Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  linux/drivers/mmc/core/sdio_io.c
 *
 *  Copyright 2007-2008 Pierre Ossman
 */

#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>

#include "sdio_ops.h"
#include "core.h"
#include "card.h"
#include "host.h"

/**
 *	sdio_claim_host - exclusively claim a bus for a certain SDIO function
 *	@func: SDIO function that will be accessed
 *
 *	Claim a bus for a set of operations. The SDIO function given
 *	is used to figure out which bus is relevant.
 */
void sdio_claim_host(struct sdio_func *func)
{
	if (WARN_ON(!func))
		return;

	mmc_claim_host(func->card->host);
}
EXPORT_SYMBOL_GPL(sdio_claim_host);

/**
 *	sdio_release_host - release a bus for a certain SDIO function
 *	@func: SDIO function that was accessed
 *
 *	Release a bus, allowing others to claim the bus for their
 *	operations.
 */
void sdio_release_host(struct sdio_func *func)
{
	if (WARN_ON(!func))
		return;

	mmc_release_host(func->card->host);
}
EXPORT_SYMBOL_GPL(sdio_release_host);

/**
 *	sdio_enable_func - enables a SDIO function for usage
 *	@func: SDIO function to enable
 *
 *	Powers up and activates a SDIO function so that register
 *	access is possible.
 */
int sdio_enable_func(struct sdio_func *func)
{
	int ret;
	unsigned char reg;
	unsigned long timeout;

	if (!func)
		return -EINVAL;

	pr_debug("SDIO: Enabling device %s...\n", sdio_func_id(func));

	ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IOEx, 0, &reg);
	if (ret)
		goto err;

	reg |= 1 << func->num;

	ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IOEx, reg, NULL);
	if (ret)
		goto err;

	timeout = jiffies + msecs_to_jiffies(func->enable_timeout);

	while (1) {
		ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IORx, 0, &reg);
		if (ret)
			goto err;
		if (reg & (1 << func->num))
			break;
		ret = -ETIME;
		if (time_after(jiffies, timeout))
			goto err;
	}

	pr_debug("SDIO: Enabled device %s\n", sdio_func_id(func));

	return 0;

err:
	pr_debug("SDIO: Failed to enable device %s\n", sdio_func_id(func));
	return ret;
}
EXPORT_SYMBOL_GPL(sdio_enable_func);

/**
 *	sdio_disable_func - disable a SDIO function
 *	@func: SDIO function to disable
 *
 *	Powers down and deactivates a SDIO function. Register access
 *	to this function will fail until the function is reenabled.
 */
int sdio_disable_func(struct sdio_func *func)
{
	int ret;
	unsigned char reg;

	if (!func)
		return -EINVAL;

	pr_debug("SDIO: Disabling device %s...\n", sdio_func_id(func));

	ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IOEx, 0, &reg);
	if (ret)
		goto err;

	reg &= ~(1 << func->num);

	ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IOEx, reg, NULL);
	if (ret)
		goto err;

	pr_debug("SDIO: Disabled device %s\n", sdio_func_id(func));

	return 0;

err:
	pr_debug("SDIO: Failed to disable device %s\n", sdio_func_id(func));
	return -EIO;
}
EXPORT_SYMBOL_GPL(sdio_disable_func);

/**
 *	sdio_set_block_size - set the block size of an SDIO function
 *	@func: SDIO function to change
 *	@blksz: new block size or 0 to use the default.
 *
 *	The default block size is the largest supported by both the function
 *	and the host, with a maximum of 512 to ensure that arbitrarily sized
 *	data transfer use the optimal (least) number of commands.
 *
 *	A driver may call this to override the default block size set by the
 *	core. This can be used to set a block size greater than the maximum
 *	that reported by the card; it is the driver's responsibility to ensure
 *	it uses a value that the card supports.
 *
 *	Returns 0 on success, -EINVAL if the host does not support the
 *	requested block size, or -EIO (etc.) if one of the resultant FBR block
 *	size register writes failed.
 *
 */
int sdio_set_block_size(struct sdio_func *func, unsigned blksz)
{
	int ret;

	if (blksz > func->card->host->max_blk_size)
		return -EINVAL;

