/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "smu11_driver_if.h"
#include "vega20_processpptables.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "pp_debug.h"
#include "cgs_common.h"
#include "vega20_pptable.h"
#define VEGA20_FAN_TARGET_TEMPERATURE_OVERRIDE 105
static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable,
enum phm_platform_caps cap)
{
if (enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
else
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
}
static const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
{
int index = GetIndexIntoMasterDataTable(powerplayinfo);
u16 size;
u8 frev, crev;
const void *table_address = hwmgr->soft_pp_table;
if (!table_address) {
table_address = (ATOM_Vega20_POWERPLAYTABLE *)
smu_atom_get_data_table(hwmgr->adev, index,
&size, &frev, &crev);
hwmgr->soft_pp_table = table_address;
hwmgr->soft_pp_table_size = size;
}
return table_address;
}
#if 0
static void dump_pptable(PPTable_t *pptable)
{
int i;
pr_info("Version = 0x%08x\n", pptable->Version);
pr_info("FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]);
pr_info("FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]);
pr_info("SocketPowerLimitAc0 = %d\n", pptable->SocketPowerLimitAc0);
pr_info("SocketPowerLimitAc0Tau = %d\n", pptable->SocketPowerLimitAc0Tau);
pr_info("SocketPowerLimitAc1 = %d\n", pptable->SocketPowerLimitAc1);
pr_info("SocketPowerLimitAc1Tau = %d\n", pptable->SocketPowerLimitAc1Tau);
pr_info("SocketPowerLimitAc2 = %d\n", pptable->SocketPowerLimitAc2);
pr_info("SocketPowerLimitAc2Tau = %d\n", pptable->SocketPowerLimitAc2Tau);
pr_info("SocketPowerLimitAc3 = %d\n", pptable->SocketPowerLimitAc3);
pr_info("SocketPowerLimitAc3Tau = %d\n", pptable->SocketPowerLimitAc3Tau);
pr_info("SocketPowerLimitDc = %d\n", pptable->SocketPowerLimitDc);
pr_info("SocketPowerLimitDcTau = %d\n", pptable->SocketPowerLimitDcTau);
pr_info("TdcLimitSoc = %d\n", pptable->TdcLimitSoc);
pr_info("TdcLimitSocTau = %d\n", pptable->TdcLimitSocTau);
pr_info("TdcLimitGfx = %d\n", pptable->TdcLimitGfx);
pr_info("TdcLimitGfxTau = %d\n", pptable->TdcLimitGfxTau);
pr_info("TedgeLimit = %d\n", pptable->TedgeLimit);
pr_info("ThotspotLimit = %d\n", pptable->ThotspotLimit);
pr_info("ThbmLimit = %d\n", pptable->ThbmLimit);
pr_info("Tvr_gfxLimit = %d\n", pptable->Tvr_gfxLimit);
pr_info("Tvr_memLimit = %d\n", pptable->Tvr_memLimit);
pr_info("Tliquid1Limit = %d\n", pptable->Tliquid1Limit);
pr_info("Tliquid2Limit = %d\n", pptable->Tliquid2Limit);
pr_info("TplxLimit = %d\n", pptable->TplxLimit);
pr_info("FitLimit = %d\n", pptable->FitLimit);
pr_info("PpmPowerLimit = %d\n", pptable->PpmPowerLimit);
pr_info("PpmTemperatureThreshold = %d\n", pptable->PpmTemperatureThreshold);
pr_info("MemoryOnPackage = 0x%02x\n", pptable->MemoryOnPackage);
pr_info("padding8_limits = 0x%02x\n", pptable->padding8_limits);
pr_info("Tvr_SocLimit = %d\n", pptable->Tvr_SocLimit);
pr_info("UlvVoltageOffsetSoc = %d\n", pptable->UlvVoltageOffsetSoc);
pr_info("UlvVoltageOffsetGfx = %d\n", pptable->UlvVoltageOffsetGfx);
pr_info("UlvSmnclkDid = %d\n", pptable->UlvSmnclkDid);
pr_info("UlvMp1clkDid = %d\n", pptable->UlvMp1clkDid);
pr_info("UlvGfxclkBypass = %d\n", pptable->UlvGfxclkBypass);
pr_info("Padding234 = 0x%02x\n", pptable->Padding234);
pr_info("MinVoltageGfx = %d\n", pptable->MinVoltageGfx);
pr_info("MinVoltageSoc = %d\n", pptable->MinVoltageSoc);
pr_info("MaxVoltageGfx = %d\n", pptable->MaxVoltageGfx);
pr_info("MaxVoltageSoc = %d\n", pptable->MaxVoltageSoc);
pr_info("LoadLineResistanceGfx = %d\n", pptable->LoadLineResistanceGfx);
pr_info("LoadLineResistanceSoc = %d\n", pptable->LoadLineResistanceSoc);
pr_info("[PPCLK_GFXCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_GFXCLK].padding,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c);
