Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
/*
 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <rdma/rdma_cm.h>

#include "rds_single_path.h"
#include "rds.h"
#include "ib.h"

static struct kmem_cache *rds_ib_incoming_slab;
static struct kmem_cache *rds_ib_frag_slab;
static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);

void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
{
	struct rds_ib_recv_work *recv;
	u32 i;

	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
		struct ib_sge *sge;

		recv->r_ibinc = NULL;
		recv->r_frag = NULL;

		recv->r_wr.next = NULL;
		recv->r_wr.wr_id = i;
		recv->r_wr.sg_list = recv->r_sge;
		recv->r_wr.num_sge = RDS_IB_RECV_SGE;

		sge = &recv->r_sge[0];
		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
		sge->length = sizeof(struct rds_header);
		sge->lkey = ic->i_pd->local_dma_lkey;

		sge = &recv->r_sge[1];
		sge->addr = 0;
		sge->length = RDS_FRAG_SIZE;
		sge->lkey = ic->i_pd->local_dma_lkey;
	}
}

/*
 * The entire 'from' list, including the from element itself, is put on
 * to the tail of the 'to' list.
 */
static void list_splice_entire_tail(struct list_head *from,
				    struct list_head *to)
{
	struct list_head *from_last = from->prev;

	list_splice_tail(from_last, to);
	list_add_tail(from_last, to);
}

static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
{
	struct list_head *tmp;

	tmp = xchg(&cache->xfer, NULL);
	if (tmp) {
		if (cache->ready)
			list_splice_entire_tail(tmp, cache->ready);
		else
			cache->ready = tmp;
	}
}

static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
{
	struct rds_ib_cache_head *head;
	int cpu;

	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
	if (!cache->percpu)
	       return -ENOMEM;

	for_each_possible_cpu(cpu) {
		head = per_cpu_ptr(cache->percpu, cpu);
		head->first = NULL;
		head->count = 0;
	}
	cache->xfer = NULL;
	cache->ready = NULL;

	return 0;
}

int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
{
	int ret;

	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
	if (!ret) {
		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
		if (ret)
			free_percpu(ic->i_cache_incs.percpu);
	}

	return ret;
}

static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
					  struct list_head *caller_list)
{
	struct rds_ib_cache_head *head;
	int cpu;

	for_each_possible_cpu(cpu) {
		head = per_cpu_ptr(cache->percpu, cpu);
		if (head->first) {
			list_splice_entire_tail(head->first, caller_list);
			head->first = NULL;
		}
	}

	if (cache->ready) {
		list_splice_entire_tail(cache->ready, caller_list);
		cache->ready = NULL;
	}
}

void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
{
	struct rds_ib_incoming *inc;
	struct rds_ib_incoming *inc_tmp;
	struct rds_page_frag *frag;
	struct rds_page_frag *frag_tmp;
	LIST_HEAD(list);

	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
	free_percpu(ic->i_cache_incs.percpu);

	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
		list_del(&inc->ii_cache_entry);
		WARN_ON(!list_empty(&inc->ii_frags));
		kmem_cache_free(rds_ib_incoming_slab, inc);
		atomic_dec(&rds_ib_allocation);
	}

	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
	free_percpu(ic->i_cache_frags.percpu);

	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
		list_del(&frag->f_cache_entry);
		WARN_ON(!list_empty(&frag->f_item));
		kmem_cache_free(rds_ib_frag_slab, frag);
	}
}

/* fwd decl */
static void rds_ib_recv_cache_put(struct list_head *new_item,
				  struct rds_ib_refill_cache *cache);
static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);


/* Recycle frag and attached recv buffer f_sg */
static void rds_ib_frag_free(struct rds_ib_connection *ic,
			     struct rds_page_frag *frag)
{
	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));

	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
}

/* Recycle inc after freeing attached frags */
void rds_ib_inc_free(struct rds_incoming *inc)
{
	struct rds_ib_incoming *ibinc;
	struct rds_page_frag *frag;
	struct rds_page_frag *pos;
	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;