	if (blksz == 0) {
		blksz = min(func->max_blksize, func->card->host->max_blk_size);
		blksz = min(blksz, 512u);
	}

	ret = mmc_io_rw_direct(func->card, 1, 0,
		SDIO_FBR_BASE(func->num) + SDIO_FBR_BLKSIZE,
		blksz & 0xff, NULL);
	if (ret)
		return ret;
	ret = mmc_io_rw_direct(func->card, 1, 0,
		SDIO_FBR_BASE(func->num) + SDIO_FBR_BLKSIZE + 1,
		(blksz >> 8) & 0xff, NULL);
	if (ret)
		return ret;
	func->cur_blksize = blksz;
	return 0;
}
EXPORT_SYMBOL_GPL(sdio_set_block_size);

/*
 * Calculate the maximum byte mode transfer size
 */
static inline unsigned int sdio_max_byte_size(struct sdio_func *func)
{
	unsigned mval =	func->card->host->max_blk_size;

	if (mmc_blksz_for_byte_mode(func->card))
		mval = min(mval, func->cur_blksize);
	else
		mval = min(mval, func->max_blksize);

	if (mmc_card_broken_byte_mode_512(func->card))
		return min(mval, 511u);

	return min(mval, 512u); /* maximum size for byte mode */
}

/*
 * This is legacy code, which needs to be re-worked some day. Basically we need
 * to take into account the properties of the host, as to enable the SDIO func
 * driver layer to allocate optimal buffers.
 */
static inline unsigned int _sdio_align_size(unsigned int sz)
{
	/*
	 * FIXME: We don't have a system for the controller to tell
	 * the core about its problems yet, so for now we just 32-bit
	 * align the size.
	 */
	return ALIGN(sz, 4);
}

/**
 *	sdio_align_size - pads a transfer size to a more optimal value
 *	@func: SDIO function
 *	@sz: original transfer size
 *
 *	Pads the original data size with a number of extra bytes in
 *	order to avoid controller bugs and/or performance hits
 *	(e.g. some controllers revert to PIO for certain sizes).
 *
 *	If possible, it will also adjust the size so that it can be
 *	handled in just a single request.
 *
 *	Returns the improved size, which might be unmodified.
 */
unsigned int sdio_align_size(struct sdio_func *func, unsigned int sz)
{
	unsigned int orig_sz;
	unsigned int blk_sz, byte_sz;
	unsigned chunk_sz;

	orig_sz = sz;

	/*
	 * Do a first check with the controller, in case it
	 * wants to increase the size up to a point where it
	 * might need more than one block.
	 */
	sz = _sdio_align_size(sz);

	/*
	 * If we can still do this with just a byte transfer, then
	 * we're done.
	 */
	if (sz <= sdio_max_byte_size(func))
		return sz;

	if (func->card->cccr.multi_block) {
		/*
		 * Check if the transfer is already block aligned
		 */
		if ((sz % func->cur_blksize) == 0)
			return sz;

		/*
		 * Realign it so that it can be done with one request,
		 * and recheck if the controller still likes it.
		 */
		blk_sz = ((sz + func->cur_blksize - 1) /
			func->cur_blksize) * func->cur_blksize;
		blk_sz = _sdio_align_size(blk_sz);

		/*
		 * This value is only good if it is still just
		 * one request.
		 */
		if ((blk_sz % func->cur_blksize) == 0)
			return blk_sz;

		/*
		 * We failed to do one request, but at least try to
		 * pad the remainder properly.
		 */
		byte_sz = _sdio_align_size(sz % func->cur_blksize);
		if (byte_sz <= sdio_max_byte_size(func)) {
			blk_sz = sz / func->cur_blksize;
			return blk_sz * func->cur_blksize + byte_sz;
		}
	} else {
		/*
		 * We need multiple requests, so first check that the
		 * controller can handle the chunk size;
		 */
		chunk_sz = _sdio_align_size(sdio_max_byte_size(func));
		if (chunk_sz == sdio_max_byte_size(func)) {
			/*
			 * Fix up the size of the remainder (if any)
			 */
			byte_sz = orig_sz % chunk_sz;
			if (byte_sz) {
				byte_sz = _sdio_align_size(byte_sz);
			}

			return (orig_sz / chunk_sz) * chunk_sz + byte_sz;
		}
	}

	/*
	 * The controller is simply incapable of transferring the size
	 * we want in decent manner, so just return the original size.
	 */
	return orig_sz;
}
EXPORT_SYMBOL_GPL(sdio_align_size);

