Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/*
 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/interrupt.h>

#include "wil6210.h"
#include "trace.h"

/**
 * Theory of operation:
 *
 * There is ISR pseudo-cause register,
 * dma_rgf->DMA_RGF.PSEUDO_CAUSE.PSEUDO_CAUSE
 * Its bits represents OR'ed bits from 3 real ISR registers:
 * TX, RX, and MISC.
 *
 * Registers may be configured to either "write 1 to clear" or
 * "clear on read" mode
 *
 * When handling interrupt, one have to mask/unmask interrupts for the
 * real ISR registers, or hardware may malfunction.
 *
 */

#define WIL6210_IRQ_DISABLE		(0xFFFFFFFFUL)
#define WIL6210_IRQ_DISABLE_NO_HALP	(0xF7FFFFFFUL)
#define WIL6210_IMC_RX		(BIT_DMA_EP_RX_ICR_RX_DONE | \
				 BIT_DMA_EP_RX_ICR_RX_HTRSH)
#define WIL6210_IMC_RX_NO_RX_HTRSH (WIL6210_IMC_RX & \
				    (~(BIT_DMA_EP_RX_ICR_RX_HTRSH)))
#define WIL6210_IMC_TX		(BIT_DMA_EP_TX_ICR_TX_DONE | \
				BIT_DMA_EP_TX_ICR_TX_DONE_N(0))
#define WIL6210_IMC_TX_EDMA		BIT_TX_STATUS_IRQ
#define WIL6210_IMC_RX_EDMA		BIT_RX_STATUS_IRQ
#define WIL6210_IMC_MISC_NO_HALP	(ISR_MISC_FW_READY | \
					 ISR_MISC_MBOX_EVT | \
					 ISR_MISC_FW_ERROR)
#define WIL6210_IMC_MISC		(WIL6210_IMC_MISC_NO_HALP | \
					 BIT_DMA_EP_MISC_ICR_HALP)
#define WIL6210_IRQ_PSEUDO_MASK (u32)(~(BIT_DMA_PSEUDO_CAUSE_RX | \
					BIT_DMA_PSEUDO_CAUSE_TX | \
					BIT_DMA_PSEUDO_CAUSE_MISC))

#if defined(CONFIG_WIL6210_ISR_COR)
/* configure to Clear-On-Read mode */
#define WIL_ICR_ICC_VALUE	(0xFFFFFFFFUL)
#define WIL_ICR_ICC_MISC_VALUE	(0xF7FFFFFFUL)

static inline void wil_icr_clear(u32 x, void __iomem *addr)
{
}
#else /* defined(CONFIG_WIL6210_ISR_COR) */
/* configure to Write-1-to-Clear mode */
#define WIL_ICR_ICC_VALUE	(0UL)
#define WIL_ICR_ICC_MISC_VALUE	(0UL)

static inline void wil_icr_clear(u32 x, void __iomem *addr)
{
	writel(x, addr);
}
#endif /* defined(CONFIG_WIL6210_ISR_COR) */

static inline u32 wil_ioread32_and_clear(void __iomem *addr)
{
	u32 x = readl(addr);

	wil_icr_clear(x, addr);

	return x;
}

static void wil6210_mask_irq_tx(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMS),
	      WIL6210_IRQ_DISABLE);
}

static void wil6210_mask_irq_tx_edma(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMS),
	      WIL6210_IRQ_DISABLE);
}

static void wil6210_mask_irq_rx(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMS),
	      WIL6210_IRQ_DISABLE);
}

static void wil6210_mask_irq_rx_edma(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMS),
	      WIL6210_IRQ_DISABLE);
}

static void wil6210_mask_irq_misc(struct wil6210_priv *wil, bool mask_halp)
{
	wil_dbg_irq(wil, "mask_irq_misc: mask_halp(%s)\n",
		    mask_halp ? "true" : "false");

	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS),
	      mask_halp ? WIL6210_IRQ_DISABLE : WIL6210_IRQ_DISABLE_NO_HALP);
}

void wil6210_mask_halp(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "mask_halp\n");

