// SPDX-License-Identifier: GPL-2.0
/* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
*
* Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
* Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
*
* References:
* o IOC3 ASIC specification 4.51, 1996-04-18
* o IEEE 802.3 specification, 2000 edition
* o DP38840A Specification, National Semiconductor, March 1997
*
* To do:
*
* o Use prefetching for large packets. What is a good lower limit for
* prefetching?
* o Use hardware checksums.
* o Convert to using a IOC3 meta driver.
* o Which PHYs might possibly be attached to the IOC3 in real live,
* which workarounds are required for them? Do we ever have Lucent's?
* o For the 2.5 branch kill the mii-tool ioctls.
*/
#define IOC3_NAME "ioc3-eth"
#define IOC3_VERSION "2.6.3-4"
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/gfp.h>
#ifdef [31mCONFIG_SERIAL_8250[0m
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/serial_reg.h>
#endif
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/dma-direct.h>
#include <net/ip.h>
#include <asm/byteorder.h>
#include <asm/pgtable.h>
#include <linux/uaccess.h>
#include <asm/sn/types.h>
#include <asm/sn/ioc3.h>
#include <asm/pci/bridge.h>
/* Number of RX buffers. This is tunable in the range of 16 <= x < 512.
* The value must be a power of two.
*/
#define RX_BUFFS 64
#define RX_RING_ENTRIES 512 /* fixed in hardware */
#define RX_RING_MASK (RX_RING_ENTRIES - 1)
#define RX_RING_SIZE (RX_RING_ENTRIES * sizeof(u64))
/* 128 TX buffers (not tunable) */
#define TX_RING_ENTRIES 128
#define TX_RING_MASK (TX_RING_ENTRIES - 1)
#define TX_RING_SIZE (TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
/* IOC3 does dma transfers in 128 byte blocks */
#define IOC3_DMA_XFER_LEN 128UL
/* Every RX buffer starts with 8 byte descriptor data */
#define RX_OFFSET (sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
#define RX_BUF_SIZE (13 * IOC3_DMA_XFER_LEN)
#define ETCSR_FD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
#define ETCSR_HD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
/* Private per NIC data of the driver. */
struct ioc3_private {
struct ioc3_ethregs *regs;
struct ioc3 *all_regs;
struct device *dma_dev;
u32 *ssram;
unsigned long *rxr; /* pointer to receiver ring */
struct ioc3_etxd *txr;
dma_addr_t rxr_dma;
dma_addr_t txr_dma;
struct sk_buff *rx_skbs[RX_RING_ENTRIES];
struct sk_buff *tx_skbs[TX_RING_ENTRIES];
int rx_ci; /* RX consumer index */
int rx_pi; /* RX producer index */
int tx_ci; /* TX consumer index */
int tx_pi; /* TX producer index */
int txqlen;
u32 emcr, ehar_h, ehar_l;
spinlock_t ioc3_lock;
struct mii_if_info mii;
struct net_device *dev;
struct pci_dev *pdev;
/* Members used by autonegotiation */
struct timer_list ioc3_timer;
};
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void ioc3_set_multicast_list(struct net_device *dev);
static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void ioc3_timeout(struct net_device *dev);
static inline unsigned int ioc3_hash(const unsigned char *addr);
static void ioc3_start(struct ioc3_private *ip);
static inline void ioc3_stop(struct ioc3_private *ip);
static void ioc3_init(struct net_device *dev);
static int ioc3_alloc_rx_bufs(struct net_device *dev);
static void ioc3_free_rx_bufs(struct ioc3_private *ip);
static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
static const char ioc3_str[] = "IOC3 Ethernet";
static const struct ethtool_ops ioc3_ethtool_ops;
static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
{
return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
}
static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
{
struct sk_buff *new_skb;
dma_addr_t d;
int offset;
new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
if (!new_skb)
return -ENOMEM;
/* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
if (offset)
skb_reserve(new_skb, offset);
d = dma_map_single(ip->dma_dev, new_skb->data,
RX_BUF_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(ip->dma_dev, d)) {
dev_kfree_skb_any(new_skb);
return -ENOMEM;
}
*rxb_dma = d;
*rxb = (struct ioc3_erxbuf *)new_skb->data;
skb_reserve(new_skb, RX_OFFSET);
*skb = new_skb;
return 0;
}
#ifdef [31mCONFIG_PCI_XTALK_BRIDGE[0m
static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
{
return (addr & ~PCI64_ATTR_BAR) | attr;
}
#define ERBAR_VAL (ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
#else
static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