/* Split an arbitrarily sized data transfer into several
 * IO_RW_EXTENDED commands. */
static int sdio_io_rw_ext_helper(struct sdio_func *func, int write,
	unsigned addr, int incr_addr, u8 *buf, unsigned size)
{
	unsigned remainder = size;
	unsigned max_blocks;
	int ret;

	if (!func || (func->num > 7))
		return -EINVAL;

	/* Do the bulk of the transfer using block mode (if supported). */
	if (func->card->cccr.multi_block && (size > sdio_max_byte_size(func))) {
		/* Blocks per command is limited by host count, host transfer
		 * size and the maximum for IO_RW_EXTENDED of 511 blocks. */
		max_blocks = min(func->card->host->max_blk_count, 511u);

		while (remainder >= func->cur_blksize) {
			unsigned blocks;

			blocks = remainder / func->cur_blksize;
			if (blocks > max_blocks)
				blocks = max_blocks;
			size = blocks * func->cur_blksize;

			ret = mmc_io_rw_extended(func->card, write,
				func->num, addr, incr_addr, buf,
				blocks, func->cur_blksize);
			if (ret)
				return ret;

			remainder -= size;
			buf += size;
			if (incr_addr)
				addr += size;
		}
	}

	/* Write the remainder using byte mode. */
	while (remainder > 0) {
		size = min(remainder, sdio_max_byte_size(func));

		/* Indicate byte mode by setting "blocks" = 0 */
		ret = mmc_io_rw_extended(func->card, write, func->num, addr,
			 incr_addr, buf, 0, size);
		if (ret)
			return ret;

		remainder -= size;
		buf += size;
		if (incr_addr)
			addr += size;
	}
	return 0;
}

/**
 *	sdio_readb - read a single byte from a SDIO function
 *	@func: SDIO function to access
 *	@addr: address to read
 *	@err_ret: optional status value from transfer
 *
 *	Reads a single byte from the address space of a given SDIO
 *	function. If there is a problem reading the address, 0xff
 *	is returned and @err_ret will contain the error code.
 */
u8 sdio_readb(struct sdio_func *func, unsigned int addr, int *err_ret)
{
	int ret;
	u8 val;

	if (!func) {
		if (err_ret)
			*err_ret = -EINVAL;
		return 0xFF;
	}

	ret = mmc_io_rw_direct(func->card, 0, func->num, addr, 0, &val);
	if (err_ret)
		*err_ret = ret;
	if (ret)
		return 0xFF;

	return val;
}
EXPORT_SYMBOL_GPL(sdio_readb);

/**
 *	sdio_writeb - write a single byte to a SDIO function
 *	@func: SDIO function to access
 *	@b: byte to write
 *	@addr: address to write to
 *	@err_ret: optional status value from transfer
 *
 *	Writes a single byte to the address space of a given SDIO
 *	function. @err_ret will contain the status of the actual
 *	transfer.
 */
void sdio_writeb(struct sdio_func *func, u8 b, unsigned int addr, int *err_ret)
{
	int ret;

	if (!func) {
		if (err_ret)
			*err_ret = -EINVAL;
		return;
	}

	ret = mmc_io_rw_direct(func->card, 1, func->num, addr, b, NULL);
	if (err_ret)
		*err_ret = ret;
}
EXPORT_SYMBOL_GPL(sdio_writeb);

/**
 *	sdio_writeb_readb - write and read a byte from SDIO function
 *	@func: SDIO function to access
 *	@write_byte: byte to write
 *	@addr: address to write to
 *	@err_ret: optional status value from transfer
 *
 *	Performs a RAW (Read after Write) operation as defined by SDIO spec -
 *	single byte is written to address space of a given SDIO function and
 *	response is read back from the same address, both using single request.
 *	If there is a problem with the operation, 0xff is returned and
 *	@err_ret will contain the error code.
 */
u8 sdio_writeb_readb(struct sdio_func *func, u8 write_byte,
	unsigned int addr, int *err_ret)
{
	int ret;
	u8 val;

	ret = mmc_io_rw_direct(func->card, 1, func->num, addr,
			write_byte, &val);
	if (err_ret)
		*err_ret = ret;
	if (ret)
		return 0xff;

	return val;
}
EXPORT_SYMBOL_GPL(sdio_writeb_readb);