	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);

	/* Free attached frags */
	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
		list_del_init(&frag->f_item);
		rds_ib_frag_free(ic, frag);
	}
	BUG_ON(!list_empty(&ibinc->ii_frags));

	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
}

static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
				  struct rds_ib_recv_work *recv)
{
	if (recv->r_ibinc) {
		rds_inc_put(&recv->r_ibinc->ii_inc);
		recv->r_ibinc = NULL;
	}
	if (recv->r_frag) {
		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
		rds_ib_frag_free(ic, recv->r_frag);
		recv->r_frag = NULL;
	}
}

void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
{
	u32 i;

	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
}

static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
						     gfp_t slab_mask)
{
	struct rds_ib_incoming *ibinc;
	struct list_head *cache_item;
	int avail_allocs;

	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
	if (cache_item) {
		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
	} else {
		avail_allocs = atomic_add_unless(&rds_ib_allocation,
						 1, rds_ib_sysctl_max_recv_allocation);
		if (!avail_allocs) {
			rds_ib_stats_inc(s_ib_rx_alloc_limit);
			return NULL;
		}
		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
		if (!ibinc) {
			atomic_dec(&rds_ib_allocation);
			return NULL;
		}
		rds_ib_stats_inc(s_ib_rx_total_incs);
	}
	INIT_LIST_HEAD(&ibinc->ii_frags);
	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);

	return ibinc;
}

static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
						    gfp_t slab_mask, gfp_t page_mask)
{
	struct rds_page_frag *frag;
	struct list_head *cache_item;
	int ret;

	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
	if (cache_item) {
		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
	} else {
		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
		if (!frag)
			return NULL;

		sg_init_table(&frag->f_sg, 1);
		ret = rds_page_remainder_alloc(&frag->f_sg,
					       RDS_FRAG_SIZE, page_mask);
		if (ret) {
			kmem_cache_free(rds_ib_frag_slab, frag);
			return NULL;
		}
		rds_ib_stats_inc(s_ib_rx_total_frags);
	}

	INIT_LIST_HEAD(&frag->f_item);

	return frag;
}

static int rds_ib_recv_refill_one(struct rds_connection *conn,
				  struct rds_ib_recv_work *recv, gfp_t gfp)
{
	struct rds_ib_connection *ic = conn->c_transport_data;
	struct ib_sge *sge;
	int ret = -ENOMEM;
	gfp_t slab_mask = GFP_NOWAIT;
	gfp_t page_mask = GFP_NOWAIT;

	if (gfp & __GFP_DIRECT_RECLAIM) {
		slab_mask = GFP_KERNEL;
		page_mask = GFP_HIGHUSER;
	}

	if (!ic->i_cache_incs.ready)
		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
	if (!ic->i_cache_frags.ready)
		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);

	/*
	 * ibinc was taken from recv if recv contained the start of a message.
	 * recvs that were continuations will still have this allocated.
	 */
	if (!recv->r_ibinc) {
		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
		if (!recv->r_ibinc)
			goto out;
	}

	WARN_ON(recv->r_frag); /* leak! */
	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
	if (!recv->r_frag)
		goto out;

	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
			    1, DMA_FROM_DEVICE);
	WARN_ON(ret != 1);

	sge = &recv->r_sge[0];
	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
	sge->length = sizeof(struct rds_header);

	sge = &recv->r_sge[1];
	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
	sge->length = sg_dma_len(&recv->r_frag->f_sg);

	ret = 0;
out:
	return ret;
}

static int acquire_refill(struct rds_connection *conn)
{
	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
}

static void release_refill(struct rds_connection *conn)
{
	clear_bit(RDS_RECV_REFILL, &conn->c_flags);

	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
	 * hot path and finding waiters is very rare.  We don't want to walk
	 * the system-wide hashed waitqueue buckets in the fast path only to
	 * almost never find waiters.
	 */
	if (waitqueue_active(&conn->c_waitq))
		wake_up_all(&conn->c_waitq);
}