{
return addr;
}
#define ERBAR_VAL 0
#endif
#define IOC3_SIZE 0x100000
static inline u32 mcr_pack(u32 pulse, u32 sample)
{
return (pulse << 10) | (sample << 2);
}
static int nic_wait(u32 __iomem *mcr)
{
u32 m;
do {
m = readl(mcr);
} while (!(m & 2));
return m & 1;
}
static int nic_reset(u32 __iomem *mcr)
{
int presence;
writel(mcr_pack(500, 65), mcr);
presence = nic_wait(mcr);
writel(mcr_pack(0, 500), mcr);
nic_wait(mcr);
return presence;
}
static inline int nic_read_bit(u32 __iomem *mcr)
{
int result;
writel(mcr_pack(6, 13), mcr);
result = nic_wait(mcr);
writel(mcr_pack(0, 100), mcr);
nic_wait(mcr);
return result;
}
static inline void nic_write_bit(u32 __iomem *mcr, int bit)
{
if (bit)
writel(mcr_pack(6, 110), mcr);
else
writel(mcr_pack(80, 30), mcr);
nic_wait(mcr);
}
/* Read a byte from an iButton device
*/
static u32 nic_read_byte(u32 __iomem *mcr)
{
u32 result = 0;
int i;
for (i = 0; i < 8; i++)
result = (result >> 1) | (nic_read_bit(mcr) << 7);
return result;
}
/* Write a byte to an iButton device
*/
static void nic_write_byte(u32 __iomem *mcr, int byte)
{
int i, bit;
for (i = 8; i; i--) {
bit = byte & 1;
byte >>= 1;
nic_write_bit(mcr, bit);
}
}
static u64 nic_find(u32 __iomem *mcr, int *last)
{
int a, b, index, disc;
u64 address = 0;
nic_reset(mcr);
/* Search ROM. */
nic_write_byte(mcr, 0xf0);
/* Algorithm from ``Book of iButton Standards''. */
for (index = 0, disc = 0; index < 64; index++) {
a = nic_read_bit(mcr);
b = nic_read_bit(mcr);
if (a && b) {
pr_warn("NIC search failed (not fatal).\n");
*last = 0;
return 0;
}
if (!a && !b) {
if (index == *last) {
address |= 1UL << index;
} else if (index > *last) {
address &= ~(1UL << index);
disc = index;
} else if ((address & (1UL << index)) == 0) {
disc = index;
}
nic_write_bit(mcr, address & (1UL << index));
continue;
} else {
if (a)
address |= 1UL << index;
else
address &= ~(1UL << index);
nic_write_bit(mcr, a);
continue;
}
}
*last = disc;
return address;
}
static int nic_init(u32 __iomem *mcr)
{
const char *unknown = "unknown";
const char *type = unknown;
u8 crc;
u8 serial[6];
int save = 0, i;
while (1) {
u64 reg;
reg = nic_find(mcr, &save);
switch (reg & 0xff) {
case 0x91:
type = "DS1981U";
break;
default:
if (save == 0) {
/* Let the caller try again. */
return -1;
}
continue;
}
nic_reset(mcr);
/* Match ROM. */
nic_write_byte(mcr, 0x55);
for (i = 0; i < 8; i++)
nic_write_byte(mcr, (reg >> (i << 3)) & 0xff);
reg >>= 8; /* Shift out type. */
for (i = 0; i < 6; i++) {
serial[i] = reg & 0xff;
reg >>= 8;
}
crc = reg & 0xff;
break;
}
pr_info("Found %s NIC", type);
if (type != unknown)
pr_cont(" registration number %pM, CRC %02x", serial, crc);
pr_cont(".\n");
return 0;
}
/* Read the NIC (Number-In-a-Can) device used to store the MAC address on
* SN0 / SN00 nodeboards and PCI cards.
*/
static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
{
u32 __iomem *mcr = &ip->all_regs->mcr;
int tries = 2; /* There may be some problem with the battery? */
u8 nic[14];
int i;
writel(1 << 21, &ip->all_regs->gpcr_s);
while (tries--) {
if (!nic_init(mcr))
break;
udelay(500);
}
if (tries < 0) {
pr_err("Failed to read MAC address\n");
return;
}
/* Read Memory. */
nic_write_byte(mcr, 0xf0);
nic_write_byte(mcr, 0x00);
nic_write_byte(mcr, 0x00);
for (i = 13; i >= 0; i--)
nic[i] = nic_read_byte(mcr);
for (i = 2; i < 8; i++)
ip->dev->dev_addr[i - 2] = nic[i];
}
/* Ok, this is hosed by design. It's necessary to know what machine the
* NIC is in in order to know how to read the NIC address. We also have
* to know if it's a PCI card or a NIC in on the node board ...
*/
static void ioc3_get_eaddr(struct ioc3_private *ip)
{
ioc3_get_eaddr_nic(ip);
pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr);
}
static void __ioc3_set_mac_address(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
writel((dev->dev_addr[5] << 8) |
dev->dev_addr[4],
&ip->regs->emar_h);
writel((dev->dev_addr[3] << 24) |
(dev->dev_addr[2] << 16) |
(dev->dev_addr[1] << 8) |
dev->dev_addr[0],
&ip->regs->emar_l);
}
static int ioc3_set_mac_address(struct net_device *dev, void *addr)
{
struct ioc3_private *ip = netdev_priv(dev);
struct sockaddr *sa = addr;
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
spin_lock_irq(&ip->ioc3_lock);
__ioc3_set_mac_address(dev);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
/* Caller must hold the ioc3_lock ever for MII readers. This is also
* used to protect the transmitter side but it's low contention.