/**
 *	sdio_memcpy_fromio - read a chunk of memory from a SDIO function
 *	@func: SDIO function to access
 *	@dst: buffer to store the data
 *	@addr: address to begin reading from
 *	@count: number of bytes to read
 *
 *	Reads from the address space of a given SDIO function. Return
 *	value indicates if the transfer succeeded or not.
 */
int sdio_memcpy_fromio(struct sdio_func *func, void *dst,
	unsigned int addr, int count)
{
	return sdio_io_rw_ext_helper(func, 0, addr, 1, dst, count);
}
EXPORT_SYMBOL_GPL(sdio_memcpy_fromio);

/**
 *	sdio_memcpy_toio - write a chunk of memory to a SDIO function
 *	@func: SDIO function to access
 *	@addr: address to start writing to
 *	@src: buffer that contains the data to write
 *	@count: number of bytes to write
 *
 *	Writes to the address space of a given SDIO function. Return
 *	value indicates if the transfer succeeded or not.
 */
int sdio_memcpy_toio(struct sdio_func *func, unsigned int addr,
	void *src, int count)
{
	return sdio_io_rw_ext_helper(func, 1, addr, 1, src, count);
}
EXPORT_SYMBOL_GPL(sdio_memcpy_toio);

/**
 *	sdio_readsb - read from a FIFO on a SDIO function
 *	@func: SDIO function to access
 *	@dst: buffer to store the data
 *	@addr: address of (single byte) FIFO
 *	@count: number of bytes to read
 *
 *	Reads from the specified FIFO of a given SDIO function. Return
 *	value indicates if the transfer succeeded or not.
 */
int sdio_readsb(struct sdio_func *func, void *dst, unsigned int addr,
	int count)
{
	return sdio_io_rw_ext_helper(func, 0, addr, 0, dst, count);
}
EXPORT_SYMBOL_GPL(sdio_readsb);

/**
 *	sdio_writesb - write to a FIFO of a SDIO function
 *	@func: SDIO function to access
 *	@addr: address of (single byte) FIFO
 *	@src: buffer that contains the data to write
 *	@count: number of bytes to write
 *
 *	Writes to the specified FIFO of a given SDIO function. Return
 *	value indicates if the transfer succeeded or not.
 */
int sdio_writesb(struct sdio_func *func, unsigned int addr, void *src,
	int count)
{
	return sdio_io_rw_ext_helper(func, 1, addr, 0, src, count);
}
EXPORT_SYMBOL_GPL(sdio_writesb);

/**
 *	sdio_readw - read a 16 bit integer from a SDIO function
 *	@func: SDIO function to access
 *	@addr: address to read
 *	@err_ret: optional status value from transfer
 *
 *	Reads a 16 bit integer from the address space of a given SDIO
 *	function. If there is a problem reading the address, 0xffff
 *	is returned and @err_ret will contain the error code.
 */
u16 sdio_readw(struct sdio_func *func, unsigned int addr, int *err_ret)
{
	int ret;

	ret = sdio_memcpy_fromio(func, func->tmpbuf, addr, 2);
	if (err_ret)
		*err_ret = ret;
	if (ret)
		return 0xFFFF;

	return le16_to_cpup((__le16 *)func->tmpbuf);
}
EXPORT_SYMBOL_GPL(sdio_readw);

/**
 *	sdio_writew - write a 16 bit integer to a SDIO function
 *	@func: SDIO function to access
 *	@b: integer to write
 *	@addr: address to write to
 *	@err_ret: optional status value from transfer
 *
 *	Writes a 16 bit integer to the address space of a given SDIO
 *	function. @err_ret will contain the status of the actual
 *	transfer.
 */
void sdio_writew(struct sdio_func *func, u16 b, unsigned int addr, int *err_ret)
{
	int ret;

