Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2019, Linaro Limited
 */

#include <linux/bitops.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include "tsens.h"

/* ----- SROT ------ */
#define SROT_HW_VER_OFF	0x0000
#define SROT_CTRL_OFF		0x0004

/* ----- TM ------ */
#define TM_INT_EN_OFF				0x0000
#define TM_Sn_UPPER_LOWER_STATUS_CTRL_OFF	0x0004
#define TM_Sn_STATUS_OFF			0x0044
#define TM_TRDY_OFF				0x0084

/* eeprom layout data for qcs404/405 (v1) */
#define BASE0_MASK	0x000007f8
#define BASE1_MASK	0x0007f800
#define BASE0_SHIFT	3
#define BASE1_SHIFT	11

#define S0_P1_MASK	0x0000003f
#define S1_P1_MASK	0x0003f000
#define S2_P1_MASK	0x3f000000
#define S3_P1_MASK	0x000003f0
#define S4_P1_MASK	0x003f0000
#define S5_P1_MASK	0x0000003f
#define S6_P1_MASK	0x0003f000
#define S7_P1_MASK	0x3f000000
#define S8_P1_MASK	0x000003f0
#define S9_P1_MASK	0x003f0000

#define S0_P2_MASK	0x00000fc0
#define S1_P2_MASK	0x00fc0000
#define S2_P2_MASK_1_0	0xc0000000
#define S2_P2_MASK_5_2	0x0000000f
#define S3_P2_MASK	0x0000fc00
#define S4_P2_MASK	0x0fc00000
#define S5_P2_MASK	0x00000fc0
#define S6_P2_MASK	0x00fc0000
#define S7_P2_MASK_1_0	0xc0000000
#define S7_P2_MASK_5_2	0x0000000f
#define S8_P2_MASK	0x0000fc00
#define S9_P2_MASK	0x0fc00000

#define S0_P1_SHIFT	0
#define S0_P2_SHIFT	6
#define S1_P1_SHIFT	12
#define S1_P2_SHIFT	18
#define S2_P1_SHIFT	24
#define S2_P2_SHIFT_1_0	30

#define S2_P2_SHIFT_5_2	0
#define S3_P1_SHIFT	4
#define S3_P2_SHIFT	10
#define S4_P1_SHIFT	16
#define S4_P2_SHIFT	22

#define S5_P1_SHIFT	0
#define S5_P2_SHIFT	6
#define S6_P1_SHIFT	12
#define S6_P2_SHIFT	18
#define S7_P1_SHIFT	24
#define S7_P2_SHIFT_1_0	30

#define S7_P2_SHIFT_5_2	0
#define S8_P1_SHIFT	4
#define S8_P2_SHIFT	10
#define S9_P1_SHIFT	16
#define S9_P2_SHIFT	22

#define CAL_SEL_MASK	7
#define CAL_SEL_SHIFT	0

static int calibrate_v1(struct tsens_priv *priv)
{
	u32 base0 = 0, base1 = 0;
	u32 p1[10], p2[10];
	u32 mode = 0, lsb = 0, msb = 0;
	u32 *qfprom_cdata;
	int i;

	qfprom_cdata = (u32 *)qfprom_read(priv->dev, "calib");
	if (IS_ERR(qfprom_cdata))
		return PTR_ERR(qfprom_cdata);

	mode = (qfprom_cdata[4] & CAL_SEL_MASK) >> CAL_SEL_SHIFT;
	dev_dbg(priv->dev, "calibration mode is %d\n", mode);