*/
static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
while (readl(®s->micr) & MICR_BUSY)
;
writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
®s->micr);
while (readl(®s->micr) & MICR_BUSY)
;
return readl(®s->midr_r) & MIDR_DATA_MASK;
}
static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
while (readl(®s->micr) & MICR_BUSY)
;
writel(data, ®s->midr_w);
writel((phy << MICR_PHYADDR_SHIFT) | reg, ®s->micr);
while (readl(®s->micr) & MICR_BUSY)
;
}
static int ioc3_mii_init(struct ioc3_private *ip);
static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
dev->stats.collisions += readl(®s->etcdc) & ETCDC_COLLCNT_MASK;
return &dev->stats;
}
static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
{
struct ethhdr *eh = eth_hdr(skb);
unsigned int proto;
unsigned char *cp;
struct iphdr *ih;
u32 csum, ehsum;
u16 *ew;
/* Did hardware handle the checksum at all? The cases we can handle
* are:
*
* - TCP and UDP checksums of IPv4 only.
* - IPv6 would be doable but we keep that for later ...
* - Only unfragmented packets. Did somebody already tell you
* fragmentation is evil?
* - don't care about packet size. Worst case when processing a
* malformed packet we'll try to access the packet at ip header +
* 64 bytes which is still inside the skb. Even in the unlikely
* case where the checksum is right the higher layers will still
* drop the packet as appropriate.
*/
if (eh->h_proto != htons(ETH_P_IP))
return;
ih = (struct iphdr *)((char *)eh + ETH_HLEN);
if (ip_is_fragment(ih))
return;
proto = ih->protocol;
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
return;
/* Same as tx - compute csum of pseudo header */
csum = hwsum +
(ih->tot_len - (ih->ihl << 2)) +
htons((u16)ih->protocol) +
(ih->saddr >> 16) + (ih->saddr & 0xffff) +
(ih->daddr >> 16) + (ih->daddr & 0xffff);
/* Sum up ethernet dest addr, src addr and protocol */
ew = (u16 *)eh;
ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
csum += 0xffff ^ ehsum;
/* In the next step we also subtract the 1's complement
* checksum of the trailing ethernet CRC.
*/
cp = (char *)eh + len; /* points at trailing CRC */
if (len & 1) {
csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
} else {
csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
}
csum = (csum & 0xffff) + (csum >> 16);
csum = (csum & 0xffff) + (csum >> 16);
if (csum == 0xffff)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
static inline void ioc3_rx(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct sk_buff *skb, *new_skb;
int rx_entry, n_entry, len;
struct ioc3_erxbuf *rxb;
unsigned long *rxr;
dma_addr_t d;
u32 w0, err;
rxr = ip->rxr; /* Ring base */
rx_entry = ip->rx_ci; /* RX consume index */
n_entry = ip->rx_pi;
skb = ip->rx_skbs[rx_entry];
rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
while (w0 & ERXBUF_V) {
err = be32_to_cpu(rxb->err); /* It's valid ... */
if (err & ERXBUF_GOODPKT) {
len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
/* Ouch, drop packet and just recycle packet
* to keep the ring filled.
*/
dev->stats.rx_dropped++;
new_skb = skb;
d = rxr[rx_entry];
goto next;
}
if (likely(dev->features & NETIF_F_RXCSUM))
ioc3_tcpudp_checksum(skb,
w0 & ERXBUF_IPCKSUM_MASK,
len);
dma_unmap_single(ip->dma_dev, rxr[rx_entry],
RX_BUF_SIZE, DMA_FROM_DEVICE);
netif_rx(skb);
ip->rx_skbs[rx_entry] = NULL; /* Poison */
dev->stats.rx_packets++; /* Statistics */
dev->stats.rx_bytes += len;
} else {
/* The frame is invalid and the skb never
* reached the network layer so we can just
* recycle it.
*/
new_skb = skb;
d = rxr[rx_entry];
dev->stats.rx_errors++;
}
if (err & ERXBUF_CRCERR) /* Statistics */
dev->stats.rx_crc_errors++;
if (err & ERXBUF_FRAMERR)
dev->stats.rx_frame_errors++;
next:
ip->rx_skbs[n_entry] = new_skb;
rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
rxb->w0 = 0; /* Clear valid flag */
n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */
/* Now go on to the next ring entry. */
rx_entry = (rx_entry + 1) & RX_RING_MASK;
skb = ip->rx_skbs[rx_entry];
rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
}
writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
ip->rx_pi = n_entry;
ip->rx_ci = rx_entry;
}
static inline void ioc3_tx(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
unsigned long packets, bytes;
int tx_entry, o_entry;
struct sk_buff *skb;
u32 etcir;
spin_lock(&ip->ioc3_lock);
etcir = readl(®s->etcir);
tx_entry = (etcir >> 7) & TX_RING_MASK;
o_entry = ip->tx_ci;
packets = 0;
bytes = 0;
while (o_entry != tx_entry) {
packets++;
skb = ip->tx_skbs[o_entry];
bytes += skb->len;
dev_consume_skb_irq(skb);
ip->tx_skbs[o_entry] = NULL;
o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */
etcir = readl(®s->etcir); /* More pkts sent? */
tx_entry = (etcir >> 7) & TX_RING_MASK;
}
dev->stats.tx_packets += packets;
dev->stats.tx_bytes += bytes;
ip->txqlen -= packets;
if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
netif_wake_queue(dev);
ip->tx_ci = o_entry;
spin_unlock(&ip->ioc3_lock);
}
/* Deal with fatal IOC3 errors. This condition might be caused by a hard or
* software problems, so we should try to recover
* more gracefully if this ever happens. In theory we might be flooded
* with such error interrupts if something really goes wrong, so we might
* also consider to take the interface down.