pr_info("[PPCLK_VCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_VCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_VCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_VCLK].padding,
pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.c);
pr_info("[PPCLK_DCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_DCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DCLK].padding,
pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.c);
pr_info("[PPCLK_ECLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_ECLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_ECLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_ECLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_ECLK].padding,
pptable->DpmDescriptor[PPCLK_ECLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_ECLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_ECLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_ECLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_ECLK].SsCurve.c);
pr_info("[PPCLK_SOCCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_SOCCLK].padding,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c);
pr_info("[PPCLK_UCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_UCLK].padding,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c);
pr_info("[PPCLK_DCEFCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_DCEFCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_DCEFCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DCEFCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DCEFCLK].padding,
pptable->DpmDescriptor[PPCLK_DCEFCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DCEFCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DCEFCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DCEFCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DCEFCLK].SsCurve.c);
pr_info("[PPCLK_DISPCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_DISPCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_DISPCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DISPCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DISPCLK].padding,
pptable->DpmDescriptor[PPCLK_DISPCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DISPCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DISPCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DISPCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DISPCLK].SsCurve.c);
pr_info("[PPCLK_PIXCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_PIXCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_PIXCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_PIXCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_PIXCLK].padding,
pptable->DpmDescriptor[PPCLK_PIXCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_PIXCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_PIXCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_PIXCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_PIXCLK].SsCurve.c);
pr_info("[PPCLK_PHYCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_PHYCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_PHYCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_PHYCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_PHYCLK].padding,
pptable->DpmDescriptor[PPCLK_PHYCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_PHYCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_PHYCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_PHYCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_PHYCLK].SsCurve.c);
pr_info("[PPCLK_FCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n",
pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_FCLK].padding,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c);
pr_info("FreqTableGfx\n");
for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableGfx[i]);
pr_info("FreqTableVclk\n");
for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableVclk[i]);
pr_info("FreqTableDclk\n");
for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDclk[i]);