	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS),
	      BIT_DMA_EP_MISC_ICR_HALP);
}

static void wil6210_mask_irq_pseudo(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "mask_irq_pseudo\n");

	wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_DISABLE);

	clear_bit(wil_status_irqen, wil->status);
}

void wil6210_unmask_irq_tx(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMC),
	      WIL6210_IMC_TX);
}

void wil6210_unmask_irq_tx_edma(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMC),
	      WIL6210_IMC_TX_EDMA);
}

void wil6210_unmask_irq_rx(struct wil6210_priv *wil)
{
	bool unmask_rx_htrsh = atomic_read(&wil->connected_vifs) > 0;

	wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMC),
	      unmask_rx_htrsh ? WIL6210_IMC_RX : WIL6210_IMC_RX_NO_RX_HTRSH);
}

void wil6210_unmask_irq_rx_edma(struct wil6210_priv *wil)
{
	wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMC),
	      WIL6210_IMC_RX_EDMA);
}

static void wil6210_unmask_irq_misc(struct wil6210_priv *wil, bool unmask_halp)
{
	wil_dbg_irq(wil, "unmask_irq_misc: unmask_halp(%s)\n",
		    unmask_halp ? "true" : "false");

	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC),
	      unmask_halp ? WIL6210_IMC_MISC : WIL6210_IMC_MISC_NO_HALP);
}

static void wil6210_unmask_halp(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "unmask_halp\n");

	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC),
	      BIT_DMA_EP_MISC_ICR_HALP);
}

static void wil6210_unmask_irq_pseudo(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "unmask_irq_pseudo\n");

	set_bit(wil_status_irqen, wil->status);

	wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_PSEUDO_MASK);
}

void wil_mask_irq(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "mask_irq\n");

	wil6210_mask_irq_tx(wil);
	wil6210_mask_irq_tx_edma(wil);
	wil6210_mask_irq_rx(wil);
	wil6210_mask_irq_rx_edma(wil);
	wil6210_mask_irq_misc(wil, true);
	wil6210_mask_irq_pseudo(wil);
}

void wil_unmask_irq(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "unmask_irq\n");

	wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, ICC),
	      WIL_ICR_ICC_VALUE);
	wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, ICC),
	      WIL_ICR_ICC_VALUE);
	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICC),
	      WIL_ICR_ICC_MISC_VALUE);
	wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, ICC),
	      WIL_ICR_ICC_VALUE);
	wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, ICC),
	      WIL_ICR_ICC_VALUE);

	wil6210_unmask_irq_pseudo(wil);
	if (wil->use_enhanced_dma_hw) {
		wil6210_unmask_irq_tx_edma(wil);
		wil6210_unmask_irq_rx_edma(wil);
	} else {
		wil6210_unmask_irq_tx(wil);
		wil6210_unmask_irq_rx(wil);
	}
	wil6210_unmask_irq_misc(wil, true);
}

void wil_configure_interrupt_moderation_edma(struct wil6210_priv *wil)
{
	u32 moderation;

	wil_s(wil, RGF_INT_GEN_IDLE_TIME_LIMIT, WIL_EDMA_IDLE_TIME_LIMIT_USEC);

	wil_s(wil, RGF_INT_GEN_TIME_UNIT_LIMIT, WIL_EDMA_TIME_UNIT_CLK_CYCLES);

	/* Update RX and TX moderation */
	moderation = wil->rx_max_burst_duration |
		(WIL_EDMA_AGG_WATERMARK << WIL_EDMA_AGG_WATERMARK_POS);
	wil_w(wil, RGF_INT_CTRL_INT_GEN_CFG_0, moderation);
	wil_w(wil, RGF_INT_CTRL_INT_GEN_CFG_1, moderation);

	/* Treat special events as regular
	 * (set bit 0 to 0x1 and clear bits 1-8)
	 */
	wil_c(wil, RGF_INT_COUNT_ON_SPECIAL_EVT, 0x1FE);
	wil_s(wil, RGF_INT_COUNT_ON_SPECIAL_EVT, 0x1);
}

void wil_configure_interrupt_moderation(struct wil6210_priv *wil)
{
	struct wireless_dev *wdev = wil->main_ndev->ieee80211_ptr;

	wil_dbg_irq(wil, "configure_interrupt_moderation\n");