/*
 * This tries to allocate and post unused work requests after making sure that
 * they have all the allocations they need to queue received fragments into
 * sockets.
 */
void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
{
	struct rds_ib_connection *ic = conn->c_transport_data;
	struct rds_ib_recv_work *recv;
	unsigned int posted = 0;
	int ret = 0;
	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
	bool must_wake = false;
	u32 pos;

	/* the goal here is to just make sure that someone, somewhere
	 * is posting buffers.  If we can't get the refill lock,
	 * let them do their thing
	 */
	if (!acquire_refill(conn))
		return;

	while ((prefill || rds_conn_up(conn)) &&
	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
		if (pos >= ic->i_recv_ring.w_nr) {
			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
					pos);
			break;
		}

		recv = &ic->i_recvs[pos];
		ret = rds_ib_recv_refill_one(conn, recv, gfp);
		if (ret) {
			must_wake = true;
			break;
		}

		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
			 (long)sg_dma_address(&recv->r_frag->f_sg));

		/* XXX when can this fail? */
		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
		if (ret) {
			rds_ib_conn_error(conn, "recv post on "
			       "%pI6c returned %d, disconnecting and "
			       "reconnecting\n", &conn->c_faddr,
			       ret);
			break;
		}

		posted++;

		if ((posted > 128 && need_resched()) || posted > 8192) {
			must_wake = true;
			break;
		}
	}

	/* We're doing flow control - update the window. */
	if (ic->i_flowctl && posted)
		rds_ib_advertise_credits(conn, posted);

	if (ret)
		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);

	release_refill(conn);

	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
	 * in this case the ring being low is going to lead to more interrupts
	 * and we can safely let the softirq code take care of it unless the
	 * ring is completely empty.
	 *
	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
	 * we might have raced with the softirq code while we had the refill
	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
	 * if we should requeue.
	 */
	if (rds_conn_up(conn) &&
	    (must_wake ||
	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
	    rds_ib_ring_empty(&ic->i_recv_ring))) {
		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
	}
	if (can_wait)
		cond_resched();
}

/*
 * We want to recycle several types of recv allocations, like incs and frags.
 * To use this, the *_free() function passes in the ptr to a list_head within
 * the recyclee, as well as the cache to put it on.
 *
 * First, we put the memory on a percpu list. When this reaches a certain size,
 * We move it to an intermediate non-percpu list in a lockless manner, with some
 * xchg/compxchg wizardry.
 *
 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 * list_empty() will return true with one element is actually present.
 */
static void rds_ib_recv_cache_put(struct list_head *new_item,
				 struct rds_ib_refill_cache *cache)
{
	unsigned long flags;
	struct list_head *old, *chpfirst;

	local_irq_save(flags);

	chpfirst = __this_cpu_read(cache->percpu->first);
	if (!chpfirst)
		INIT_LIST_HEAD(new_item);
	else /* put on front */
		list_add_tail(new_item, chpfirst);

	__this_cpu_write(cache->percpu->first, new_item);
	__this_cpu_inc(cache->percpu->count);

	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
		goto end;

	/*
	 * Return our per-cpu first list to the cache's xfer by atomically
	 * grabbing the current xfer list, appending it to our per-cpu list,
	 * and then atomically returning that entire list back to the
	 * cache's xfer list as long as it's still empty.
	 */
	do {
		old = xchg(&cache->xfer, NULL);
		if (old)
			list_splice_entire_tail(old, chpfirst);
		old = cmpxchg(&cache->xfer, NULL, chpfirst);
	} while (old);


	__this_cpu_write(cache->percpu->first, NULL);
	__this_cpu_write(cache->percpu->count, 0);
end:
	local_irq_restore(flags);
}

static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
{
	struct list_head *head = cache->ready;

	if (head) {
		if (!list_empty(head)) {
			cache->ready = head->next;
			list_del_init(head);
		} else
			cache->ready = NULL;
	}

	return head;
}

int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
{
	struct rds_ib_incoming *ibinc;
	struct rds_page_frag *frag;
	unsigned long to_copy;
	unsigned long frag_off = 0;
	int copied = 0;
	int ret;
	u32 len;