pr_info("FreqTableEclk\n");
for (i = 0; i < NUM_ECLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableEclk[i]);
pr_info("FreqTableSocclk\n");
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableSocclk[i]);
pr_info("FreqTableUclk\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableUclk[i]);
pr_info("FreqTableFclk\n");
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableFclk[i]);
pr_info("FreqTableDcefclk\n");
for (i = 0; i < NUM_DCEFCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDcefclk[i]);
pr_info("FreqTableDispclk\n");
for (i = 0; i < NUM_DISPCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDispclk[i]);
pr_info("FreqTablePixclk\n");
for (i = 0; i < NUM_PIXCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTablePixclk[i]);
pr_info("FreqTablePhyclk\n");
for (i = 0; i < NUM_PHYCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTablePhyclk[i]);
pr_info("DcModeMaxFreq[PPCLK_GFXCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_GFXCLK]);
pr_info("DcModeMaxFreq[PPCLK_VCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_VCLK]);
pr_info("DcModeMaxFreq[PPCLK_DCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_DCLK]);
pr_info("DcModeMaxFreq[PPCLK_ECLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_ECLK]);
pr_info("DcModeMaxFreq[PPCLK_SOCCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_SOCCLK]);
pr_info("DcModeMaxFreq[PPCLK_UCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_UCLK]);
pr_info("DcModeMaxFreq[PPCLK_DCEFCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_DCEFCLK]);
pr_info("DcModeMaxFreq[PPCLK_DISPCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_DISPCLK]);
pr_info("DcModeMaxFreq[PPCLK_PIXCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_PIXCLK]);
pr_info("DcModeMaxFreq[PPCLK_PHYCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_PHYCLK]);
pr_info("DcModeMaxFreq[PPCLK_FCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_FCLK]);
pr_info("Padding8_Clks = %d\n", pptable->Padding8_Clks);
pr_info("Mp0clkFreq\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->Mp0clkFreq[i]);
pr_info("Mp0DpmVoltage\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->Mp0DpmVoltage[i]);
pr_info("GfxclkFidle = 0x%x\n", pptable->GfxclkFidle);
pr_info("GfxclkSlewRate = 0x%x\n", pptable->GfxclkSlewRate);
pr_info("CksEnableFreq = 0x%x\n", pptable->CksEnableFreq);
pr_info("Padding789 = 0x%x\n", pptable->Padding789);
pr_info("CksVoltageOffset[a = 0x%08x b = 0x%08x c = 0x%08x]\n",
pptable->CksVoltageOffset.a,
pptable->CksVoltageOffset.b,
pptable->CksVoltageOffset.c);
pr_info("Padding567[0] = 0x%x\n", pptable->Padding567[0]);
pr_info("Padding567[1] = 0x%x\n", pptable->Padding567[1]);
pr_info("Padding567[2] = 0x%x\n", pptable->Padding567[2]);
pr_info("Padding567[3] = 0x%x\n", pptable->Padding567[3]);
pr_info("GfxclkDsMaxFreq = %d\n", pptable->GfxclkDsMaxFreq);
pr_info("GfxclkSource = 0x%x\n", pptable->GfxclkSource);
pr_info("Padding456 = 0x%x\n", pptable->Padding456);
pr_info("LowestUclkReservedForUlv = %d\n", pptable->LowestUclkReservedForUlv);
pr_info("Padding8_Uclk[0] = 0x%x\n", pptable->Padding8_Uclk[0]);
pr_info("Padding8_Uclk[1] = 0x%x\n", pptable->Padding8_Uclk[1]);
pr_info("Padding8_Uclk[2] = 0x%x\n", pptable->Padding8_Uclk[2]);
pr_info("PcieGenSpeed\n");
for (i = 0; i < NUM_LINK_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->PcieGenSpeed[i]);
pr_info("PcieLaneCount\n");
for (i = 0; i < NUM_LINK_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->PcieLaneCount[i]);
pr_info("LclkFreq\n");
for (i = 0; i < NUM_LINK_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->LclkFreq[i]);
pr_info("EnableTdpm = %d\n", pptable->EnableTdpm);
pr_info("TdpmHighHystTemperature = %d\n", pptable->TdpmHighHystTemperature);
pr_info("TdpmLowHystTemperature = %d\n", pptable->TdpmLowHystTemperature);
