Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
Virtual Routing and Forwarding (VRF)
====================================
The VRF device combined with ip rules provides the ability to create virtual
routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
Linux network stack. One use case is the multi-tenancy problem where each
tenant has their own unique routing tables and in the very least need
different default gateways.

Processes can be "VRF aware" by binding a socket to the VRF device. Packets
through the socket then use the routing table associated with the VRF
device. An important feature of the VRF device implementation is that it
impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
(ie., they do not need to be run in each VRF). The design also allows
the use of higher priority ip rules (Policy Based Routing, PBR) to take
precedence over the VRF device rules directing specific traffic as desired.

In addition, VRF devices allow VRFs to be nested within namespaces. For
example network namespaces provide separation of network interfaces at the
device layer, VLANs on the interfaces within a namespace provide L2 separation
and then VRF devices provide L3 separation.

Design
------
A VRF device is created with an associated route table. Network interfaces
are then enslaved to a VRF device:

         +-----------------------------+
         |           vrf-blue          |  ===> route table 10
         +-----------------------------+
            |        |            |
         +------+ +------+     +-------------+
         | eth1 | | eth2 | ... |    bond1    |
         +------+ +------+     +-------------+
                                  |       |
                              +------+ +------+
                              | eth8 | | eth9 |
                              +------+ +------+

Packets received on an enslaved device and are switched to the VRF device
in the IPv4 and IPv6 processing stacks giving the impression that packets
flow through the VRF device. Similarly on egress routing rules are used to
send packets to the VRF device driver before getting sent out the actual
interface. This allows tcpdump on a VRF device to capture all packets into
and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
applied using the VRF device to specify rules that apply to the VRF domain
as a whole.

[1] Packets in the forwarded state do not flow through the device, so those
    packets are not seen by tcpdump. Will revisit this limitation in a
    future release.

[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
    ingress device and both INPUT and PREROUTING rules with skb->dev set to
    the VRF device. For egress POSTROUTING and OUTPUT rules can be written
    using either the VRF device or real egress device.

Setup
-----
1. VRF device is created with an association to a FIB table.
   e.g, ip link add vrf-blue type vrf table 10
        ip link set dev vrf-blue up

2. An l3mdev FIB rule directs lookups to the table associated with the device.
   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
   l3mdev rule for IPv4 and IPv6 when the first device is created with a
   default preference of 1000. Users may delete the rule if desired and add
   with a different priority or install per-VRF rules.

   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
       ip ru add oif vrf-blue table 10
       ip ru add iif vrf-blue table 10

3. Set the default route for the table (and hence default route for the VRF).
       ip route add table 10 unreachable default metric 4278198272

   This high metric value ensures that the default unreachable route can
   be overridden by a routing protocol suite.  FRRouting interprets
   kernel metrics as a combined admin distance (upper byte) and priority
   (lower 3 bytes).  Thus the above metric translates to [255/8192].

4. Enslave L3 interfaces to a VRF device.
       ip link set dev eth1 master vrf-blue

   Local and connected routes for enslaved devices are automatically moved to
   the table associated with VRF device. Any additional routes depending on
   the enslaved device are dropped and will need to be reinserted to the VRF
   FIB table following the enslavement.

   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
   addresses as VRF enslavement changes.
       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1

5. Additional VRF routes are added to associated table.
       ip route add table 10 ...


Applications
------------
Applications that are to work within a VRF need to bind their socket to the
VRF device:

    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);

or to specify the output device using cmsg and IP_PKTINFO.

By default the scope of the port bindings for unbound sockets is
limited to the default VRF. That is, it will not be matched by packets
arriving on interfaces enslaved to an l3mdev and processes may bind to
the same port if they bind to an l3mdev.

TCP & UDP services running in the default VRF context (ie., not bound
to any VRF device) can work across all VRF domains by enabling the
tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:

    sysctl -w net.ipv4.tcp_l3mdev_accept=1
    sysctl -w net.ipv4.udp_l3mdev_accept=1

These options are disabled by default so that a socket in a VRF is only
selected for packets in that VRF. There is a similar option for RAW
sockets, which is enabled by default for reasons of backwards compatibility.
This is so as to specify the output device with cmsg and IP_PKTINFO, but
using a socket not bound to the corresponding VRF. This allows e.g. older ping
implementations to be run with specifying the device but without executing it
in the VRF. This option can be disabled so that packets received in a VRF
context are only handled by a raw socket bound to the VRF, and packets in the
default VRF are only handled by a socket not bound to any VRF:

    sysctl -w net.ipv4.raw_l3mdev_accept=0

netfilter rules on the VRF device can be used to limit access to services
running in the default VRF context as well.

################################################################################

Using iproute2 for VRFs
=======================
iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
section lists both commands where appropriate -- with the vrf keyword and the
older form without it.

1. Create a VRF

   To instantiate a VRF device and associate it with a table:
       $ ip link add dev NAME type vrf table ID

   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
   device create.

2. List VRFs

   To list VRFs that have been created:
       $ ip [-d] link show type vrf
         NOTE: The -d option is needed to show the table id

   For example:
   $ ip -d link show type vrf
   11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
       link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
       vrf table 1 addrgenmode eui64
   12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
       link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
       vrf table 10 addrgenmode eui64
   13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
       link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
       vrf table 66 addrgenmode eui64
   14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
       link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
       vrf table 81 addrgenmode eui64


   Or in brief output:

   $ ip -br link show type vrf
   mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
   red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
   blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
   green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>


3. Assign a Network Interface to a VRF

   Network interfaces are assigned to a VRF by enslaving the netdevice to a
   VRF device:
       $ ip link set dev NAME master NAME

   On enslavement connected and local routes are automatically moved to the
   table associated with the VRF device.