	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
	len = be32_to_cpu(inc->i_hdr.h_len);

	while (iov_iter_count(to) && copied < len) {
		if (frag_off == RDS_FRAG_SIZE) {
			frag = list_entry(frag->f_item.next,
					  struct rds_page_frag, f_item);
			frag_off = 0;
		}
		to_copy = min_t(unsigned long, iov_iter_count(to),
				RDS_FRAG_SIZE - frag_off);
		to_copy = min_t(unsigned long, to_copy, len - copied);

		/* XXX needs + offset for multiple recvs per page */
		rds_stats_add(s_copy_to_user, to_copy);
		ret = copy_page_to_iter(sg_page(&frag->f_sg),
					frag->f_sg.offset + frag_off,
					to_copy,
					to);
		if (ret != to_copy)
			return -EFAULT;

		frag_off += to_copy;
		copied += to_copy;
	}

	return copied;
}

/* ic starts out kzalloc()ed */
void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
{
	struct ib_send_wr *wr = &ic->i_ack_wr;
	struct ib_sge *sge = &ic->i_ack_sge;

	sge->addr = ic->i_ack_dma;
	sge->length = sizeof(struct rds_header);
	sge->lkey = ic->i_pd->local_dma_lkey;

	wr->sg_list = sge;
	wr->num_sge = 1;
	wr->opcode = IB_WR_SEND;
	wr->wr_id = RDS_IB_ACK_WR_ID;
	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
}

/*
 * You'd think that with reliable IB connections you wouldn't need to ack
 * messages that have been received.  The problem is that IB hardware generates
 * an ack message before it has DMAed the message into memory.  This creates a
 * potential message loss if the HCA is disabled for any reason between when it
 * sends the ack and before the message is DMAed and processed.  This is only a
 * potential issue if another HCA is available for fail-over.
 *
 * When the remote host receives our ack they'll free the sent message from
 * their send queue.  To decrease the latency of this we always send an ack
 * immediately after we've received messages.
 *
 * For simplicity, we only have one ack in flight at a time.  This puts
 * pressure on senders to have deep enough send queues to absorb the latency of
 * a single ack frame being in flight.  This might not be good enough.
 *
 * This is implemented by have a long-lived send_wr and sge which point to a
 * statically allocated ack frame.  This ack wr does not fall under the ring
 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 * room for it beyond the ring size.  Send completion notices its special
 * wr_id and avoids working with the ring in that case.
 */
#ifndef KERNEL_HAS_ATOMIC64
void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
{
	unsigned long flags;

	spin_lock_irqsave(&ic->i_ack_lock, flags);
	ic->i_ack_next = seq;
	if (ack_required)
		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
}

static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
{
	unsigned long flags;
	u64 seq;

	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);

	spin_lock_irqsave(&ic->i_ack_lock, flags);
	seq = ic->i_ack_next;
	spin_unlock_irqrestore(&ic->i_ack_lock, flags);

	return seq;
}
#else
void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
{
	atomic64_set(&ic->i_ack_next, seq);
	if (ack_required) {
		smp_mb__before_atomic();
		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
	}
}

static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
{
	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
	smp_mb__after_atomic();

	return atomic64_read(&ic->i_ack_next);
}
#endif


static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
{
	struct rds_header *hdr = ic->i_ack;
	u64 seq;
	int ret;

	seq = rds_ib_get_ack(ic);

	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
	rds_message_populate_header(hdr, 0, 0, 0);
	hdr->h_ack = cpu_to_be64(seq);
	hdr->h_credit = adv_credits;
	rds_message_make_checksum(hdr);
	ic->i_ack_queued = jiffies;

