Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Analog devices AD5360, AD5361, AD5362, AD5363, AD5370, AD5371, AD5373
 * multi-channel Digital to Analog Converters driver
 *
 * Copyright 2011 Analog Devices Inc.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>

#define AD5360_CMD(x)				((x) << 22)
#define AD5360_ADDR(x)				((x) << 16)

#define AD5360_READBACK_TYPE(x)			((x) << 13)
#define AD5360_READBACK_ADDR(x)			((x) << 7)

#define AD5360_CHAN_ADDR(chan)			((chan) + 0x8)

#define AD5360_CMD_WRITE_DATA			0x3
#define AD5360_CMD_WRITE_OFFSET			0x2
#define AD5360_CMD_WRITE_GAIN			0x1
#define AD5360_CMD_SPECIAL_FUNCTION		0x0

/* Special function register addresses */
#define AD5360_REG_SF_NOP			0x0
#define AD5360_REG_SF_CTRL			0x1
#define AD5360_REG_SF_OFS(x)			(0x2 + (x))
#define AD5360_REG_SF_READBACK			0x5

#define AD5360_SF_CTRL_PWR_DOWN			BIT(0)

#define AD5360_READBACK_X1A			0x0
#define AD5360_READBACK_X1B			0x1
#define AD5360_READBACK_OFFSET			0x2
#define AD5360_READBACK_GAIN			0x3
#define AD5360_READBACK_SF			0x4


/**
 * struct ad5360_chip_info - chip specific information
 * @channel_template:	channel specification template
 * @num_channels:	number of channels
 * @channels_per_group:	number of channels per group
 * @num_vrefs:		number of vref supplies for the chip
*/

struct ad5360_chip_info {
	struct iio_chan_spec	channel_template;
	unsigned int		num_channels;
	unsigned int		channels_per_group;
	unsigned int		num_vrefs;
};

/**
 * struct ad5360_state - driver instance specific data
 * @spi:		spi_device
 * @chip_info:		chip model specific constants, available modes etc
 * @vref_reg:		vref supply regulators
 * @ctrl:		control register cache
 * @data:		spi transfer buffers
 */

struct ad5360_state {
	struct spi_device		*spi;
	const struct ad5360_chip_info	*chip_info;
	struct regulator_bulk_data	vref_reg[3];
	unsigned int			ctrl;

	/*
	 * DMA (thus cache coherency maintenance) requires the
	 * transfer buffers to live in their own cache lines.
	 */
	union {
		__be32 d32;
		u8 d8[4];
	} data[2] ____cacheline_aligned;
};

enum ad5360_type {
	ID_AD5360,
	ID_AD5361,
	ID_AD5362,
	ID_AD5363,
	ID_AD5370,
	ID_AD5371,
	ID_AD5372,
	ID_AD5373,
};

#define AD5360_CHANNEL(bits) {					\
	.type = IIO_VOLTAGE,					\
	.indexed = 1,						\
	.output = 1,						\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
		BIT(IIO_CHAN_INFO_SCALE) |				\
		BIT(IIO_CHAN_INFO_OFFSET) |				\
		BIT(IIO_CHAN_INFO_CALIBSCALE) |			\
		BIT(IIO_CHAN_INFO_CALIBBIAS),			\
	.scan_type = {						\
		.sign = 'u',					\
		.realbits = (bits),				\
		.storagebits = 16,				\
		.shift = 16 - (bits),				\
	},							\
}