	/* disable interrupt moderation for monitor
	 * to get better timestamp precision
	 */
	if (wdev->iftype == NL80211_IFTYPE_MONITOR)
		return;

	/* Disable and clear tx counter before (re)configuration */
	wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL, BIT_DMA_ITR_TX_CNT_CTL_CLR);
	wil_w(wil, RGF_DMA_ITR_TX_CNT_TRSH, wil->tx_max_burst_duration);
	wil_info(wil, "set ITR_TX_CNT_TRSH = %d usec\n",
		 wil->tx_max_burst_duration);
	/* Configure TX max burst duration timer to use usec units */
	wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL,
	      BIT_DMA_ITR_TX_CNT_CTL_EN | BIT_DMA_ITR_TX_CNT_CTL_EXT_TIC_SEL);

	/* Disable and clear tx idle counter before (re)configuration */
	wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_CLR);
	wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_TRSH, wil->tx_interframe_timeout);
	wil_info(wil, "set ITR_TX_IDL_CNT_TRSH = %d usec\n",
		 wil->tx_interframe_timeout);
	/* Configure TX max burst duration timer to use usec units */
	wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_EN |
	      BIT_DMA_ITR_TX_IDL_CNT_CTL_EXT_TIC_SEL);

	/* Disable and clear rx counter before (re)configuration */
	wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL, BIT_DMA_ITR_RX_CNT_CTL_CLR);
	wil_w(wil, RGF_DMA_ITR_RX_CNT_TRSH, wil->rx_max_burst_duration);
	wil_info(wil, "set ITR_RX_CNT_TRSH = %d usec\n",
		 wil->rx_max_burst_duration);
	/* Configure TX max burst duration timer to use usec units */
	wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL,
	      BIT_DMA_ITR_RX_CNT_CTL_EN | BIT_DMA_ITR_RX_CNT_CTL_EXT_TIC_SEL);

	/* Disable and clear rx idle counter before (re)configuration */
	wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_CLR);
	wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_TRSH, wil->rx_interframe_timeout);
	wil_info(wil, "set ITR_RX_IDL_CNT_TRSH = %d usec\n",
		 wil->rx_interframe_timeout);
	/* Configure TX max burst duration timer to use usec units */
	wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_EN |
	      BIT_DMA_ITR_RX_IDL_CNT_CTL_EXT_TIC_SEL);
}

static irqreturn_t wil6210_irq_rx(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;
	u32 isr;
	bool need_unmask = true;

	wil6210_mask_irq_rx(wil);

	isr = wil_ioread32_and_clear(wil->csr +
				     HOSTADDR(RGF_DMA_EP_RX_ICR) +
				     offsetof(struct RGF_ICR, ICR));

	trace_wil6210_irq_rx(isr);
	wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr);

	if (unlikely(!isr)) {
		wil_err_ratelimited(wil, "spurious IRQ: RX\n");
		wil6210_unmask_irq_rx(wil);
		return IRQ_NONE;
	}

	/* RX_DONE and RX_HTRSH interrupts are the same if interrupt
	 * moderation is not used. Interrupt moderation may cause RX
	 * buffer overflow while RX_DONE is delayed. The required
	 * action is always the same - should empty the accumulated
	 * packets from the RX ring.
	 */
	if (likely(isr & (BIT_DMA_EP_RX_ICR_RX_DONE |
			  BIT_DMA_EP_RX_ICR_RX_HTRSH))) {
		wil_dbg_irq(wil, "RX done / RX_HTRSH received, ISR (0x%x)\n",
			    isr);

		isr &= ~(BIT_DMA_EP_RX_ICR_RX_DONE |
			 BIT_DMA_EP_RX_ICR_RX_HTRSH);
		if (likely(test_bit(wil_status_fwready, wil->status))) {
			if (likely(test_bit(wil_status_napi_en, wil->status))) {
				wil_dbg_txrx(wil, "NAPI(Rx) schedule\n");
				need_unmask = false;
				napi_schedule(&wil->napi_rx);
			} else {
				wil_err_ratelimited(
					wil,
					"Got Rx interrupt while stopping interface\n");
			}
		} else {
			wil_err_ratelimited(wil, "Got Rx interrupt while in reset\n");
		}
	}

	if (unlikely(isr))
		wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr);