pr_info("GfxclkFreqHighTempLimit = %d\n", pptable->GfxclkFreqHighTempLimit);
pr_info("FanStopTemp = %d\n", pptable->FanStopTemp);
pr_info("FanStartTemp = %d\n", pptable->FanStartTemp);
pr_info("FanGainEdge = %d\n", pptable->FanGainEdge);
pr_info("FanGainHotspot = %d\n", pptable->FanGainHotspot);
pr_info("FanGainLiquid = %d\n", pptable->FanGainLiquid);
pr_info("FanGainVrGfx = %d\n", pptable->FanGainVrGfx);
pr_info("FanGainVrSoc = %d\n", pptable->FanGainVrSoc);
pr_info("FanGainPlx = %d\n", pptable->FanGainPlx);
pr_info("FanGainHbm = %d\n", pptable->FanGainHbm);
pr_info("FanPwmMin = %d\n", pptable->FanPwmMin);
pr_info("FanAcousticLimitRpm = %d\n", pptable->FanAcousticLimitRpm);
pr_info("FanThrottlingRpm = %d\n", pptable->FanThrottlingRpm);
pr_info("FanMaximumRpm = %d\n", pptable->FanMaximumRpm);
pr_info("FanTargetTemperature = %d\n", pptable->FanTargetTemperature);
pr_info("FanTargetGfxclk = %d\n", pptable->FanTargetGfxclk);
pr_info("FanZeroRpmEnable = %d\n", pptable->FanZeroRpmEnable);
pr_info("FanTachEdgePerRev = %d\n", pptable->FanTachEdgePerRev);
pr_info("FuzzyFan_ErrorSetDelta = %d\n", pptable->FuzzyFan_ErrorSetDelta);
pr_info("FuzzyFan_ErrorRateSetDelta = %d\n", pptable->FuzzyFan_ErrorRateSetDelta);
pr_info("FuzzyFan_PwmSetDelta = %d\n", pptable->FuzzyFan_PwmSetDelta);
pr_info("FuzzyFan_Reserved = %d\n", pptable->FuzzyFan_Reserved);
pr_info("OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]);
pr_info("OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]);
pr_info("Padding8_Avfs[0] = %d\n", pptable->Padding8_Avfs[0]);
pr_info("Padding8_Avfs[1] = %d\n", pptable->Padding8_Avfs[1]);
pr_info("qAvfsGb[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qAvfsGb[AVFS_VOLTAGE_GFX].a,
pptable->qAvfsGb[AVFS_VOLTAGE_GFX].b,
pptable->qAvfsGb[AVFS_VOLTAGE_GFX].c);
pr_info("qAvfsGb[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qAvfsGb[AVFS_VOLTAGE_SOC].a,
pptable->qAvfsGb[AVFS_VOLTAGE_SOC].b,
pptable->qAvfsGb[AVFS_VOLTAGE_SOC].c);
pr_info("dBtcGbGfxCksOn{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxCksOn.a,
pptable->dBtcGbGfxCksOn.b,
pptable->dBtcGbGfxCksOn.c);
pr_info("dBtcGbGfxCksOff{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxCksOff.a,
pptable->dBtcGbGfxCksOff.b,
pptable->dBtcGbGfxCksOff.c);
pr_info("dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxAfll.a,
pptable->dBtcGbGfxAfll.b,
pptable->dBtcGbGfxAfll.c);
pr_info("dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbSoc.a,
pptable->dBtcGbSoc.b,
pptable->dBtcGbSoc.c);
pr_info("qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_GFX].m,
pptable->qAgingGb[AVFS_VOLTAGE_GFX].b);
pr_info("qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_SOC].m,
pptable->qAgingGb[AVFS_VOLTAGE_SOC].b);
pr_info("qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c);
pr_info("qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c);
pr_info("DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]);
pr_info("DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]);
pr_info("DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]);
pr_info("Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]);
pr_info("Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]);
pr_info("DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]);
pr_info("DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]);
pr_info("XgmiLinkSpeed\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiLinkSpeed[i]);
pr_info("XgmiLinkWidth\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiLinkWidth[i]);
pr_info("XgmiFclkFreq\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiFclkFreq[i]);
pr_info("XgmiUclkFreq\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiUclkFreq[i]);
pr_info("XgmiSocclkFreq\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiSocclkFreq[i]);
pr_info("XgmiSocVoltage\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiSocVoltage[i]);