	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
	if (unlikely(ret)) {
		/* Failed to send. Release the WR, and
		 * force another ACK.
		 */
		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);

		rds_ib_stats_inc(s_ib_ack_send_failure);

		rds_ib_conn_error(ic->conn, "sending ack failed\n");
	} else
		rds_ib_stats_inc(s_ib_ack_sent);
}

/*
 * There are 3 ways of getting acknowledgements to the peer:
 *  1.	We call rds_ib_attempt_ack from the recv completion handler
 *	to send an ACK-only frame.
 *	However, there can be only one such frame in the send queue
 *	at any time, so we may have to postpone it.
 *  2.	When another (data) packet is transmitted while there's
 *	an ACK in the queue, we piggyback the ACK sequence number
 *	on the data packet.
 *  3.	If the ACK WR is done sending, we get called from the
 *	send queue completion handler, and check whether there's
 *	another ACK pending (postponed because the WR was on the
 *	queue). If so, we transmit it.
 *
 * We maintain 2 variables:
 *  -	i_ack_flags, which keeps track of whether the ACK WR
 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 *  -	i_ack_next, which is the last sequence number we received
 *
 * Potentially, send queue and receive queue handlers can run concurrently.
 * It would be nice to not have to use a spinlock to synchronize things,
 * but the one problem that rules this out is that 64bit updates are
 * not atomic on all platforms. Things would be a lot simpler if
 * we had atomic64 or maybe cmpxchg64 everywhere.
 *
 * Reconnecting complicates this picture just slightly. When we
 * reconnect, we may be seeing duplicate packets. The peer
 * is retransmitting them, because it hasn't seen an ACK for
 * them. It is important that we ACK these.
 *
 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 * this flag set *MUST* be acknowledged immediately.
 */

/*
 * When we get here, we're called from the recv queue handler.
 * Check whether we ought to transmit an ACK.
 */
void rds_ib_attempt_ack(struct rds_ib_connection *ic)
{
	unsigned int adv_credits;

	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
		return;

	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
		rds_ib_stats_inc(s_ib_ack_send_delayed);
		return;
	}

	/* Can we get a send credit? */
	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
		rds_ib_stats_inc(s_ib_tx_throttle);
		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
		return;
	}

	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
	rds_ib_send_ack(ic, adv_credits);
}

/*
 * We get here from the send completion handler, when the
 * adapter tells us the ACK frame was sent.
 */
void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
{
	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
	rds_ib_attempt_ack(ic);
}

/*
 * This is called by the regular xmit code when it wants to piggyback
 * an ACK on an outgoing frame.
 */
u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
{
	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
	return rds_ib_get_ack(ic);
}

/*
 * It's kind of lame that we're copying from the posted receive pages into
 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 * hopefully we won't need to invest that complexity in making it more
 * efficient.  By copying we can share a simpler core with TCP which has to
 * copy.
 */
static void rds_ib_cong_recv(struct rds_connection *conn,
			      struct rds_ib_incoming *ibinc)
{
	struct rds_cong_map *map;
	unsigned int map_off;
	unsigned int map_page;
	struct rds_page_frag *frag;
	unsigned long frag_off;
	unsigned long to_copy;
	unsigned long copied;
	__le64 uncongested = 0;
	void *addr;

	/* catch completely corrupt packets */
	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
		return;

	map = conn->c_fcong;
	map_page = 0;
	map_off = 0;

	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
	frag_off = 0;

	copied = 0;

	while (copied < RDS_CONG_MAP_BYTES) {
		__le64 *src, *dst;
		unsigned int k;

		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */

		addr = kmap_atomic(sg_page(&frag->f_sg));

		src = addr + frag->f_sg.offset + frag_off;
		dst = (void *)map->m_page_addrs[map_page] + map_off;
		for (k = 0; k < to_copy; k += 8) {
			/* Record ports that became uncongested, ie
			 * bits that changed from 0 to 1. */
			uncongested |= ~(*src) & *dst;
			*dst++ = *src++;
		}
		kunmap_atomic(addr);

		copied += to_copy;

		map_off += to_copy;
		if (map_off == PAGE_SIZE) {
			map_off = 0;
			map_page++;
		}

		frag_off += to_copy;
		if (frag_off == RDS_FRAG_SIZE) {
			frag = list_entry(frag->f_item.next,
					  struct rds_page_frag, f_item);
			frag_off = 0;
		}
	}