	/* Rx IRQ will be enabled when NAPI processing finished */

	atomic_inc(&wil->isr_count_rx);

	if (unlikely(need_unmask))
		wil6210_unmask_irq_rx(wil);

	return IRQ_HANDLED;
}

static irqreturn_t wil6210_irq_rx_edma(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;
	u32 isr;
	bool need_unmask = true;

	wil6210_mask_irq_rx_edma(wil);

	isr = wil_ioread32_and_clear(wil->csr +
				     HOSTADDR(RGF_INT_GEN_RX_ICR) +
				     offsetof(struct RGF_ICR, ICR));

	trace_wil6210_irq_rx(isr);
	wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr);

	if (unlikely(!isr)) {
		wil_err(wil, "spurious IRQ: RX\n");
		wil6210_unmask_irq_rx_edma(wil);
		return IRQ_NONE;
	}

	if (likely(isr & BIT_RX_STATUS_IRQ)) {
		wil_dbg_irq(wil, "RX status ring\n");
		isr &= ~BIT_RX_STATUS_IRQ;
		if (likely(test_bit(wil_status_fwready, wil->status))) {
			if (likely(test_bit(wil_status_napi_en, wil->status))) {
				wil_dbg_txrx(wil, "NAPI(Rx) schedule\n");
				need_unmask = false;
				napi_schedule(&wil->napi_rx);
			} else {
				wil_err(wil,
					"Got Rx interrupt while stopping interface\n");
			}
		} else {
			wil_err(wil, "Got Rx interrupt while in reset\n");
		}
	}

	if (unlikely(isr))
		wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr);

	/* Rx IRQ will be enabled when NAPI processing finished */

	atomic_inc(&wil->isr_count_rx);

	if (unlikely(need_unmask))
		wil6210_unmask_irq_rx_edma(wil);

	return IRQ_HANDLED;
}

static irqreturn_t wil6210_irq_tx_edma(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;
	u32 isr;
	bool need_unmask = true;

	wil6210_mask_irq_tx_edma(wil);

	isr = wil_ioread32_and_clear(wil->csr +
				     HOSTADDR(RGF_INT_GEN_TX_ICR) +
				     offsetof(struct RGF_ICR, ICR));

	trace_wil6210_irq_tx(isr);
	wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr);

	if (unlikely(!isr)) {
		wil_err(wil, "spurious IRQ: TX\n");
		wil6210_unmask_irq_tx_edma(wil);
		return IRQ_NONE;
	}

	if (likely(isr & BIT_TX_STATUS_IRQ)) {
		wil_dbg_irq(wil, "TX status ring\n");
		isr &= ~BIT_TX_STATUS_IRQ;
		if (likely(test_bit(wil_status_fwready, wil->status))) {
			wil_dbg_txrx(wil, "NAPI(Tx) schedule\n");
			need_unmask = false;
			napi_schedule(&wil->napi_tx);
		} else {
			wil_err(wil, "Got Tx status ring IRQ while in reset\n");
		}
	}

	if (unlikely(isr))
		wil_err(wil, "un-handled TX ISR bits 0x%08x\n", isr);

	/* Tx IRQ will be enabled when NAPI processing finished */

	atomic_inc(&wil->isr_count_tx);

	if (unlikely(need_unmask))
		wil6210_unmask_irq_tx_edma(wil);

	return IRQ_HANDLED;
}

static irqreturn_t wil6210_irq_tx(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;
	u32 isr;
	bool need_unmask = true;

	wil6210_mask_irq_tx(wil);

	isr = wil_ioread32_and_clear(wil->csr +
				     HOSTADDR(RGF_DMA_EP_TX_ICR) +
				     offsetof(struct RGF_ICR, ICR));

	trace_wil6210_irq_tx(isr);
	wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr);