*/
static void ioc3_error(struct net_device *dev, u32 eisr)
{
struct ioc3_private *ip = netdev_priv(dev);
spin_lock(&ip->ioc3_lock);
if (eisr & EISR_RXOFLO)
net_err_ratelimited("%s: RX overflow.\n", dev->name);
if (eisr & EISR_RXBUFOFLO)
net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
if (eisr & EISR_RXMEMERR)
net_err_ratelimited("%s: RX PCI error.\n", dev->name);
if (eisr & EISR_RXPARERR)
net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
if (eisr & EISR_TXBUFUFLO)
net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
if (eisr & EISR_TXMEMERR)
net_err_ratelimited("%s: TX PCI error.\n", dev->name);
ioc3_stop(ip);
ioc3_free_rx_bufs(ip);
ioc3_clean_tx_ring(ip);
ioc3_init(dev);
if (ioc3_alloc_rx_bufs(dev)) {
netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
spin_unlock(&ip->ioc3_lock);
return;
}
ioc3_start(ip);
ioc3_mii_init(ip);
netif_wake_queue(dev);
spin_unlock(&ip->ioc3_lock);
}
/* The interrupt handler does all of the Rx thread work and cleans up
* after the Tx thread.
*/
static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
{
struct ioc3_private *ip = netdev_priv(dev_id);
struct ioc3_ethregs *regs = ip->regs;
u32 eisr;
eisr = readl(®s->eisr);
writel(eisr, ®s->eisr);
readl(®s->eisr); /* Flush */
if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
ioc3_error(dev_id, eisr);
if (eisr & EISR_RXTIMERINT)
ioc3_rx(dev_id);
if (eisr & EISR_TXEXPLICIT)
ioc3_tx(dev_id);
return IRQ_HANDLED;
}
static inline void ioc3_setup_duplex(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
spin_lock_irq(&ip->ioc3_lock);
if (ip->mii.full_duplex) {
writel(ETCSR_FD, ®s->etcsr);
ip->emcr |= EMCR_DUPLEX;
} else {
writel(ETCSR_HD, ®s->etcsr);
ip->emcr &= ~EMCR_DUPLEX;
}
writel(ip->emcr, ®s->emcr);
spin_unlock_irq(&ip->ioc3_lock);
}
static void ioc3_timer(struct timer_list *t)
{
struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
/* Print the link status if it has changed */
mii_check_media(&ip->mii, 1, 0);
ioc3_setup_duplex(ip);
ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
add_timer(&ip->ioc3_timer);
}
/* Try to find a PHY. There is no apparent relation between the MII addresses
* in the SGI documentation and what we find in reality, so we simply probe
* for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
* onboard IOC3s has the special oddity that probing doesn't seem to find it
* yet the interface seems to work fine, so if probing fails we for now will
* simply default to PHY 31 instead of bailing out.
*/
static int ioc3_mii_init(struct ioc3_private *ip)
{
int ioc3_phy_workaround = 1;
int i, found = 0, res = 0;
u16 word;
for (i = 0; i < 32; i++) {
word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
if (word != 0xffff && word != 0x0000) {
found = 1;
break; /* Found a PHY */
}
}
if (!found) {
if (ioc3_phy_workaround) {
i = 31;
} else {
ip->mii.phy_id = -1;
res = -ENODEV;
goto out;
}
}
ip->mii.phy_id = i;
out:
return res;
}
static void ioc3_mii_start(struct ioc3_private *ip)
{
ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */
add_timer(&ip->ioc3_timer);
}
static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
{
struct ioc3_etxd *desc;
u32 cmd, bufcnt, len;
desc = &ip->txr[entry];
cmd = be32_to_cpu(desc->cmd);
bufcnt = be32_to_cpu(desc->bufcnt);
if (cmd & ETXD_B1V) {
len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
len, DMA_TO_DEVICE);
}
if (cmd & ETXD_B2V) {
len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
len, DMA_TO_DEVICE);
}
}
static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
{
struct sk_buff *skb;
int i;
for (i = 0; i < TX_RING_ENTRIES; i++) {
skb = ip->tx_skbs[i];
if (skb) {
ioc3_tx_unmap(ip, i);
ip->tx_skbs[i] = NULL;
dev_kfree_skb_any(skb);
}
ip->txr[i].cmd = 0;
}
ip->tx_pi = 0;
ip->tx_ci = 0;
}
static void ioc3_free_rx_bufs(struct ioc3_private *ip)
{
int rx_entry, n_entry;
struct sk_buff *skb;
n_entry = ip->rx_ci;
rx_entry = ip->rx_pi;
while (n_entry != rx_entry) {
skb = ip->rx_skbs[n_entry];
if (skb) {
dma_unmap_single(ip->dma_dev,
be64_to_cpu(ip->rxr[n_entry]),
RX_BUF_SIZE, DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
n_entry = (n_entry + 1) & RX_RING_MASK;
}
}
static int ioc3_alloc_rx_bufs(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_erxbuf *rxb;
dma_addr_t d;
int i;
/* Now the rx buffers. The RX ring may be larger but
* we only allocate 16 buffers for now. Need to tune
* this for performance and memory later.