static const struct ad5360_chip_info ad5360_chip_info_tbl[] = {
	[ID_AD5360] = {
		.channel_template = AD5360_CHANNEL(16),
		.num_channels = 16,
		.channels_per_group = 8,
		.num_vrefs = 2,
	},
	[ID_AD5361] = {
		.channel_template = AD5360_CHANNEL(14),
		.num_channels = 16,
		.channels_per_group = 8,
		.num_vrefs = 2,
	},
	[ID_AD5362] = {
		.channel_template = AD5360_CHANNEL(16),
		.num_channels = 8,
		.channels_per_group = 4,
		.num_vrefs = 2,
	},
	[ID_AD5363] = {
		.channel_template = AD5360_CHANNEL(14),
		.num_channels = 8,
		.channels_per_group = 4,
		.num_vrefs = 2,
	},
	[ID_AD5370] = {
		.channel_template = AD5360_CHANNEL(16),
		.num_channels = 40,
		.channels_per_group = 8,
		.num_vrefs = 2,
	},
	[ID_AD5371] = {
		.channel_template = AD5360_CHANNEL(14),
		.num_channels = 40,
		.channels_per_group = 8,
		.num_vrefs = 3,
	},
	[ID_AD5372] = {
		.channel_template = AD5360_CHANNEL(16),
		.num_channels = 32,
		.channels_per_group = 8,
		.num_vrefs = 2,
	},
	[ID_AD5373] = {
		.channel_template = AD5360_CHANNEL(14),
		.num_channels = 32,
		.channels_per_group = 8,
		.num_vrefs = 2,
	},
};

static unsigned int ad5360_get_channel_vref_index(struct ad5360_state *st,
	unsigned int channel)
{
	unsigned int i;

	/* The first groups have their own vref, while the remaining groups
	 * share the last vref */
	i = channel / st->chip_info->channels_per_group;
	if (i >= st->chip_info->num_vrefs)
		i = st->chip_info->num_vrefs - 1;

	return i;
}

static int ad5360_get_channel_vref(struct ad5360_state *st,
	unsigned int channel)
{
	unsigned int i = ad5360_get_channel_vref_index(st, channel);

	return regulator_get_voltage(st->vref_reg[i].consumer);
}


static int ad5360_write_unlocked(struct iio_dev *indio_dev,
	unsigned int cmd, unsigned int addr, unsigned int val,
	unsigned int shift)
{
	struct ad5360_state *st = iio_priv(indio_dev);

	val <<= shift;
	val |= AD5360_CMD(cmd) | AD5360_ADDR(addr);
	st->data[0].d32 = cpu_to_be32(val);

	return spi_write(st->spi, &st->data[0].d8[1], 3);
}

static int ad5360_write(struct iio_dev *indio_dev, unsigned int cmd,
	unsigned int addr, unsigned int val, unsigned int shift)
{
	int ret;

	mutex_lock(&indio_dev->mlock);
	ret = ad5360_write_unlocked(indio_dev, cmd, addr, val, shift);
	mutex_unlock(&indio_dev->mlock);

	return ret;
}

static int ad5360_read(struct iio_dev *indio_dev, unsigned int type,
	unsigned int addr)
{
	struct ad5360_state *st = iio_priv(indio_dev);
	int ret;
	struct spi_transfer t[] = {
		{
			.tx_buf = &st->data[0].d8[1],
			.len = 3,
			.cs_change = 1,
		}, {
			.rx_buf = &st->data[1].d8[1],
			.len = 3,
		},
	};

	mutex_lock(&indio_dev->mlock);

	st->data[0].d32 = cpu_to_be32(AD5360_CMD(AD5360_CMD_SPECIAL_FUNCTION) |
		AD5360_ADDR(AD5360_REG_SF_READBACK) |
		AD5360_READBACK_TYPE(type) |
		AD5360_READBACK_ADDR(addr));

	ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
	if (ret >= 0)
		ret = be32_to_cpu(st->data[1].d32) & 0xffff;

	mutex_unlock(&indio_dev->mlock);

	return ret;
}

static ssize_t ad5360_read_dac_powerdown(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad5360_state *st = iio_priv(indio_dev);

	return sprintf(buf, "%d\n", (bool)(st->ctrl & AD5360_SF_CTRL_PWR_DOWN));
}

static int ad5360_update_ctrl(struct iio_dev *indio_dev, unsigned int set,
	unsigned int clr)
{
	struct ad5360_state *st = iio_priv(indio_dev);
	unsigned int ret;

	mutex_lock(&indio_dev->mlock);

	st->ctrl |= set;
	st->ctrl &= ~clr;