	if (unlikely(!isr)) {
		wil_err_ratelimited(wil, "spurious IRQ: TX\n");
		wil6210_unmask_irq_tx(wil);
		return IRQ_NONE;
	}

	if (likely(isr & BIT_DMA_EP_TX_ICR_TX_DONE)) {
		wil_dbg_irq(wil, "TX done\n");
		isr &= ~BIT_DMA_EP_TX_ICR_TX_DONE;
		/* clear also all VRING interrupts */
		isr &= ~(BIT(25) - 1UL);
		if (likely(test_bit(wil_status_fwready, wil->status))) {
			wil_dbg_txrx(wil, "NAPI(Tx) schedule\n");
			need_unmask = false;
			napi_schedule(&wil->napi_tx);
		} else {
			wil_err_ratelimited(wil, "Got Tx interrupt while in reset\n");
		}
	}

	if (unlikely(isr))
		wil_err_ratelimited(wil, "un-handled TX ISR bits 0x%08x\n",
				    isr);

	/* Tx IRQ will be enabled when NAPI processing finished */

	atomic_inc(&wil->isr_count_tx);

	if (unlikely(need_unmask))
		wil6210_unmask_irq_tx(wil);

	return IRQ_HANDLED;
}

static void wil_notify_fw_error(struct wil6210_priv *wil)
{
	struct device *dev = &wil->main_ndev->dev;
	char *envp[3] = {
		[0] = "SOURCE=wil6210",
		[1] = "EVENT=FW_ERROR",
		[2] = NULL,
	};
	wil_err(wil, "Notify about firmware error\n");
	kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp);
}

static void wil_cache_mbox_regs(struct wil6210_priv *wil)
{
	/* make shadow copy of registers that should not change on run time */
	wil_memcpy_fromio_32(&wil->mbox_ctl, wil->csr + HOST_MBOX,
			     sizeof(struct wil6210_mbox_ctl));
	wil_mbox_ring_le2cpus(&wil->mbox_ctl.rx);
	wil_mbox_ring_le2cpus(&wil->mbox_ctl.tx);
}

static bool wil_validate_mbox_regs(struct wil6210_priv *wil)
{
	size_t min_size = sizeof(struct wil6210_mbox_hdr) +
		sizeof(struct wmi_cmd_hdr);

	if (wil->mbox_ctl.rx.entry_size < min_size) {
		wil_err(wil, "rx mbox entry too small (%d)\n",
			wil->mbox_ctl.rx.entry_size);
		return false;
	}
	if (wil->mbox_ctl.tx.entry_size < min_size) {
		wil_err(wil, "tx mbox entry too small (%d)\n",
			wil->mbox_ctl.tx.entry_size);
		return false;
	}

	return true;
}

static irqreturn_t wil6210_irq_misc(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;
	u32 isr;

	wil6210_mask_irq_misc(wil, false);

	isr = wil_ioread32_and_clear(wil->csr +
				     HOSTADDR(RGF_DMA_EP_MISC_ICR) +
				     offsetof(struct RGF_ICR, ICR));

	trace_wil6210_irq_misc(isr);
	wil_dbg_irq(wil, "ISR MISC 0x%08x\n", isr);

	if (!isr) {
		wil_err(wil, "spurious IRQ: MISC\n");
		wil6210_unmask_irq_misc(wil, false);
		return IRQ_NONE;
	}

	if (isr & ISR_MISC_FW_ERROR) {
		u32 fw_assert_code = wil_r(wil, wil->rgf_fw_assert_code_addr);
		u32 ucode_assert_code =
			wil_r(wil, wil->rgf_ucode_assert_code_addr);

		wil_err(wil,
			"Firmware error detected, assert codes FW 0x%08x, UCODE 0x%08x\n",
			fw_assert_code, ucode_assert_code);
		clear_bit(wil_status_fwready, wil->status);
		/*
		 * do not clear @isr here - we do 2-nd part in thread
		 * there, user space get notified, and it should be done
		 * in non-atomic context
		 */
	}