	/* the congestion map is in little endian order */
	rds_cong_map_updated(map, le64_to_cpu(uncongested));
}

static void rds_ib_process_recv(struct rds_connection *conn,
				struct rds_ib_recv_work *recv, u32 data_len,
				struct rds_ib_ack_state *state)
{
	struct rds_ib_connection *ic = conn->c_transport_data;
	struct rds_ib_incoming *ibinc = ic->i_ibinc;
	struct rds_header *ihdr, *hdr;

	/* XXX shut down the connection if port 0,0 are seen? */

	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
		 data_len);

	if (data_len < sizeof(struct rds_header)) {
		rds_ib_conn_error(conn, "incoming message "
		       "from %pI6c didn't include a "
		       "header, disconnecting and "
		       "reconnecting\n",
		       &conn->c_faddr);
		return;
	}
	data_len -= sizeof(struct rds_header);

	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];

	/* Validate the checksum. */
	if (!rds_message_verify_checksum(ihdr)) {
		rds_ib_conn_error(conn, "incoming message "
		       "from %pI6c has corrupted header - "
		       "forcing a reconnect\n",
		       &conn->c_faddr);
		rds_stats_inc(s_recv_drop_bad_checksum);
		return;
	}

	/* Process the ACK sequence which comes with every packet */
	state->ack_recv = be64_to_cpu(ihdr->h_ack);
	state->ack_recv_valid = 1;

	/* Process the credits update if there was one */
	if (ihdr->h_credit)
		rds_ib_send_add_credits(conn, ihdr->h_credit);

	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
		/* This is an ACK-only packet. The fact that it gets
		 * special treatment here is that historically, ACKs
		 * were rather special beasts.
		 */
		rds_ib_stats_inc(s_ib_ack_received);

		/*
		 * Usually the frags make their way on to incs and are then freed as
		 * the inc is freed.  We don't go that route, so we have to drop the
		 * page ref ourselves.  We can't just leave the page on the recv
		 * because that confuses the dma mapping of pages and each recv's use
		 * of a partial page.
		 *
		 * FIXME: Fold this into the code path below.
		 */
		rds_ib_frag_free(ic, recv->r_frag);
		recv->r_frag = NULL;
		return;
	}

	/*
	 * If we don't already have an inc on the connection then this
	 * fragment has a header and starts a message.. copy its header
	 * into the inc and save the inc so we can hang upcoming fragments
	 * off its list.
	 */
	if (!ibinc) {
		ibinc = recv->r_ibinc;
		recv->r_ibinc = NULL;
		ic->i_ibinc = ibinc;

		hdr = &ibinc->ii_inc.i_hdr;
		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
				local_clock();
		memcpy(hdr, ihdr, sizeof(*hdr));
		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
				local_clock();

		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
			 ic->i_recv_data_rem, hdr->h_flags);
	} else {
		hdr = &ibinc->ii_inc.i_hdr;
		/* We can't just use memcmp here; fragments of a
		 * single message may carry different ACKs */
		if (hdr->h_sequence != ihdr->h_sequence ||
		    hdr->h_len != ihdr->h_len ||
		    hdr->h_sport != ihdr->h_sport ||
		    hdr->h_dport != ihdr->h_dport) {
			rds_ib_conn_error(conn,
				"fragment header mismatch; forcing reconnect\n");
			return;
		}
	}

	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
	recv->r_frag = NULL;

	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
	else {
		ic->i_recv_data_rem = 0;
		ic->i_ibinc = NULL;

		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
			rds_ib_cong_recv(conn, ibinc);
		} else {
			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
					  &ibinc->ii_inc, GFP_ATOMIC);
			state->ack_next = be64_to_cpu(hdr->h_sequence);
			state->ack_next_valid = 1;
		}