	*(__le16 *)func->tmpbuf = cpu_to_le16(b);

	ret = sdio_memcpy_toio(func, addr, func->tmpbuf, 2);
	if (err_ret)
		*err_ret = ret;
}
EXPORT_SYMBOL_GPL(sdio_writew);

/**
 *	sdio_readl - read a 32 bit integer from a SDIO function
 *	@func: SDIO function to access
 *	@addr: address to read
 *	@err_ret: optional status value from transfer
 *
 *	Reads a 32 bit integer from the address space of a given SDIO
 *	function. If there is a problem reading the address,
 *	0xffffffff is returned and @err_ret will contain the error
 *	code.
 */
u32 sdio_readl(struct sdio_func *func, unsigned int addr, int *err_ret)
{
	int ret;

	ret = sdio_memcpy_fromio(func, func->tmpbuf, addr, 4);
	if (err_ret)
		*err_ret = ret;
	if (ret)
		return 0xFFFFFFFF;

	return le32_to_cpup((__le32 *)func->tmpbuf);
}
EXPORT_SYMBOL_GPL(sdio_readl);

/**
 *	sdio_writel - write a 32 bit integer to a SDIO function
 *	@func: SDIO function to access
 *	@b: integer to write
 *	@addr: address to write to
 *	@err_ret: optional status value from transfer
 *
 *	Writes a 32 bit integer to the address space of a given SDIO
 *	function. @err_ret will contain the status of the actual
 *	transfer.
 */
void sdio_writel(struct sdio_func *func, u32 b, unsigned int addr, int *err_ret)
{
	int ret;

	*(__le32 *)func->tmpbuf = cpu_to_le32(b);

	ret = sdio_memcpy_toio(func, addr, func->tmpbuf, 4);
	if (err_ret)
		*err_ret = ret;
}
EXPORT_SYMBOL_GPL(sdio_writel);

/**
 *	sdio_f0_readb - read a single byte from SDIO function 0
 *	@func: an SDIO function of the card
 *	@addr: address to read
 *	@err_ret: optional status value from transfer
 *
 *	Reads a single byte from the address space of SDIO function 0.
 *	If there is a problem reading the address, 0xff is returned
 *	and @err_ret will contain the error code.
 */
unsigned char sdio_f0_readb(struct sdio_func *func, unsigned int addr,
	int *err_ret)
{
	int ret;
	unsigned char val;

	if (!func) {
		if (err_ret)
			*err_ret = -EINVAL;
		return 0xFF;
	}

	ret = mmc_io_rw_direct(func->card, 0, 0, addr, 0, &val);
	if (err_ret)
		*err_ret = ret;
	if (ret)
		return 0xFF;

	return val;
}
EXPORT_SYMBOL_GPL(sdio_f0_readb);

/**
 *	sdio_f0_writeb - write a single byte to SDIO function 0
 *	@func: an SDIO function of the card
 *	@b: byte to write
 *	@addr: address to write to
 *	@err_ret: optional status value from transfer
 *
 *	Writes a single byte to the address space of SDIO function 0.
 *	@err_ret will contain the status of the actual transfer.
 *
 *	Only writes to the vendor specific CCCR registers (0xF0 -
 *	0xFF) are permiited; @err_ret will be set to -EINVAL for *
 *	writes outside this range.
 */
void sdio_f0_writeb(struct sdio_func *func, unsigned char b, unsigned int addr,
	int *err_ret)
{
	int ret;

	if (!func) {
		if (err_ret)
			*err_ret = -EINVAL;
		return;
	}

	if ((addr < 0xF0 || addr > 0xFF) && (!mmc_card_lenient_fn0(func->card))) {
		if (err_ret)
			*err_ret = -EINVAL;
		return;
	}

	ret = mmc_io_rw_direct(func->card, 1, 0, addr, b, NULL);
	if (err_ret)
		*err_ret = ret;
}
EXPORT_SYMBOL_GPL(sdio_f0_writeb);