   For example:
   $ ip link set dev eth0 master mgmt


4. Show Devices Assigned to a VRF

   To show devices that have been assigned to a specific VRF add the master
   option to the ip command:
       $ ip link show vrf NAME
       $ ip link show master NAME

   For example:
   $ ip link show vrf red
   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff


   Or using the brief output:
   $ ip -br link show vrf red
   eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
   eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
   eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>


5. Show Neighbor Entries for a VRF

   To list neighbor entries associated with devices enslaved to a VRF device
   add the master option to the ip command:
       $ ip [-6] neigh show vrf NAME
       $ ip [-6] neigh show master NAME

   For example:
   $  ip neigh show vrf red
   10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
   10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE

   $ ip -6 neigh show vrf red
   2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE


6. Show Addresses for a VRF

   To show addresses for interfaces associated with a VRF add the master
   option to the ip command:
       $ ip addr show vrf NAME
       $ ip addr show master NAME

   For example:
   $ ip addr show vrf red
   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
       inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
          valid_lft forever preferred_lft forever
       inet6 2002:1::2/120 scope global
          valid_lft forever preferred_lft forever
       inet6 fe80::ff:fe00:202/64 scope link
          valid_lft forever preferred_lft forever
   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
       inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
          valid_lft forever preferred_lft forever
       inet6 2002:2::2/120 scope global
          valid_lft forever preferred_lft forever
       inet6 fe80::ff:fe00:203/64 scope link
          valid_lft forever preferred_lft forever
   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff

   Or in brief format:
   $ ip -br addr show vrf red
   eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
   eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
   eth5             DOWN


7. Show Routes for a VRF

   To show routes for a VRF use the ip command to display the table associated
   with the VRF device:
       $ ip [-6] route show vrf NAME
       $ ip [-6] route show table ID

   For example:
   $ ip route show vrf red
   unreachable default  metric 4278198272
   broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
   10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
   local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
   broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
   broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
   10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
   local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
   broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2

   $ ip -6 route show vrf red
   local 2002:1:: dev lo  proto none  metric 0  pref medium
   local 2002:1::2 dev lo  proto none  metric 0  pref medium
   2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
   local 2002:2:: dev lo  proto none  metric 0  pref medium
   local 2002:2::2 dev lo  proto none  metric 0  pref medium
   2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
   local fe80:: dev lo  proto none  metric 0  pref medium
   local fe80:: dev lo  proto none  metric 0  pref medium
   local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
   local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
   fe80::/64 dev eth1  proto kernel  metric 256  pref medium
   fe80::/64 dev eth2  proto kernel  metric 256  pref medium
   ff00::/8 dev red  metric 256  pref medium
   ff00::/8 dev eth1  metric 256  pref medium
   ff00::/8 dev eth2  metric 256  pref medium
   unreachable default dev lo  metric 4278198272  error -101 pref medium

8. Route Lookup for a VRF

   A test route lookup can be done for a VRF:
       $ ip [-6] route get vrf NAME ADDRESS
       $ ip [-6] route get oif NAME ADDRESS

   For example:
   $ ip route get 10.2.1.40 vrf red
   10.2.1.40 dev eth1  table red  src 10.2.1.2
       cache

   $ ip -6 route get 2002:1::32 vrf red
   2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium


9. Removing Network Interface from a VRF

   Network interfaces are removed from a VRF by breaking the enslavement to
   the VRF device:
       $ ip link set dev NAME nomaster

   Connected routes are moved back to the default table and local entries are
   moved to the local table.

   For example:
   $ ip link set dev eth0 nomaster

--------------------------------------------------------------------------------

Commands used in this example:

cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
1  mgmt
10 red
66 blue
81 green
EOF

function vrf_create
{
    VRF=$1
    TBID=$2

    # create VRF device
    ip link add ${VRF} type vrf table ${TBID}

    if [ "${VRF}" != "mgmt" ]; then
        ip route add table ${TBID} unreachable default metric 4278198272
    fi
    ip link set dev ${VRF} up
}

vrf_create mgmt 1
ip link set dev eth0 master mgmt

vrf_create red 10
ip link set dev eth1 master red
ip link set dev eth2 master red
ip link set dev eth5 master red

vrf_create blue 66
ip link set dev eth3 master blue

vrf_create green 81
ip link set dev eth4 master green


Interface addresses from /etc/network/interfaces:
auto eth0
iface eth0 inet static
      address 10.0.0.2
      netmask 255.255.255.0
      gateway 10.0.0.254

iface eth0 inet6 static
      address 2000:1::2
      netmask 120

auto eth1
iface eth1 inet static
      address 10.2.1.2
      netmask 255.255.255.0

iface eth1 inet6 static
      address 2002:1::2
      netmask 120

auto eth2
iface eth2 inet static
      address 10.2.2.2
      netmask 255.255.255.0

iface eth2 inet6 static
      address 2002:2::2
      netmask 120

auto eth3
iface eth3 inet static
      address 10.2.3.2
      netmask 255.255.255.0

iface eth3 inet6 static
      address 2002:3::2
      netmask 120

auto eth4
iface eth4 inet static
      address 10.2.4.2
      netmask 255.255.255.0

iface eth4 inet6 static
      address 2002:4::2
      netmask 120