		/* Evaluate the ACK_REQUIRED flag *after* we received
		 * the complete frame, and after bumping the next_rx
		 * sequence. */
		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
			rds_stats_inc(s_recv_ack_required);
			state->ack_required = 1;
		}

		rds_inc_put(&ibinc->ii_inc);
	}
}

void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
			     struct ib_wc *wc,
			     struct rds_ib_ack_state *state)
{
	struct rds_connection *conn = ic->conn;
	struct rds_ib_recv_work *recv;

	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
		 (unsigned long long)wc->wr_id, wc->status,
		 ib_wc_status_msg(wc->status), wc->byte_len,
		 be32_to_cpu(wc->ex.imm_data));

	rds_ib_stats_inc(s_ib_rx_cq_event);
	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
			DMA_FROM_DEVICE);

	/* Also process recvs in connecting state because it is possible
	 * to get a recv completion _before_ the rdmacm ESTABLISHED
	 * event is processed.
	 */
	if (wc->status == IB_WC_SUCCESS) {
		rds_ib_process_recv(conn, recv, wc->byte_len, state);
	} else {
		/* We expect errors as the qp is drained during shutdown */
		if (rds_conn_up(conn) || rds_conn_connecting(conn))
			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), disconnecting and reconnecting\n",
					  &conn->c_laddr, &conn->c_faddr,
					  conn->c_tos, wc->status,
					  ib_wc_status_msg(wc->status));
	}

	/* rds_ib_process_recv() doesn't always consume the frag, and
	 * we might not have called it at all if the wc didn't indicate
	 * success. We already unmapped the frag's pages, though, and
	 * the following rds_ib_ring_free() call tells the refill path
	 * that it will not find an allocated frag here. Make sure we
	 * keep that promise by freeing a frag that's still on the ring.
	 */
	if (recv->r_frag) {
		rds_ib_frag_free(ic, recv->r_frag);
		recv->r_frag = NULL;
	}
	rds_ib_ring_free(&ic->i_recv_ring, 1);

	/* If we ever end up with a really empty receive ring, we're
	 * in deep trouble, as the sender will definitely see RNR
	 * timeouts. */
	if (rds_ib_ring_empty(&ic->i_recv_ring))
		rds_ib_stats_inc(s_ib_rx_ring_empty);

	if (rds_ib_ring_low(&ic->i_recv_ring)) {
		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
	}
}

int rds_ib_recv_path(struct rds_conn_path *cp)
{
	struct rds_connection *conn = cp->cp_conn;
	struct rds_ib_connection *ic = conn->c_transport_data;

	rdsdebug("conn %p\n", conn);
	if (rds_conn_up(conn)) {
		rds_ib_attempt_ack(ic);
		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
	}

	return 0;
}

int rds_ib_recv_init(void)
{
	struct sysinfo si;
	int ret = -ENOMEM;

	/* Default to 30% of all available RAM for recv memory */
	si_meminfo(&si);
	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;

	rds_ib_incoming_slab =
		kmem_cache_create_usercopy("rds_ib_incoming",
					   sizeof(struct rds_ib_incoming),
					   0, SLAB_HWCACHE_ALIGN,
					   offsetof(struct rds_ib_incoming,
						    ii_inc.i_usercopy),
					   sizeof(struct rds_inc_usercopy),
					   NULL);
	if (!rds_ib_incoming_slab)
		goto out;

	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
					sizeof(struct rds_page_frag),
					0, SLAB_HWCACHE_ALIGN, NULL);
	if (!rds_ib_frag_slab) {
		kmem_cache_destroy(rds_ib_incoming_slab);
		rds_ib_incoming_slab = NULL;
	} else
		ret = 0;
out:
	return ret;
}

void rds_ib_recv_exit(void)
{
	WARN_ON(atomic_read(&rds_ib_allocation));

	kmem_cache_destroy(rds_ib_incoming_slab);
	kmem_cache_destroy(rds_ib_frag_slab);
}