*/
for (i = 0; i < RX_BUFFS; i++) {
if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
return -ENOMEM;
rxb->w0 = 0; /* Clear valid flag */
ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
}
ip->rx_ci = 0;
ip->rx_pi = RX_BUFFS;
return 0;
}
static inline void ioc3_ssram_disc(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
u32 *ssram0 = &ip->ssram[0x0000];
u32 *ssram1 = &ip->ssram[0x4000];
u32 pattern = 0x5555;
/* Assume the larger size SSRAM and enable parity checking */
writel(readl(®s->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), ®s->emcr);
readl(®s->emcr); /* Flush */
writel(pattern, ssram0);
writel(~pattern & IOC3_SSRAM_DM, ssram1);
if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
(readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
/* set ssram size to 64 KB */
ip->emcr |= EMCR_RAMPAR;
writel(readl(®s->emcr) & ~EMCR_BUFSIZ, ®s->emcr);
} else {
ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
}
}
static void ioc3_init(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
del_timer_sync(&ip->ioc3_timer); /* Kill if running */
writel(EMCR_RST, ®s->emcr); /* Reset */
readl(®s->emcr); /* Flush WB */
udelay(4); /* Give it time ... */
writel(0, ®s->emcr);
readl(®s->emcr);
/* Misc registers */
writel(ERBAR_VAL, ®s->erbar);
readl(®s->etcdc); /* Clear on read */
writel(15, ®s->ercsr); /* RX low watermark */
writel(0, ®s->ertr); /* Interrupt immediately */
__ioc3_set_mac_address(dev);
writel(ip->ehar_h, ®s->ehar_h);
writel(ip->ehar_l, ®s->ehar_l);
writel(42, ®s->ersr); /* XXX should be random */
}
static void ioc3_start(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
unsigned long ring;
/* Now the rx ring base, consume & produce registers. */
ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
writel(ring >> 32, ®s->erbr_h);
writel(ring & 0xffffffff, ®s->erbr_l);
writel(ip->rx_ci << 3, ®s->ercir);
writel((ip->rx_pi << 3) | ERPIR_ARM, ®s->erpir);
ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
ip->txqlen = 0; /* nothing queued */
/* Now the tx ring base, consume & produce registers. */
writel(ring >> 32, ®s->etbr_h);
writel(ring & 0xffffffff, ®s->etbr_l);
writel(ip->tx_pi << 7, ®s->etpir);
writel(ip->tx_ci << 7, ®s->etcir);
readl(®s->etcir); /* Flush */
ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
writel(ip->emcr, ®s->emcr);
writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
EISR_TXEXPLICIT | EISR_TXMEMERR, ®s->eier);
readl(®s->eier);
}
static inline void ioc3_stop(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
writel(0, ®s->emcr); /* Shutup */
writel(0, ®s->eier); /* Disable interrupts */
readl(®s->eier); /* Flush */
}
static int ioc3_open(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
netdev_err(dev, "Can't get irq %d\n", dev->irq);
return -EAGAIN;
}
ip->ehar_h = 0;
ip->ehar_l = 0;
ioc3_init(dev);
if (ioc3_alloc_rx_bufs(dev)) {
netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
return -ENOMEM;
}
ioc3_start(ip);
ioc3_mii_start(ip);
netif_start_queue(dev);
return 0;
}
static int ioc3_close(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
del_timer_sync(&ip->ioc3_timer);
netif_stop_queue(dev);
ioc3_stop(ip);
free_irq(dev->irq, dev);
ioc3_free_rx_bufs(ip);
ioc3_clean_tx_ring(ip);
return 0;
}
/* MENET cards have four IOC3 chips, which are attached to two sets of
* PCI slot resources each: the primary connections are on slots
* 0..3 and the secondaries are on 4..7
*
* All four ethernets are brought out to connectors; six serial ports
* (a pair from each of the first three IOC3s) are brought out to
* MiniDINs; all other subdevices are left swinging in the wind, leave
* them disabled.