	switch (mode) {
	case TWO_PT_CALIB:
		base1 = (qfprom_cdata[4] & BASE1_MASK) >> BASE1_SHIFT;
		p2[0] = (qfprom_cdata[0] & S0_P2_MASK) >> S0_P2_SHIFT;
		p2[1] = (qfprom_cdata[0] & S1_P2_MASK) >> S1_P2_SHIFT;
		/* This value is split over two registers, 2 bits and 4 bits */
		lsb   = (qfprom_cdata[0] & S2_P2_MASK_1_0) >> S2_P2_SHIFT_1_0;
		msb   = (qfprom_cdata[1] & S2_P2_MASK_5_2) >> S2_P2_SHIFT_5_2;
		p2[2] = msb << 2 | lsb;
		p2[3] = (qfprom_cdata[1] & S3_P2_MASK) >> S3_P2_SHIFT;
		p2[4] = (qfprom_cdata[1] & S4_P2_MASK) >> S4_P2_SHIFT;
		p2[5] = (qfprom_cdata[2] & S5_P2_MASK) >> S5_P2_SHIFT;
		p2[6] = (qfprom_cdata[2] & S6_P2_MASK) >> S6_P2_SHIFT;
		/* This value is split over two registers, 2 bits and 4 bits */
		lsb   = (qfprom_cdata[2] & S7_P2_MASK_1_0) >> S7_P2_SHIFT_1_0;
		msb   = (qfprom_cdata[3] & S7_P2_MASK_5_2) >> S7_P2_SHIFT_5_2;
		p2[7] = msb << 2 | lsb;
		p2[8] = (qfprom_cdata[3] & S8_P2_MASK) >> S8_P2_SHIFT;
		p2[9] = (qfprom_cdata[3] & S9_P2_MASK) >> S9_P2_SHIFT;
		for (i = 0; i < priv->num_sensors; i++)
			p2[i] = ((base1 + p2[i]) << 2);
		/* Fall through */
	case ONE_PT_CALIB2:
		base0 = (qfprom_cdata[4] & BASE0_MASK) >> BASE0_SHIFT;
		p1[0] = (qfprom_cdata[0] & S0_P1_MASK) >> S0_P1_SHIFT;
		p1[1] = (qfprom_cdata[0] & S1_P1_MASK) >> S1_P1_SHIFT;
		p1[2] = (qfprom_cdata[0] & S2_P1_MASK) >> S2_P1_SHIFT;
		p1[3] = (qfprom_cdata[1] & S3_P1_MASK) >> S3_P1_SHIFT;
		p1[4] = (qfprom_cdata[1] & S4_P1_MASK) >> S4_P1_SHIFT;
		p1[5] = (qfprom_cdata[2] & S5_P1_MASK) >> S5_P1_SHIFT;
		p1[6] = (qfprom_cdata[2] & S6_P1_MASK) >> S6_P1_SHIFT;
		p1[7] = (qfprom_cdata[2] & S7_P1_MASK) >> S7_P1_SHIFT;
		p1[8] = (qfprom_cdata[3] & S8_P1_MASK) >> S8_P1_SHIFT;
		p1[9] = (qfprom_cdata[3] & S9_P1_MASK) >> S9_P1_SHIFT;
		for (i = 0; i < priv->num_sensors; i++)
			p1[i] = (((base0) + p1[i]) << 2);
		break;
	default:
		for (i = 0; i < priv->num_sensors; i++) {
			p1[i] = 500;
			p2[i] = 780;
		}
		break;
	}

	compute_intercept_slope(priv, p1, p2, mode);
	kfree(qfprom_cdata);

	return 0;
}

/* v1.x: qcs404,405 */

static const struct tsens_features tsens_v1_feat = {
	.ver_major	= VER_1_X,
	.crit_int	= 0,
	.adc		= 1,
	.srot_split	= 1,
	.max_sensors	= 11,
};

static const struct reg_field tsens_v1_regfields[MAX_REGFIELDS] = {
	/* ----- SROT ------ */
	/* VERSION */
	[VER_MAJOR] = REG_FIELD(SROT_HW_VER_OFF, 28, 31),
	[VER_MINOR] = REG_FIELD(SROT_HW_VER_OFF, 16, 27),
	[VER_STEP]  = REG_FIELD(SROT_HW_VER_OFF,  0, 15),
	/* CTRL_OFFSET */
	[TSENS_EN]     = REG_FIELD(SROT_CTRL_OFF, 0,  0),
	[TSENS_SW_RST] = REG_FIELD(SROT_CTRL_OFF, 1,  1),
	[SENSOR_EN]    = REG_FIELD(SROT_CTRL_OFF, 3, 13),

	/* ----- TM ------ */
	/* INTERRUPT ENABLE */
	[INT_EN]     = REG_FIELD(TM_INT_EN_OFF, 0, 0),

	/* Sn_STATUS */
	REG_FIELD_FOR_EACH_SENSOR11(LAST_TEMP,    TM_Sn_STATUS_OFF,  0,  9),
	REG_FIELD_FOR_EACH_SENSOR11(VALID,        TM_Sn_STATUS_OFF, 14, 14),
	REG_FIELD_FOR_EACH_SENSOR11(MIN_STATUS,   TM_Sn_STATUS_OFF, 10, 10),
	REG_FIELD_FOR_EACH_SENSOR11(LOWER_STATUS, TM_Sn_STATUS_OFF, 11, 11),
	REG_FIELD_FOR_EACH_SENSOR11(UPPER_STATUS, TM_Sn_STATUS_OFF, 12, 12),
	/* No CRITICAL field on v1.x */
	REG_FIELD_FOR_EACH_SENSOR11(MAX_STATUS,   TM_Sn_STATUS_OFF, 13, 13),

	/* TRDY: 1=ready, 0=in progress */
	[TRDY] = REG_FIELD(TM_TRDY_OFF, 0, 0),
};

static const struct tsens_ops ops_generic_v1 = {
	.init		= init_common,
	.calibrate	= calibrate_v1,
	.get_temp	= get_temp_tsens_valid,
};

const struct tsens_plat_data data_tsens_v1 = {
	.ops		= &ops_generic_v1,
	.feat		= &tsens_v1_feat,
	.fields	= tsens_v1_regfields,
};