/**
 *	sdio_get_host_pm_caps - get host power management capabilities
 *	@func: SDIO function attached to host
 *
 *	Returns a capability bitmask corresponding to power management
 *	features supported by the host controller that the card function
 *	might rely upon during a system suspend.  The host doesn't need
 *	to be claimed, nor the function active, for this information to be
 *	obtained.
 */
mmc_pm_flag_t sdio_get_host_pm_caps(struct sdio_func *func)
{
	if (!func)
		return 0;

	return func->card->host->pm_caps;
}
EXPORT_SYMBOL_GPL(sdio_get_host_pm_caps);

/**
 *	sdio_set_host_pm_flags - set wanted host power management capabilities
 *	@func: SDIO function attached to host
 *
 *	Set a capability bitmask corresponding to wanted host controller
 *	power management features for the upcoming suspend state.
 *	This must be called, if needed, each time the suspend method of
 *	the function driver is called, and must contain only bits that
 *	were returned by sdio_get_host_pm_caps().
 *	The host doesn't need to be claimed, nor the function active,
 *	for this information to be set.
 */
int sdio_set_host_pm_flags(struct sdio_func *func, mmc_pm_flag_t flags)
{
	struct mmc_host *host;

	if (!func)
		return -EINVAL;

	host = func->card->host;

	if (flags & ~host->pm_caps)
		return -EINVAL;

	/* function suspend methods are serialized, hence no lock needed */
	host->pm_flags |= flags;
	return 0;
}
EXPORT_SYMBOL_GPL(sdio_set_host_pm_flags);

/**
 *	sdio_retune_crc_disable - temporarily disable retuning on CRC errors
 *	@func: SDIO function attached to host
 *
 *	If the SDIO card is known to be in a state where it might produce
 *	CRC errors on the bus in response to commands (like if we know it is
 *	transitioning between power states), an SDIO function driver can
 *	call this function to temporarily disable the SD/MMC core behavior of
 *	triggering an automatic retuning.
 *
 *	This function should be called while the host is claimed and the host
 *	should remain claimed until sdio_retune_crc_enable() is called.
 *	Specifically, the expected sequence of calls is:
 *	- sdio_claim_host()
 *	- sdio_retune_crc_disable()
 *	- some number of calls like sdio_writeb() and sdio_readb()
 *	- sdio_retune_crc_enable()
 *	- sdio_release_host()
 */
void sdio_retune_crc_disable(struct sdio_func *func)
{
	func->card->host->retune_crc_disable = true;
}
EXPORT_SYMBOL_GPL(sdio_retune_crc_disable);

/**
 *	sdio_retune_crc_enable - re-enable retuning on CRC errors
 *	@func: SDIO function attached to host
 *
 *	This is the compement to sdio_retune_crc_disable().
 */
void sdio_retune_crc_enable(struct sdio_func *func)
{
	func->card->host->retune_crc_disable = false;
}
EXPORT_SYMBOL_GPL(sdio_retune_crc_enable);

/**
 *	sdio_retune_hold_now - start deferring retuning requests till release
 *	@func: SDIO function attached to host
 *
 *	This function can be called if it's currently a bad time to do
 *	a retune of the SDIO card.  Retune requests made during this time
 *	will be held and we'll actually do the retune sometime after the
 *	release.
 *
 *	This function could be useful if an SDIO card is in a power state
 *	where it can respond to a small subset of commands that doesn't
 *	include the retuning command.  Care should be taken when using
 *	this function since (presumably) the retuning request we might be
 *	deferring was made for a good reason.
 *
 *	This function should be called while the host is claimed.
 */
void sdio_retune_hold_now(struct sdio_func *func)
{
	mmc_retune_hold_now(func->card->host);
}
EXPORT_SYMBOL_GPL(sdio_retune_hold_now);

/**
 *	sdio_retune_release - signal that it's OK to retune now
 *	@func: SDIO function attached to host
 *
 *	This is the complement to sdio_retune_hold_now().  Calling this
 *	function won't make a retune happen right away but will allow
 *	them to be scheduled normally.
 *
 *	This function should be called while the host is claimed.
 */
void sdio_retune_release(struct sdio_func *func)
{
	mmc_retune_release(func->card->host);
}
EXPORT_SYMBOL_GPL(sdio_retune_release);