*/
static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
{
struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
int ret = 0;
if (dev) {
if (dev->vendor == PCI_VENDOR_ID_SGI &&
dev->device == PCI_DEVICE_ID_SGI_IOC3)
ret = 1;
pci_dev_put(dev);
}
return ret;
}
static int ioc3_is_menet(struct pci_dev *pdev)
{
return !pdev->bus->parent &&
ioc3_adjacent_is_ioc3(pdev, 0) &&
ioc3_adjacent_is_ioc3(pdev, 1) &&
ioc3_adjacent_is_ioc3(pdev, 2);
}
#ifdef [31mCONFIG_SERIAL_8250[0m
/* Note about serial ports and consoles:
* For console output, everyone uses the IOC3 UARTA (offset 0x178)
* connected to the master node (look in ip27_setup_console() and
* ip27prom_console_write()).
*
* For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
* addresses on a partitioned machine. Since we currently use the ioc3
* serial ports, we use dynamic serial port discovery that the serial.c
* driver uses for pci/pnp ports (there is an entry for the SGI ioc3
* boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
* than UARTB's, although UARTA on o200s has traditionally been known as
* port 0. So, we just use one serial port from each ioc3 (since the
* serial driver adds addresses to get to higher ports).
*
* The first one to do a register_console becomes the preferred console
* (if there is no kernel command line console= directive). /dev/console
* (ie 5, 1) is then "aliased" into the device number returned by the
* "device" routine referred to in this console structure
* (ip27prom_console_dev).
*
* Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
* around ioc3 oddities in this respect.
*
* The IOC3 serials use a 22MHz clock rate with an additional divider which
* can be programmed in the SCR register if the DLAB bit is set.
*
* Register to interrupt zero because we share the interrupt with
* the serial driver which we don't properly support yet.
*
* Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
* registered.
*/
static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
{
#define COSMISC_CONSTANT 6
struct uart_8250_port port = {
.port = {
.irq = 0,
.flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
.iotype = UPIO_MEM,
.regshift = 0,
.uartclk = (22000000 << 1) / COSMISC_CONSTANT,
.membase = (unsigned char __iomem *)uart,
.mapbase = (unsigned long)uart,
}
};
unsigned char lcr;
lcr = readb(&uart->iu_lcr);
writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
writeb(COSMISC_CONSTANT, &uart->iu_scr);
writeb(lcr, &uart->iu_lcr);
readb(&uart->iu_lcr);
serial8250_register_8250_port(&port);
}
static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
{
u32 sio_iec;
/* We need to recognice and treat the fourth MENET serial as it
* does not have an SuperIO chip attached to it, therefore attempting
* to access it will result in bus errors. We call something an
* MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
* in it. This is paranoid but we want to avoid blowing up on a
* showhorn PCI box that happens to have 4 IOC3 cards in it so it's
* not paranoid enough ...
*/
if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
return;
/* Switch IOC3 to PIO mode. It probably already was but let's be
* paranoid
*/
writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s);
readl(&ioc3->gpcr_s);
writel(0, &ioc3->gppr[6]);
readl(&ioc3->gppr[6]);
writel(0, &ioc3->gppr[7]);
readl(&ioc3->gppr[7]);
writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr);
readl(&ioc3->port_a.sscr);
writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr);
readl(&ioc3->port_b.sscr);
/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
sio_iec = readl(&ioc3->sio_iec);
sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
sio_iec |= SIO_IR_SA_INT;
sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
sio_iec |= SIO_IR_SB_INT;
writel(sio_iec, &ioc3->sio_iec);
writel(0, &ioc3->port_a.sscr);
writel(0, &ioc3->port_b.sscr);
ioc3_8250_register(&ioc3->sregs.uarta);
ioc3_8250_register(&ioc3->sregs.uartb);
}
#endif
static const struct net_device_ops ioc3_netdev_ops = {
.ndo_open = ioc3_open,
.ndo_stop = ioc3_close,
.ndo_start_xmit = ioc3_start_xmit,
.ndo_tx_timeout = ioc3_timeout,
.ndo_get_stats = ioc3_get_stats,
.ndo_set_rx_mode = ioc3_set_multicast_list,
.ndo_do_ioctl = ioc3_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = ioc3_set_mac_address,
};
static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned int sw_physid1, sw_physid2;
struct net_device *dev = NULL;
struct ioc3_private *ip;
struct ioc3 *ioc3;
unsigned long ioc3_base, ioc3_size;
u32 vendor, model, rev;
int err, pci_using_dac;
/* Configure DMA attributes. */
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!err) {