pr_info("DebugOverrides = 0x%x\n", pptable->DebugOverrides);
pr_info("ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation0.a,
pptable->ReservedEquation0.b,
pptable->ReservedEquation0.c);
pr_info("ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation1.a,
pptable->ReservedEquation1.b,
pptable->ReservedEquation1.c);
pr_info("ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation2.a,
pptable->ReservedEquation2.b,
pptable->ReservedEquation2.c);
pr_info("ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation3.a,
pptable->ReservedEquation3.b,
pptable->ReservedEquation3.c);
pr_info("MinVoltageUlvGfx = %d\n", pptable->MinVoltageUlvGfx);
pr_info("MinVoltageUlvSoc = %d\n", pptable->MinVoltageUlvSoc);
pr_info("MGpuFanBoostLimitRpm = %d\n", pptable->MGpuFanBoostLimitRpm);
pr_info("padding16_Fan = %d\n", pptable->padding16_Fan);
pr_info("FanGainVrMem0 = %d\n", pptable->FanGainVrMem0);
pr_info("FanGainVrMem0 = %d\n", pptable->FanGainVrMem0);
pr_info("DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]);
for (i = 0; i < 11; i++)
pr_info("Reserved[%d] = 0x%x\n", i, pptable->Reserved[i]);
for (i = 0; i < 3; i++)
pr_info("Padding32[%d] = 0x%x\n", i, pptable->Padding32[i]);
pr_info("MaxVoltageStepGfx = 0x%x\n", pptable->MaxVoltageStepGfx);
pr_info("MaxVoltageStepSoc = 0x%x\n", pptable->MaxVoltageStepSoc);
pr_info("VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping);
pr_info("VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping);
pr_info("VddMem0VrMapping = 0x%x\n", pptable->VddMem0VrMapping);
pr_info("VddMem1VrMapping = 0x%x\n", pptable->VddMem1VrMapping);
pr_info("GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask);
pr_info("SocUlvPhaseSheddingMask = 0x%x\n", pptable->SocUlvPhaseSheddingMask);
pr_info("ExternalSensorPresent = 0x%x\n", pptable->ExternalSensorPresent);
pr_info("Padding8_V = 0x%x\n", pptable->Padding8_V);
pr_info("GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent);
pr_info("GfxOffset = 0x%x\n", pptable->GfxOffset);
pr_info("Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx);
pr_info("SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent);
pr_info("SocOffset = 0x%x\n", pptable->SocOffset);
pr_info("Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc);
pr_info("Mem0MaxCurrent = 0x%x\n", pptable->Mem0MaxCurrent);
pr_info("Mem0Offset = 0x%x\n", pptable->Mem0Offset);
pr_info("Padding_TelemetryMem0 = 0x%x\n", pptable->Padding_TelemetryMem0);
pr_info("Mem1MaxCurrent = 0x%x\n", pptable->Mem1MaxCurrent);
pr_info("Mem1Offset = 0x%x\n", pptable->Mem1Offset);
pr_info("Padding_TelemetryMem1 = 0x%x\n", pptable->Padding_TelemetryMem1);
pr_info("AcDcGpio = %d\n", pptable->AcDcGpio);
pr_info("AcDcPolarity = %d\n", pptable->AcDcPolarity);
pr_info("VR0HotGpio = %d\n", pptable->VR0HotGpio);
pr_info("VR0HotPolarity = %d\n", pptable->VR0HotPolarity);
pr_info("VR1HotGpio = %d\n", pptable->VR1HotGpio);
pr_info("VR1HotPolarity = %d\n", pptable->VR1HotPolarity);
pr_info("Padding1 = 0x%x\n", pptable->Padding1);
pr_info("Padding2 = 0x%x\n", pptable->Padding2);
pr_info("LedPin0 = %d\n", pptable->LedPin0);
pr_info("LedPin1 = %d\n", pptable->LedPin1);
pr_info("LedPin2 = %d\n", pptable->LedPin2);
pr_info("padding8_4 = 0x%x\n", pptable->padding8_4);
pr_info("PllGfxclkSpreadEnabled = %d\n", pptable->PllGfxclkSpreadEnabled);
pr_info("PllGfxclkSpreadPercent = %d\n", pptable->PllGfxclkSpreadPercent);
pr_info("PllGfxclkSpreadFreq = %d\n", pptable->PllGfxclkSpreadFreq);
pr_info("UclkSpreadEnabled = %d\n", pptable->UclkSpreadEnabled);
pr_info("UclkSpreadPercent = %d\n", pptable->UclkSpreadPercent);
pr_info("UclkSpreadFreq = %d\n", pptable->UclkSpreadFreq);
pr_info("FclkSpreadEnabled = %d\n", pptable->FclkSpreadEnabled);
pr_info("FclkSpreadPercent = %d\n", pptable->FclkSpreadPercent);
pr_info("FclkSpreadFreq = %d\n", pptable->FclkSpreadFreq);
pr_info("FllGfxclkSpreadEnabled = %d\n", pptable->FllGfxclkSpreadEnabled);