	if (isr & ISR_MISC_FW_READY) {
		wil_dbg_irq(wil, "IRQ: FW ready\n");
		wil_cache_mbox_regs(wil);
		if (wil_validate_mbox_regs(wil))
			set_bit(wil_status_mbox_ready, wil->status);
		/**
		 * Actual FW ready indicated by the
		 * WMI_FW_READY_EVENTID
		 */
		isr &= ~ISR_MISC_FW_READY;
	}

	if (isr & BIT_DMA_EP_MISC_ICR_HALP) {
		isr &= ~BIT_DMA_EP_MISC_ICR_HALP;
		if (wil->halp.handle_icr) {
			/* no need to handle HALP ICRs until next vote */
			wil->halp.handle_icr = false;
			wil_dbg_irq(wil, "irq_misc: HALP IRQ invoked\n");
			wil6210_mask_irq_misc(wil, true);
			complete(&wil->halp.comp);
		}
	}

	wil->isr_misc = isr;

	if (isr) {
		return IRQ_WAKE_THREAD;
	} else {
		wil6210_unmask_irq_misc(wil, false);
		return IRQ_HANDLED;
	}
}

static irqreturn_t wil6210_irq_misc_thread(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;
	u32 isr = wil->isr_misc;

	trace_wil6210_irq_misc_thread(isr);
	wil_dbg_irq(wil, "Thread ISR MISC 0x%08x\n", isr);

	if (isr & ISR_MISC_FW_ERROR) {
		wil->recovery_state = fw_recovery_pending;
		wil_fw_core_dump(wil);
		wil_notify_fw_error(wil);
		isr &= ~ISR_MISC_FW_ERROR;
		if (wil->platform_ops.notify) {
			wil_err(wil, "notify platform driver about FW crash");
			wil->platform_ops.notify(wil->platform_handle,
						 WIL_PLATFORM_EVT_FW_CRASH);
		} else {
			wil_fw_error_recovery(wil);
		}
	}
	if (isr & ISR_MISC_MBOX_EVT) {
		wil_dbg_irq(wil, "MBOX event\n");
		wmi_recv_cmd(wil);
		isr &= ~ISR_MISC_MBOX_EVT;
	}

	if (isr)
		wil_dbg_irq(wil, "un-handled MISC ISR bits 0x%08x\n", isr);

	wil->isr_misc = 0;

	wil6210_unmask_irq_misc(wil, false);

	/* in non-triple MSI case, this is done inside wil6210_thread_irq
	 * because it has to be done after unmasking the pseudo.
	 */
	if (wil->n_msi == 3 && wil->suspend_resp_rcvd) {
		wil_dbg_irq(wil, "set suspend_resp_comp to true\n");
		wil->suspend_resp_comp = true;
		wake_up_interruptible(&wil->wq);
	}

	return IRQ_HANDLED;
}

/**
 * thread IRQ handler
 */
static irqreturn_t wil6210_thread_irq(int irq, void *cookie)
{
	struct wil6210_priv *wil = cookie;

	wil_dbg_irq(wil, "Thread IRQ\n");
	/* Discover real IRQ cause */
	if (wil->isr_misc)
		wil6210_irq_misc_thread(irq, cookie);

	wil6210_unmask_irq_pseudo(wil);

	if (wil->suspend_resp_rcvd) {
		wil_dbg_irq(wil, "set suspend_resp_comp to true\n");
		wil->suspend_resp_comp = true;
		wake_up_interruptible(&wil->wq);
	}

	return IRQ_HANDLED;
}

/* DEBUG
 * There is subtle bug in hardware that causes IRQ to raise when it should be
 * masked. It is quite rare and hard to debug.
 *
 * Catch irq issue if it happens and print all I can.
 */
static int wil6210_debug_irq_mask(struct wil6210_priv *wil, u32 pseudo_cause)
{
	u32 icm_rx, icr_rx, imv_rx;
	u32 icm_tx, icr_tx, imv_tx;
	u32 icm_misc, icr_misc, imv_misc;