pci_using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (err < 0) {
pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n",
pci_name(pdev));
goto out;
}
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
pr_err("%s: No usable DMA configuration, aborting.\n",
pci_name(pdev));
goto out;
}
pci_using_dac = 0;
}
if (pci_enable_device(pdev))
return -ENODEV;
dev = alloc_etherdev(sizeof(struct ioc3_private));
if (!dev) {
err = -ENOMEM;
goto out_disable;
}
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
err = pci_request_regions(pdev, "ioc3");
if (err)
goto out_free;
SET_NETDEV_DEV(dev, &pdev->dev);
ip = netdev_priv(dev);
ip->dev = dev;
ip->dma_dev = &pdev->dev;
dev->irq = pdev->irq;
ioc3_base = pci_resource_start(pdev, 0);
ioc3_size = pci_resource_len(pdev, 0);
ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size);
if (!ioc3) {
pr_err("ioc3eth(%s): ioremap failed, goodbye.\n",
pci_name(pdev));
err = -ENOMEM;
goto out_res;
}
ip->regs = &ioc3->eth;
ip->ssram = ioc3->ssram;
ip->all_regs = ioc3;
#ifdef [31mCONFIG_SERIAL_8250[0m
ioc3_serial_probe(pdev, ioc3);
#endif
spin_lock_init(&ip->ioc3_lock);
timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
ioc3_stop(ip);
/* Allocate rx ring. 4kb = 512 entries, must be 4kb aligned */
ip->rxr = dma_direct_alloc_pages(ip->dma_dev, RX_RING_SIZE,
&ip->rxr_dma, GFP_ATOMIC, 0);
if (!ip->rxr) {
pr_err("ioc3-eth: rx ring allocation failed\n");
err = -ENOMEM;
goto out_stop;
}
/* Allocate tx rings. 16kb = 128 bufs, must be 16kb aligned */
ip->txr = dma_direct_alloc_pages(ip->dma_dev, TX_RING_SIZE,
&ip->txr_dma,
GFP_KERNEL | __GFP_ZERO, 0);
if (!ip->txr) {
pr_err("ioc3-eth: tx ring allocation failed\n");
err = -ENOMEM;
goto out_stop;
}
ioc3_init(dev);
ip->pdev = pdev;
ip->mii.phy_id_mask = 0x1f;
ip->mii.reg_num_mask = 0x1f;
ip->mii.dev = dev;
ip->mii.mdio_read = ioc3_mdio_read;
ip->mii.mdio_write = ioc3_mdio_write;
ioc3_mii_init(ip);
if (ip->mii.phy_id == -1) {
pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
pci_name(pdev));
err = -ENODEV;
goto out_stop;
}
ioc3_mii_start(ip);
ioc3_ssram_disc(ip);
ioc3_get_eaddr(ip);
/* The IOC3-specific entries in the device structure. */
dev->watchdog_timeo = 5 * HZ;
dev->netdev_ops = &ioc3_netdev_ops;
dev->ethtool_ops = &ioc3_ethtool_ops;
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
dev->features = NETIF_F_IP_CSUM;
sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
err = register_netdev(dev);
if (err)
goto out_stop;
mii_check_media(&ip->mii, 1, 1);
ioc3_setup_duplex(ip);
vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
model = (sw_physid2 >> 4) & 0x3f;
rev = sw_physid2 & 0xf;
netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
ip->mii.phy_id, vendor, model, rev);
netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
ip->emcr & EMCR_BUFSIZ ? 128 : 64);
return 0;
out_stop:
del_timer_sync(&ip->ioc3_timer);
if (ip->rxr)
dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
ip->rxr_dma, 0);
if (ip->txr)
dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
ip->txr_dma, 0);
out_res:
pci_release_regions(pdev);
out_free:
free_netdev(dev);
out_disable:
/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
* such a weird device ...
*/
out:
return err;
}
static void ioc3_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct ioc3_private *ip = netdev_priv(dev);
dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
ip->rxr_dma, 0);
dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
ip->txr_dma, 0);
unregister_netdev(dev);
del_timer_sync(&ip->ioc3_timer);
iounmap(ip->all_regs);
pci_release_regions(pdev);
free_netdev(dev);
/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
* such a weird device ...
*/
}
static const struct pci_device_id ioc3_pci_tbl[] = {
{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
static struct pci_driver ioc3_driver = {
.name = "ioc3-eth",
.id_table = ioc3_pci_tbl,
.probe = ioc3_probe,
.remove = ioc3_remove_one,
};
static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_etxd *desc;
unsigned long data;
unsigned int len;
int produce;
u32 w0 = 0;
/* IOC3 has a fairly simple minded checksumming hardware which simply
* adds up the 1's complement checksum for the entire packet and
* inserts it at an offset which can be specified in the descriptor
* into the transmit packet. This means we have to compensate for the
* MAC header which should not be summed and the TCP/UDP pseudo headers
* manually.
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ih = ip_hdr(skb);
const int proto = ntohs(ih->protocol);
unsigned int csoff;
u32 csum, ehsum;
u16 *eh;
/* The MAC header. skb->mac seem the logic approach
* to find the MAC header - except it's a NULL pointer ...