pr_info("FllGfxclkSpreadPercent = %d\n", pptable->FllGfxclkSpreadPercent);
pr_info("FllGfxclkSpreadFreq = %d\n", pptable->FllGfxclkSpreadFreq);
for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) {
pr_info("I2cControllers[%d]:\n", i);
pr_info(" .Enabled = %d\n",
pptable->I2cControllers[i].Enabled);
pr_info(" .SlaveAddress = 0x%x\n",
pptable->I2cControllers[i].SlaveAddress);
pr_info(" .ControllerPort = %d\n",
pptable->I2cControllers[i].ControllerPort);
pr_info(" .ControllerName = %d\n",
pptable->I2cControllers[i].ControllerName);
pr_info(" .ThermalThrottler = %d\n",
pptable->I2cControllers[i].ThermalThrottler);
pr_info(" .I2cProtocol = %d\n",
pptable->I2cControllers[i].I2cProtocol);
pr_info(" .I2cSpeed = %d\n",
pptable->I2cControllers[i].I2cSpeed);
}
for (i = 0; i < 10; i++)
pr_info("BoardReserved[%d] = 0x%x\n", i, pptable->BoardReserved[i]);
for (i = 0; i < 8; i++)
pr_info("MmHubPadding[%d] = 0x%x\n", i, pptable->MmHubPadding[i]);
}
#endif
static int check_powerplay_tables(
struct pp_hwmgr *hwmgr,
const ATOM_Vega20_POWERPLAYTABLE *powerplay_table)
{
PP_ASSERT_WITH_CODE((powerplay_table->sHeader.format_revision >=
ATOM_VEGA20_TABLE_REVISION_VEGA20),
"Unsupported PPTable format!", return -1);
PP_ASSERT_WITH_CODE(powerplay_table->sHeader.structuresize > 0,
"Invalid PowerPlay Table!", return -1);
if (powerplay_table->smcPPTable.Version != PPTABLE_V20_SMU_VERSION) {
pr_info("Unmatch PPTable version: "
"pptable from VBIOS is V%d while driver supported is V%d!",
powerplay_table->smcPPTable.Version,
PPTABLE_V20_SMU_VERSION);
return -EINVAL;
}
//dump_pptable(&powerplay_table->smcPPTable);
return 0;
}
static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
{
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_POWERPLAY),
PHM_PlatformCaps_PowerPlaySupport);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
PHM_PlatformCaps_BiosPowerSourceControl);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_BACO),
PHM_PlatformCaps_BACO);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_BAMACO),
PHM_PlatformCaps_BAMACO);
return 0;
}
static int copy_overdrive_feature_capabilities_array(
struct pp_hwmgr *hwmgr,
uint8_t **pptable_info_array,
const uint8_t *pptable_array,
uint8_t od_feature_count)
{
uint32_t array_size, i;
uint8_t *table;
bool od_supported = false;
array_size = sizeof(uint8_t) * od_feature_count;
table = kzalloc(array_size, GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
for (i = 0; i < od_feature_count; i++) {
table[i] = le32_to_cpu(pptable_array[i]);
if (table[i])
od_supported = true;
}
*pptable_info_array = table;
if (od_supported)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ACOverdriveSupport);
return 0;
}
static int append_vbios_pptable(struct pp_hwmgr *hwmgr, PPTable_t *ppsmc_pptable)
{
struct atom_smc_dpm_info_v4_4 *smc_dpm_table;
int index = GetIndexIntoMasterDataTable(smc_dpm_info);
int i;
PP_ASSERT_WITH_CODE(
smc_dpm_table = smu_atom_get_data_table(hwmgr->adev, index, NULL, NULL, NULL),
"[appendVbiosPPTable] Failed to retrieve Smc Dpm Table from VBIOS!",
return -1);
ppsmc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx;
ppsmc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc;
ppsmc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping;
ppsmc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping;
ppsmc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping;
ppsmc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping;
ppsmc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask;
ppsmc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask;
ppsmc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent;
ppsmc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent;
ppsmc_pptable->GfxOffset = smc_dpm_table->gfxoffset;
ppsmc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx;
ppsmc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent;