	ret = ad5360_write_unlocked(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
			AD5360_REG_SF_CTRL, st->ctrl, 0);

	mutex_unlock(&indio_dev->mlock);

	return ret;
}

static ssize_t ad5360_write_dac_powerdown(struct device *dev,
	struct device_attribute *attr, const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	bool pwr_down;
	int ret;

	ret = strtobool(buf, &pwr_down);
	if (ret)
		return ret;

	if (pwr_down)
		ret = ad5360_update_ctrl(indio_dev, AD5360_SF_CTRL_PWR_DOWN, 0);
	else
		ret = ad5360_update_ctrl(indio_dev, 0, AD5360_SF_CTRL_PWR_DOWN);

	return ret ? ret : len;
}

static IIO_DEVICE_ATTR(out_voltage_powerdown,
			S_IRUGO | S_IWUSR,
			ad5360_read_dac_powerdown,
			ad5360_write_dac_powerdown, 0);

static struct attribute *ad5360_attributes[] = {
	&iio_dev_attr_out_voltage_powerdown.dev_attr.attr,
	NULL,
};

static const struct attribute_group ad5360_attribute_group = {
	.attrs = ad5360_attributes,
};

static int ad5360_write_raw(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       int val,
			       int val2,
			       long mask)
{
	struct ad5360_state *st = iio_priv(indio_dev);
	int max_val = (1 << chan->scan_type.realbits);
	unsigned int ofs_index;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		if (val >= max_val || val < 0)
			return -EINVAL;

		return ad5360_write(indio_dev, AD5360_CMD_WRITE_DATA,
				 chan->address, val, chan->scan_type.shift);

	case IIO_CHAN_INFO_CALIBBIAS:
		if (val >= max_val || val < 0)
			return -EINVAL;

		return ad5360_write(indio_dev, AD5360_CMD_WRITE_OFFSET,
				 chan->address, val, chan->scan_type.shift);

	case IIO_CHAN_INFO_CALIBSCALE:
		if (val >= max_val || val < 0)
			return -EINVAL;

		return ad5360_write(indio_dev, AD5360_CMD_WRITE_GAIN,
				 chan->address, val, chan->scan_type.shift);

	case IIO_CHAN_INFO_OFFSET:
		if (val <= -max_val || val > 0)
			return -EINVAL;

		val = -val;

		/* offset is supposed to have the same scale as raw, but it
		 * is always 14bits wide, so on a chip where the raw value has
		 * more bits, we need to shift offset. */
		val >>= (chan->scan_type.realbits - 14);

		/* There is one DAC offset register per vref. Changing one
		 * channels offset will also change the offset for all other
		 * channels which share the same vref supply. */
		ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
		return ad5360_write(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
				 AD5360_REG_SF_OFS(ofs_index), val, 0);
	default:
		break;
	}

	return -EINVAL;
}

static int ad5360_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long m)
{
	struct ad5360_state *st = iio_priv(indio_dev);
	unsigned int ofs_index;
	int scale_uv;
	int ret;

	switch (m) {
	case IIO_CHAN_INFO_RAW:
		ret = ad5360_read(indio_dev, AD5360_READBACK_X1A,
			chan->address);
		if (ret < 0)
			return ret;
		*val = ret >> chan->scan_type.shift;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		scale_uv = ad5360_get_channel_vref(st, chan->channel);
		if (scale_uv < 0)
			return scale_uv;

		/* vout = 4 * vref * dac_code */
		*val = scale_uv * 4 / 1000;
		*val2 = chan->scan_type.realbits;
		return IIO_VAL_FRACTIONAL_LOG2;
	case IIO_CHAN_INFO_CALIBBIAS:
		ret = ad5360_read(indio_dev, AD5360_READBACK_OFFSET,
			chan->address);
		if (ret < 0)
			return ret;
		*val = ret;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_CALIBSCALE:
		ret = ad5360_read(indio_dev, AD5360_READBACK_GAIN,
			chan->address);
		if (ret < 0)
			return ret;
		*val = ret;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_OFFSET:
		ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
		ret = ad5360_read(indio_dev, AD5360_READBACK_SF,
			AD5360_REG_SF_OFS(ofs_index));
		if (ret < 0)
			return ret;