	if (!test_bit(wil_status_irqen, wil->status)) {
		if (wil->use_enhanced_dma_hw) {
			icm_rx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_INT_GEN_RX_ICR) +
					offsetof(struct RGF_ICR, ICM));
			icr_rx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_INT_GEN_RX_ICR) +
					offsetof(struct RGF_ICR, ICR));
			imv_rx = wil_r(wil, RGF_INT_GEN_RX_ICR +
				   offsetof(struct RGF_ICR, IMV));
			icm_tx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_INT_GEN_TX_ICR) +
					offsetof(struct RGF_ICR, ICM));
			icr_tx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_INT_GEN_TX_ICR) +
					offsetof(struct RGF_ICR, ICR));
			imv_tx = wil_r(wil, RGF_INT_GEN_TX_ICR +
					   offsetof(struct RGF_ICR, IMV));
		} else {
			icm_rx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_DMA_EP_RX_ICR) +
					offsetof(struct RGF_ICR, ICM));
			icr_rx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_DMA_EP_RX_ICR) +
					offsetof(struct RGF_ICR, ICR));
			imv_rx = wil_r(wil, RGF_DMA_EP_RX_ICR +
				   offsetof(struct RGF_ICR, IMV));
			icm_tx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_DMA_EP_TX_ICR) +
					offsetof(struct RGF_ICR, ICM));
			icr_tx = wil_ioread32_and_clear(wil->csr +
					HOSTADDR(RGF_DMA_EP_TX_ICR) +
					offsetof(struct RGF_ICR, ICR));
			imv_tx = wil_r(wil, RGF_DMA_EP_TX_ICR +
					   offsetof(struct RGF_ICR, IMV));
		}
		icm_misc = wil_ioread32_and_clear(wil->csr +
				HOSTADDR(RGF_DMA_EP_MISC_ICR) +
				offsetof(struct RGF_ICR, ICM));
		icr_misc = wil_ioread32_and_clear(wil->csr +
				HOSTADDR(RGF_DMA_EP_MISC_ICR) +
				offsetof(struct RGF_ICR, ICR));
		imv_misc = wil_r(wil, RGF_DMA_EP_MISC_ICR +
				     offsetof(struct RGF_ICR, IMV));

		/* HALP interrupt can be unmasked when misc interrupts are
		 * masked
		 */
		if (icr_misc & BIT_DMA_EP_MISC_ICR_HALP)
			return 0;

		wil_err(wil, "IRQ when it should be masked: pseudo 0x%08x\n"
				"Rx   icm:icr:imv 0x%08x 0x%08x 0x%08x\n"
				"Tx   icm:icr:imv 0x%08x 0x%08x 0x%08x\n"
				"Misc icm:icr:imv 0x%08x 0x%08x 0x%08x\n",
				pseudo_cause,
				icm_rx, icr_rx, imv_rx,
				icm_tx, icr_tx, imv_tx,
				icm_misc, icr_misc, imv_misc);

		return -EINVAL;
	}

	return 0;
}

static irqreturn_t wil6210_hardirq(int irq, void *cookie)
{
	irqreturn_t rc = IRQ_HANDLED;
	struct wil6210_priv *wil = cookie;
	u32 pseudo_cause = wil_r(wil, RGF_DMA_PSEUDO_CAUSE);

	/**
	 * pseudo_cause is Clear-On-Read, no need to ACK
	 */
	if (unlikely((pseudo_cause == 0) || ((pseudo_cause & 0xff) == 0xff)))
		return IRQ_NONE;

	/* IRQ mask debug */
	if (unlikely(wil6210_debug_irq_mask(wil, pseudo_cause)))
		return IRQ_NONE;

	trace_wil6210_irq_pseudo(pseudo_cause);
	wil_dbg_irq(wil, "Pseudo IRQ 0x%08x\n", pseudo_cause);

	wil6210_mask_irq_pseudo(wil);

	/* Discover real IRQ cause
	 * There are 2 possible phases for every IRQ:
	 * - hard IRQ handler called right here
	 * - threaded handler called later
	 *
	 * Hard IRQ handler reads and clears ISR.
	 *
	 * If threaded handler requested, hard IRQ handler
	 * returns IRQ_WAKE_THREAD and saves ISR register value
	 * for the threaded handler use.
	 *
	 * voting for wake thread - need at least 1 vote
	 */
	if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_RX) &&
	    (wil->txrx_ops.irq_rx(irq, cookie) == IRQ_WAKE_THREAD))
		rc = IRQ_WAKE_THREAD;

	if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_TX) &&
	    (wil->txrx_ops.irq_tx(irq, cookie) == IRQ_WAKE_THREAD))
		rc = IRQ_WAKE_THREAD;

	if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_MISC) &&
	    (wil6210_irq_misc(irq, cookie) == IRQ_WAKE_THREAD))
		rc = IRQ_WAKE_THREAD;