ppsmc_pptable->SocOffset = smc_dpm_table->socoffset;
ppsmc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc;
ppsmc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent;
ppsmc_pptable->Mem0Offset = smc_dpm_table->mem0offset;
ppsmc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0;
ppsmc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent;
ppsmc_pptable->Mem1Offset = smc_dpm_table->mem1offset;
ppsmc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1;
ppsmc_pptable->AcDcGpio = smc_dpm_table->acdcgpio;
ppsmc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity;
ppsmc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio;
ppsmc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity;
ppsmc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio;
ppsmc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity;
ppsmc_pptable->Padding1 = smc_dpm_table->padding1;
ppsmc_pptable->Padding2 = smc_dpm_table->padding2;
ppsmc_pptable->LedPin0 = smc_dpm_table->ledpin0;
ppsmc_pptable->LedPin1 = smc_dpm_table->ledpin1;
ppsmc_pptable->LedPin2 = smc_dpm_table->ledpin2;
ppsmc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled;
ppsmc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent;
ppsmc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq;
ppsmc_pptable->UclkSpreadEnabled = 0;
ppsmc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent;
ppsmc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq;
ppsmc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled;
ppsmc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent;
ppsmc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq;
ppsmc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled;
ppsmc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent;
ppsmc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq;
for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) {
ppsmc_pptable->I2cControllers[i].Enabled =
smc_dpm_table->i2ccontrollers[i].enabled;
ppsmc_pptable->I2cControllers[i].SlaveAddress =
smc_dpm_table->i2ccontrollers[i].slaveaddress;
ppsmc_pptable->I2cControllers[i].ControllerPort =
smc_dpm_table->i2ccontrollers[i].controllerport;
ppsmc_pptable->I2cControllers[i].ThermalThrottler =
smc_dpm_table->i2ccontrollers[i].thermalthrottler;
ppsmc_pptable->I2cControllers[i].I2cProtocol =
smc_dpm_table->i2ccontrollers[i].i2cprotocol;
ppsmc_pptable->I2cControllers[i].I2cSpeed =
smc_dpm_table->i2ccontrollers[i].i2cspeed;
}
return 0;
}
static int override_powerplay_table_fantargettemperature(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
PPTable_t *ppsmc_pptable = (PPTable_t *)(pptable_information->smc_pptable);
ppsmc_pptable->FanTargetTemperature = VEGA20_FAN_TARGET_TEMPERATURE_OVERRIDE;
return 0;
}
#define VEGA20_ENGINECLOCK_HARDMAX 198000
static int init_powerplay_table_information(
struct pp_hwmgr *hwmgr,
const ATOM_Vega20_POWERPLAYTABLE *powerplay_table)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
uint32_t disable_power_control = 0;
uint32_t od_feature_count, od_setting_count, power_saving_clock_count;
int result;
hwmgr->thermal_controller.ucType = powerplay_table->ucThermalControllerType;
pptable_information->uc_thermal_controller_type = powerplay_table->ucThermalControllerType;
hwmgr->thermal_controller.fanInfo.ulMinRPM = 0;
hwmgr->thermal_controller.fanInfo.ulMaxRPM = powerplay_table->smcPPTable.FanMaximumRpm;
set_hw_cap(hwmgr,
ATOM_VEGA20_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
PHM_PlatformCaps_ThermalController);
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) {
od_feature_count =
(le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) >
ATOM_VEGA20_ODFEATURE_COUNT) ?
ATOM_VEGA20_ODFEATURE_COUNT :
le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount);
od_setting_count =
(le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) >
ATOM_VEGA20_ODSETTING_COUNT) ?
