break;
	default:
		return 0;
	}

	if (P == 0)
		P = 1;

	sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
	return sclk / (M * P);
}

static u32
read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
	u32 sctl = nvkm_rd32(device, dctl + (doff * 4));

	switch (ssrc & 0x00000003) {
	case 0:
		if ((ssrc & 0x00030000) != 0x00030000)
			return device->crystal;
		return 108000;
	case 2:
		return 100000;
	case 3:
		if (sctl & 0x80000000) {
			u32 sclk = read_vco(clk, dsrc + (doff * 4));
			u32 sdiv = (sctl & 0x0000003f) + 2;
			return (sclk * 2) / sdiv;
		}

		return read_vco(clk, dsrc + (doff * 4));
	default:
		return 0;
	}
}

static u32
read_mem(struct gk104_clk *clk)
{
	struct nvkm_device *device = clk->base.subdev.device;
	switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) {
	case 1: return read_pll(clk, 0x132020);
	case 2: return read_pll(clk, 0x132000);
	default:
		return 0;
	}
}

static u32
read_clk(struct gk104_clk *clk, int idx)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
	u32 sclk, sdiv;

	if (idx < 7) {
		u32 ssel = nvkm_rd32(device, 0x137100);
		if (ssel & (1 << idx)) {
			sclk = read_pll(clk, 0x137000 + (idx * 0x20));
			sdiv = 1;
		} else {
			sclk = read_div(clk, idx, 0x137160, 0x1371d0);
			sdiv = 0;
		}
	} else {
		u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04));
		if ((ssrc & 0x00000003) == 0x00000003) {
			sclk = read_div(clk, idx, 0x137160, 0x1371d0);
			if (ssrc & 0x00000100) {
				if (ssrc & 0x40000000)
					sclk = read_pll(clk, 0x1370e0);
				sdiv = 1;
			} else {
				sdiv = 0;
			}
		} else {
			sclk = read_div(clk, idx, 0x137160, 0x1371d0);
			sdiv = 0;
		}
	}

	if (sctl & 0x80000000) {
		if (sdiv)
			sdiv = ((sctl & 0x00003f00) >> 8) + 2;
		else
			sdiv = ((sctl & 0x0000003f) >> 0) + 2;
		return (sclk * 2) / sdiv;
	}

	return sclk;
}

static int
gk104_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
{
	struct gk104_clk *clk = gk104_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;

	switch (src) {
	case nv_clk_src_crystal:
		return device->crystal;
	case nv_clk_src_href:
		return 100000;
	case nv_clk_src_mem:
		return read_mem(clk);
	case nv_clk_src_gpc:
		return read_clk(clk, 0x00);
	case nv_clk_src_rop:
		return read_clk(clk, 0x01);
	case nv_clk_src_hubk07:
		return read_clk(clk, 0x02);
	case nv_clk_src_hubk06:
		return read_clk(clk, 0x07);
	case nv_clk_src_hubk01:
		return read_clk(clk, 0x08);
	case nv_clk_src_pmu:
		return read_clk(clk, 0x0c);
	case nv_clk_src_vdec:
		return read_clk(clk, 0x0e);
	default:
		nvkm_error(subdev, "invalid clock source %d\n", src);
		return -EINVAL;
	}
}

static u32
calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
{
	u32 div = min((ref * 2) / freq, (u32)65);
	if (div < 2)
		div = 2;

	*ddiv = div - 2;
	return (ref * 2) / div;
}

static u32
calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
{
	u32 sclk;

	/* use one of the fixed frequencies if possible */
	*ddiv = 0x00000000;
	switch (freq) {
	case  27000:
	case 108000:
		*dsrc = 0x00000000;
		if (freq == 108000)
			*dsrc |= 0x00030000;
		return freq;
	case 100000:
		*dsrc = 0x00000002;
		return freq;
	default:
		*dsrc = 0x00000003;
		break;
	}

	/* otherwise, calculate the closest divider */
	sclk = read_vco(clk, 0x137160 + (idx * 4));
	if (idx < 7)
		sclk = calc_div(clk, idx, sclk, freq, ddiv);
	return sclk;
}

static u32
calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_bios *bios = subdev->device->bios;
	struct nvbios_pll limits;
	int N, M, P, ret;

	ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
	if (ret)
		return 0;

	limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
	if (!limits.refclk)
		return 0;

	ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
	if (ret <= 0)
		return 0;

	*coef = (P << 16) | (N << 8) | M;
	return ret;
}

static int
calc_clk(struct gk104_clk *clk,
	 struct nvkm_cstate *cstate, int idx, int dom)
{
	struct gk104_clk_info *info = &clk->eng[idx];
	u32 freq = cstate->domain[dom];
	u32 src0, div0, div1D, div1P = 0;
	u32 clk0, clk1 = 0;

	/* invalid clock domain */
	if (!freq)
		return 0;

	/* first possible path, using only dividers */
	clk0 = calc_src(clk, idx, freq, &src0, &div0);
	clk0 = calc_div(clk, idx, clk0, freq, &div1D);

	/* see if we can get any closer using PLLs */
	if (clk0 != freq && (0x0000ff87 & (1 << idx))) {
		if (idx <= 7)
			clk1 = calc_pll(clk, idx, freq, &info->coef);
		else
			clk1 = cstate->domain[nv_clk_src_hubk06];
		clk1 = calc_div(clk, idx, clk1, freq, &div1P);
	}