	/* if thread is requested, it will unmask IRQ */
	if (rc != IRQ_WAKE_THREAD)
		wil6210_unmask_irq_pseudo(wil);

	return rc;
}

static int wil6210_request_3msi(struct wil6210_priv *wil, int irq)
{
	int rc;

	/* IRQ's are in the following order:
	 * - Tx
	 * - Rx
	 * - Misc
	 */
	rc = request_irq(irq, wil->txrx_ops.irq_tx, IRQF_SHARED,
			 WIL_NAME "_tx", wil);
	if (rc)
		return rc;

	rc = request_irq(irq + 1, wil->txrx_ops.irq_rx, IRQF_SHARED,
			 WIL_NAME "_rx", wil);
	if (rc)
		goto free0;

	rc = request_threaded_irq(irq + 2, wil6210_irq_misc,
				  wil6210_irq_misc_thread,
				  IRQF_SHARED, WIL_NAME "_misc", wil);
	if (rc)
		goto free1;

	return 0;
free1:
	free_irq(irq + 1, wil);
free0:
	free_irq(irq, wil);

	return rc;
}

/* can't use wil_ioread32_and_clear because ICC value is not set yet */
static inline void wil_clear32(void __iomem *addr)
{
	u32 x = readl(addr);

	writel(x, addr);
}

void wil6210_clear_irq(struct wil6210_priv *wil)
{
	wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) +
		    offsetof(struct RGF_ICR, ICR));
	wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) +
		    offsetof(struct RGF_ICR, ICR));
	wil_clear32(wil->csr + HOSTADDR(RGF_INT_GEN_RX_ICR) +
		    offsetof(struct RGF_ICR, ICR));
	wil_clear32(wil->csr + HOSTADDR(RGF_INT_GEN_TX_ICR) +
		    offsetof(struct RGF_ICR, ICR));
	wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) +
		    offsetof(struct RGF_ICR, ICR));
	wmb(); /* make sure write completed */
}

void wil6210_set_halp(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "set_halp\n");

	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICS),
	      BIT_DMA_EP_MISC_ICR_HALP);
}

void wil6210_clear_halp(struct wil6210_priv *wil)
{
	wil_dbg_irq(wil, "clear_halp\n");

	wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICR),
	      BIT_DMA_EP_MISC_ICR_HALP);
	wil6210_unmask_halp(wil);
}

int wil6210_init_irq(struct wil6210_priv *wil, int irq)
{
	int rc;

	wil_dbg_misc(wil, "init_irq: %s, n_msi=%d\n",
		     wil->n_msi ? "MSI" : "INTx", wil->n_msi);

	if (wil->use_enhanced_dma_hw) {
		wil->txrx_ops.irq_tx = wil6210_irq_tx_edma;
		wil->txrx_ops.irq_rx = wil6210_irq_rx_edma;
	} else {
		wil->txrx_ops.irq_tx = wil6210_irq_tx;
		wil->txrx_ops.irq_rx = wil6210_irq_rx;
	}

	if (wil->n_msi == 3)
		rc = wil6210_request_3msi(wil, irq);
	else
		rc = request_threaded_irq(irq, wil6210_hardirq,
					  wil6210_thread_irq,
					  wil->n_msi ? 0 : IRQF_SHARED,
					  WIL_NAME, wil);
	return rc;
}

void wil6210_fini_irq(struct wil6210_priv *wil, int irq)
{
	wil_dbg_misc(wil, "fini_irq:\n");

	wil_mask_irq(wil);
	free_irq(irq, wil);
	if (wil->n_msi == 3) {
		free_irq(irq + 1, wil);
		free_irq(irq + 2, wil);
	}
}