ATOM_VEGA20_ODSETTING_COUNT :
le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount);
copy_overdrive_feature_capabilities_array(hwmgr,
&pptable_information->od_feature_capabilities,
powerplay_table->OverDrive8Table.ODFeatureCapabilities,
od_feature_count);
phm_copy_overdrive_settings_limits_array(hwmgr,
&pptable_information->od_settings_max,
powerplay_table->OverDrive8Table.ODSettingsMax,
od_setting_count);
phm_copy_overdrive_settings_limits_array(hwmgr,
&pptable_information->od_settings_min,
powerplay_table->OverDrive8Table.ODSettingsMin,
od_setting_count);
}
pptable_information->us_small_power_limit1 = le16_to_cpu(powerplay_table->usSmallPowerLimit1);
pptable_information->us_small_power_limit2 = le16_to_cpu(powerplay_table->usSmallPowerLimit2);
pptable_information->us_boost_power_limit = le16_to_cpu(powerplay_table->usBoostPowerLimit);
pptable_information->us_od_turbo_power_limit = le16_to_cpu(powerplay_table->usODTurboPowerLimit);
pptable_information->us_od_powersave_power_limit = le16_to_cpu(powerplay_table->usODPowerSavePowerLimit);
pptable_information->us_software_shutdown_temp = le16_to_cpu(powerplay_table->usSoftwareShutdownTemp);
hwmgr->platform_descriptor.TDPODLimit = le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingsMax[ATOM_VEGA20_ODSETTING_POWERPERCENTAGE]);
disable_power_control = 0;
if (!disable_power_control && hwmgr->platform_descriptor.TDPODLimit)
/* enable TDP overdrive (PowerControl) feature as well if supported */
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerControl);
if (powerplay_table->PowerSavingClockTable.ucTableRevision == 1) {
power_saving_clock_count =
(le32_to_cpu(powerplay_table->PowerSavingClockTable.PowerSavingClockCount) >=
ATOM_VEGA20_PPCLOCK_COUNT) ?
ATOM_VEGA20_PPCLOCK_COUNT :
le32_to_cpu(powerplay_table->PowerSavingClockTable.PowerSavingClockCount);
phm_copy_clock_limits_array(hwmgr,
&pptable_information->power_saving_clock_max,
powerplay_table->PowerSavingClockTable.PowerSavingClockMax,
power_saving_clock_count);
phm_copy_clock_limits_array(hwmgr,
&pptable_information->power_saving_clock_min,
powerplay_table->PowerSavingClockTable.PowerSavingClockMin,
power_saving_clock_count);
}
pptable_information->smc_pptable = (PPTable_t *)kmalloc(sizeof(PPTable_t), GFP_KERNEL);
if (pptable_information->smc_pptable == NULL)
return -ENOMEM;
memcpy(pptable_information->smc_pptable,
&(powerplay_table->smcPPTable),
sizeof(PPTable_t));
result = append_vbios_pptable(hwmgr, (pptable_information->smc_pptable));
if (result)
return result;
result = override_powerplay_table_fantargettemperature(hwmgr);
return result;
}
static int vega20_pp_tables_initialize(struct pp_hwmgr *hwmgr)
{
int result = 0;
const ATOM_Vega20_POWERPLAYTABLE *powerplay_table;
hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v3_information), GFP_KERNEL);
PP_ASSERT_WITH_CODE((hwmgr->pptable != NULL),
"Failed to allocate hwmgr->pptable!", return -ENOMEM);
powerplay_table = get_powerplay_table(hwmgr);
PP_ASSERT_WITH_CODE((powerplay_table != NULL),
"Missing PowerPlay Table!", return -1);
result = check_powerplay_tables(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"check_powerplay_tables failed", return result);
result = set_platform_caps(hwmgr,
le32_to_cpu(powerplay_table->ulPlatformCaps));
PP_ASSERT_WITH_CODE((result == 0),
"set_platform_caps failed", return result);
result = init_powerplay_table_information(hwmgr, powerplay_table);
PP_ASSERT_WITH_CODE((result == 0),
"init_powerplay_table_information failed", return result);
return result;
}
static int vega20_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v3_information *pp_table_info =
(struct phm_ppt_v3_information *)(hwmgr->pptable);
kfree(pp_table_info->power_saving_clock_max);
pp_table_info->power_saving_clock_max = NULL;
kfree(pp_table_info->power_saving_clock_min);
pp_table_info->power_saving_clock_min = NULL;
kfree(pp_table_info->od_feature_capabilities);
pp_table_info->od_feature_capabilities = NULL;
kfree(pp_table_info->od_settings_max);
pp_table_info->od_settings_max = NULL;
kfree(pp_table_info->od_settings_min);
pp_table_info->od_settings_min = NULL;
kfree(pp_table_info->smc_pptable);
pp_table_info->smc_pptable = NULL;
kfree(hwmgr->pptable);
hwmgr->pptable = NULL;
return 0;
}
const struct pp_table_func vega20_pptable_funcs = {
.pptable_init = vega20_pp_tables_initialize,
.pptable_fini = vega20_pp_tables_uninitialize,
};