*/
eh = (u16 *)skb->data;
/* Sum up dest addr, src addr and protocol */
ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
/* Skip IP header; it's sum is always zero and was
* already filled in by ip_output.c
*/
csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
ih->tot_len - (ih->ihl << 2),
proto, csum_fold(ehsum));
csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
csum = (csum & 0xffff) + (csum >> 16);
csoff = ETH_HLEN + (ih->ihl << 2);
if (proto == IPPROTO_UDP) {
csoff += offsetof(struct udphdr, check);
udp_hdr(skb)->check = csum;
}
if (proto == IPPROTO_TCP) {
csoff += offsetof(struct tcphdr, check);
tcp_hdr(skb)->check = csum;
}
w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
}
spin_lock_irq(&ip->ioc3_lock);
data = (unsigned long)skb->data;
len = skb->len;
produce = ip->tx_pi;
desc = &ip->txr[produce];
if (len <= 104) {
/* Short packet, let's copy it directly into the ring. */
skb_copy_from_linear_data(skb, desc->data, skb->len);
if (len < ETH_ZLEN) {
/* Very short packet, pad with zeros at the end. */
memset(desc->data + len, 0, ETH_ZLEN - len);
len = ETH_ZLEN;
}
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
desc->bufcnt = cpu_to_be32(len);
} else if ((data ^ (data + len - 1)) & 0x4000) {
unsigned long b2 = (data | 0x3fffUL) + 1UL;
unsigned long s1 = b2 - data;
unsigned long s2 = data + len - b2;
dma_addr_t d1, d2;
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
ETXD_B1V | ETXD_B2V | w0);
desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
(s2 << ETXD_B2CNT_SHIFT));
d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
if (dma_mapping_error(ip->dma_dev, d1))
goto drop_packet;
d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
if (dma_mapping_error(ip->dma_dev, d2)) {
dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
goto drop_packet;
}
desc->p1 = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
desc->p2 = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
} else {
dma_addr_t d;
/* Normal sized packet that doesn't cross a page boundary. */
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(ip->dma_dev, d))
goto drop_packet;
desc->p1 = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
}
mb(); /* make sure all descriptor changes are visible */
ip->tx_skbs[produce] = skb; /* Remember skb */
produce = (produce + 1) & TX_RING_MASK;
ip->tx_pi = produce;
writel(produce << 7, &ip->regs->etpir); /* Fire ... */
ip->txqlen++;
if (ip->txqlen >= (TX_RING_ENTRIES - 1))
netif_stop_queue(dev);
spin_unlock_irq(&ip->ioc3_lock);
return NETDEV_TX_OK;
drop_packet:
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
spin_unlock_irq(&ip->ioc3_lock);
return NETDEV_TX_OK;
}
static void ioc3_timeout(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
netdev_err(dev, "transmit timed out, resetting\n");
spin_lock_irq(&ip->ioc3_lock);
ioc3_stop(ip);
ioc3_free_rx_bufs(ip);
ioc3_clean_tx_ring(ip);
ioc3_init(dev);
if (ioc3_alloc_rx_bufs(dev)) {
netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
spin_unlock_irq(&ip->ioc3_lock);
return;
}
ioc3_start(ip);
ioc3_mii_init(ip);
ioc3_mii_start(ip);
spin_unlock_irq(&ip->ioc3_lock);
netif_wake_queue(dev);
}
/* Given a multicast ethernet address, this routine calculates the
* address's bit index in the logical address filter mask
*/
static inline unsigned int ioc3_hash(const unsigned char *addr)
{
unsigned int temp = 0;
int bits;
u32 crc;
crc = ether_crc_le(ETH_ALEN, addr);
crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
for (bits = 6; --bits >= 0; ) {
temp <<= 1;
temp |= (crc & 0x1);
crc >>= 1;
}
return temp;
}
static void ioc3_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ioc3_private *ip = netdev_priv(dev);
strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
}
static int ioc3_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
spin_lock_irq(&ip->ioc3_lock);
mii_ethtool_get_link_ksettings(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
static int ioc3_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static int ioc3_nway_reset(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_nway_restart(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static u32 ioc3_get_link(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_link_ok(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static const struct ethtool_ops ioc3_ethtool_ops = {
.get_drvinfo = ioc3_get_drvinfo,
.nway_reset = ioc3_nway_reset,
.get_link = ioc3_get_link,
.get_link_ksettings = ioc3_get_link_ksettings,
.set_link_ksettings = ioc3_set_link_ksettings,
};
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static void ioc3_set_multicast_list(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
struct netdev_hw_addr *ha;
u64 ehar = 0;
spin_lock_irq(&ip->ioc3_lock);
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
ip->emcr |= EMCR_PROMISC;
writel(ip->emcr, ®s->emcr);
readl(®s->emcr);
} else {
ip->emcr &= ~EMCR_PROMISC;
writel(ip->emcr, ®s->emcr); /* Clear promiscuous. */
readl(®s->emcr);
if ((dev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(dev) > 64)) {
/* Too many for hashing to make sense or we want all
* multicast packets anyway, so skip computing all the
* hashes and just accept all packets.
*/
ip->ehar_h = 0xffffffff;
ip->ehar_l = 0xffffffff;
} else {
netdev_for_each_mc_addr(ha, dev) {
ehar |= (1UL << ioc3_hash(ha->addr));
}
ip->ehar_h = ehar >> 32;
ip->ehar_l = ehar & 0xffffffff;
}
writel(ip->ehar_h, ®s->ehar_h);
writel(ip->ehar_l, ®s->ehar_l);
}
spin_unlock_irq(&ip->ioc3_lock);
}
module_pci_driver(ioc3_driver);
MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
MODULE_LICENSE("GPL");