		ret <<= (chan->scan_type.realbits - 14);
		*val = -ret;
		return IIO_VAL_INT;
	}

	return -EINVAL;
}

static const struct iio_info ad5360_info = {
	.read_raw = ad5360_read_raw,
	.write_raw = ad5360_write_raw,
	.attrs = &ad5360_attribute_group,
};

static const char * const ad5360_vref_name[] = {
	 "vref0", "vref1", "vref2"
};

static int ad5360_alloc_channels(struct iio_dev *indio_dev)
{
	struct ad5360_state *st = iio_priv(indio_dev);
	struct iio_chan_spec *channels;
	unsigned int i;

	channels = kcalloc(st->chip_info->num_channels,
			   sizeof(struct iio_chan_spec), GFP_KERNEL);

	if (!channels)
		return -ENOMEM;

	for (i = 0; i < st->chip_info->num_channels; ++i) {
		channels[i] = st->chip_info->channel_template;
		channels[i].channel = i;
		channels[i].address = AD5360_CHAN_ADDR(i);
	}

	indio_dev->channels = channels;

	return 0;
}

static int ad5360_probe(struct spi_device *spi)
{
	enum ad5360_type type = spi_get_device_id(spi)->driver_data;
	struct iio_dev *indio_dev;
	struct ad5360_state *st;
	unsigned int i;
	int ret;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (indio_dev == NULL) {
		dev_err(&spi->dev, "Failed to allocate iio device\n");
		return  -ENOMEM;
	}

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);

	st->chip_info = &ad5360_chip_info_tbl[type];
	st->spi = spi;

	indio_dev->dev.parent = &spi->dev;
	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->info = &ad5360_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->num_channels = st->chip_info->num_channels;

	ret = ad5360_alloc_channels(indio_dev);
	if (ret) {
		dev_err(&spi->dev, "Failed to allocate channel spec: %d\n", ret);
		return ret;
	}

	for (i = 0; i < st->chip_info->num_vrefs; ++i)
		st->vref_reg[i].supply = ad5360_vref_name[i];

	ret = devm_regulator_bulk_get(&st->spi->dev, st->chip_info->num_vrefs,
		st->vref_reg);
	if (ret) {
		dev_err(&spi->dev, "Failed to request vref regulators: %d\n", ret);
		goto error_free_channels;
	}

	ret = regulator_bulk_enable(st->chip_info->num_vrefs, st->vref_reg);
	if (ret) {
		dev_err(&spi->dev, "Failed to enable vref regulators: %d\n", ret);
		goto error_free_channels;
	}

	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
		goto error_disable_reg;
	}

	return 0;

error_disable_reg:
	regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
error_free_channels:
	kfree(indio_dev->channels);

	return ret;
}

static int ad5360_remove(struct spi_device *spi)
{
	struct iio_dev *indio_dev = spi_get_drvdata(spi);
	struct ad5360_state *st = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);

	kfree(indio_dev->channels);

	regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);

	return 0;
}

static const struct spi_device_id ad5360_ids[] = {
	{ "ad5360", ID_AD5360 },
	{ "ad5361", ID_AD5361 },
	{ "ad5362", ID_AD5362 },
	{ "ad5363", ID_AD5363 },
	{ "ad5370", ID_AD5370 },
	{ "ad5371", ID_AD5371 },
	{ "ad5372", ID_AD5372 },
	{ "ad5373", ID_AD5373 },
	{}
};
MODULE_DEVICE_TABLE(spi, ad5360_ids);

static struct spi_driver ad5360_driver = {
	.driver = {
		   .name = "ad5360",
	},
	.probe = ad5360_probe,
	.remove = ad5360_remove,
	.id_table = ad5360_ids,
};
module_spi_driver(ad5360_driver);

MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Analog Devices AD5360/61/62/63/70/71/72/73 DAC");
MODULE_LICENSE("GPL v2");