	/* select the method which gets closest to target freq */
	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
		info->dsrc = src0;
		if (div0) {
			info->ddiv |= 0x80000000;
			info->ddiv |= div0;
		}
		if (div1D) {
			info->mdiv |= 0x80000000;
			info->mdiv |= div1D;
		}
		info->ssel = 0;
		info->freq = clk0;
	} else {
		if (div1P) {
			info->mdiv |= 0x80000000;
			info->mdiv |= div1P << 8;
		}
		info->ssel = (1 << idx);
		info->dsrc = 0x40000100;
		info->freq = clk1;
	}

	return 0;
}

static int
gk104_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
	struct gk104_clk *clk = gk104_clk(base);
	int ret;

	if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
	    (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
	    (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
	    (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
	    (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
	    (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
	    (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
		return ret;

	return 0;
}

static void
gk104_clk_prog_0(struct gk104_clk *clk, int idx)
{
	struct gk104_clk_info *info = &clk->eng[idx];
	struct nvkm_device *device = clk->base.subdev.device;
	if (!info->ssel) {
		nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv);
		nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
	}
}

static void
gk104_clk_prog_1_0(struct gk104_clk *clk, int idx)
{
	struct nvkm_device *device = clk->base.subdev.device;
	nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
	nvkm_msec(device, 2000,
		if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
			break;
	);
}

static void
gk104_clk_prog_1_1(struct gk104_clk *clk, int idx)
{
	struct nvkm_device *device = clk->base.subdev.device;
	nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000);
}

static void
gk104_clk_prog_2(struct gk104_clk *clk, int idx)
{
	struct gk104_clk_info *info = &clk->eng[idx];
	struct nvkm_device *device = clk->base.subdev.device;
	const u32 addr = 0x137000 + (idx * 0x20);
	nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
	nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
	if (info->coef) {
		nvkm_wr32(device, addr + 0x04, info->coef);
		nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);

		/* Test PLL lock */
		nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
		nvkm_msec(device, 2000,
			if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
				break;
		);
		nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);

		/* Enable sync mode */
		nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
	}
}

static void
gk104_clk_prog_3(struct gk104_clk *clk, int idx)
{
	struct gk104_clk_info *info = &clk->eng[idx];
	struct nvkm_device *device = clk->base.subdev.device;
	if (info->ssel)
		nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv);
	else
		nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv);
}

static void
gk104_clk_prog_4_0(struct gk104_clk *clk, int idx)
{
	struct gk104_clk_info *info = &clk->eng[idx];
	struct nvkm_device *device = clk->base.subdev.device;
	if (info->ssel) {
		nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
		nvkm_msec(device, 2000,
			u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
			if (tmp == info->ssel)
				break;
		);
	}
}

static void
gk104_clk_prog_4_1(struct gk104_clk *clk, int idx)
{
	struct gk104_clk_info *info = &clk->eng[idx];
	struct nvkm_device *device = clk->base.subdev.device;
	if (info->ssel) {
		nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000);
		nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100);
	}
}

static int
gk104_clk_prog(struct nvkm_clk *base)
{
	struct gk104_clk *clk = gk104_clk(base);
	struct {
		u32 mask;
		void (*exec)(struct gk104_clk *, int);
	} stage[] = {
		{ 0x007f, gk104_clk_prog_0   }, /* div programming */
		{ 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
		{ 0xff80, gk104_clk_prog_1_1 },
		{ 0x00ff, gk104_clk_prog_2   }, /* (maybe) program pll */
		{ 0xff80, gk104_clk_prog_3   }, /* final divider */
		{ 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */
		{ 0xff80, gk104_clk_prog_4_1 },
	};
	int i, j;

	for (i = 0; i < ARRAY_SIZE(stage); i++) {
		for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
			if (!(stage[i].mask & (1 << j)))
				continue;
			if (!clk->eng[j].freq)
				continue;
			stage[i].exec(clk, j);
		}
	}

	return 0;
}

static void
gk104_clk_tidy(struct nvkm_clk *base)
{
	struct gk104_clk *clk = gk104_clk(base);
	memset(clk->eng, 0x00, sizeof(clk->eng));
}

static const struct nvkm_clk_func
gk104_clk = {
	.read = gk104_clk_read,
	.calc = gk104_clk_calc,
	.prog = gk104_clk_prog,
	.tidy = gk104_clk_tidy,
	.domains = {
		{ nv_clk_src_crystal, 0xff },
		{ nv_clk_src_href   , 0xff },
		{ nv_clk_src_gpc    , 0x00, NVKM_CLK_DOM_FLAG_CORE | NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
		{ nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
		{ nv_clk_src_rop    , 0x02, NVKM_CLK_DOM_FLAG_CORE },
		{ nv_clk_src_mem    , 0x03, 0, "memory", 500 },
		{ nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
		{ nv_clk_src_hubk01 , 0x05 },
		{ nv_clk_src_vdec   , 0x06 },
		{ nv_clk_src_pmu    , 0x07 },
		{ nv_clk_src_max }
	}
};

int
gk104_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
	struct gk104_clk *clk;

	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
		return -ENOMEM;
	*pclk = &clk->base;

	return nvkm_clk_ctor(&gk104_clk, device, index, true, &clk->base);
}