Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Firmware-Assisted Dump support on POWERVM platform.
 *
 * Copyright 2011, Mahesh Salgaonkar, IBM Corporation.
 * Copyright 2019, Hari Bathini, IBM Corporation.
 */

#define pr_fmt(fmt) "rtas fadump: " fmt

#include <linux/string.h>
#include <linux/memblock.h>
#include <linux/delay.h>
#include <linux/seq_file.h>
#include <linux/crash_dump.h>

#include <asm/page.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/fadump.h>
#include <asm/fadump-internal.h>

#include "rtas-fadump.h"

static struct rtas_fadump_mem_struct fdm;
static const struct rtas_fadump_mem_struct *fdm_active;

static void rtas_fadump_update_config(struct fw_dump *fadump_conf,
				      const struct rtas_fadump_mem_struct *fdm)
{
	fadump_conf->boot_mem_dest_addr =
		be64_to_cpu(fdm->rmr_region.destination_address);

	fadump_conf->fadumphdr_addr = (fadump_conf->boot_mem_dest_addr +
				       fadump_conf->boot_memory_size);
}

/*
 * This function is called in the capture kernel to get configuration details
 * setup in the first kernel and passed to the f/w.
 */
static void rtas_fadump_get_config(struct fw_dump *fadump_conf,
				   const struct rtas_fadump_mem_struct *fdm)
{
	fadump_conf->boot_mem_addr[0] =
		be64_to_cpu(fdm->rmr_region.source_address);
	fadump_conf->boot_mem_sz[0] = be64_to_cpu(fdm->rmr_region.source_len);
	fadump_conf->boot_memory_size = fadump_conf->boot_mem_sz[0];

	fadump_conf->boot_mem_top = fadump_conf->boot_memory_size;
	fadump_conf->boot_mem_regs_cnt = 1;

	/*
	 * Start address of reserve dump area (permanent reservation) for
	 * re-registering FADump after dump capture.
	 */
	fadump_conf->reserve_dump_area_start =
		be64_to_cpu(fdm->cpu_state_data.destination_address);

	rtas_fadump_update_config(fadump_conf, fdm);
}

static u64 rtas_fadump_init_mem_struct(struct fw_dump *fadump_conf)
{
	u64 addr = fadump_conf->reserve_dump_area_start;

	memset(&fdm, 0, sizeof(struct rtas_fadump_mem_struct));
	addr = addr & PAGE_MASK;

	fdm.header.dump_format_version = cpu_to_be32(0x00000001);
	fdm.header.dump_num_sections = cpu_to_be16(3);
	fdm.header.dump_status_flag = 0;
	fdm.header.offset_first_dump_section =
		cpu_to_be32((u32)offsetof(struct rtas_fadump_mem_struct,
					  cpu_state_data));

	/*
	 * Fields for disk dump option.
	 * We are not using disk dump option, hence set these fields to 0.
	 */
	fdm.header.dd_block_size = 0;
	fdm.header.dd_block_offset = 0;
	fdm.header.dd_num_blocks = 0;
	fdm.header.dd_offset_disk_path = 0;

	/* set 0 to disable an automatic dump-reboot. */
	fdm.header.max_time_auto = 0;

	/* Kernel dump sections */
	/* cpu state data section. */
	fdm.cpu_state_data.request_flag =
		cpu_to_be32(RTAS_FADUMP_REQUEST_FLAG);
	fdm.cpu_state_data.source_data_type =
		cpu_to_be16(RTAS_FADUMP_CPU_STATE_DATA);
	fdm.cpu_state_data.source_address = 0;
	fdm.cpu_state_data.source_len =
		cpu_to_be64(fadump_conf->cpu_state_data_size);
	fdm.cpu_state_data.destination_address = cpu_to_be64(addr);
	addr += fadump_conf->cpu_state_data_size;

	/* hpte region section */
	fdm.hpte_region.request_flag = cpu_to_be32(RTAS_FADUMP_REQUEST_FLAG);
	fdm.hpte_region.source_data_type =
		cpu_to_be16(RTAS_FADUMP_HPTE_REGION);
	fdm.hpte_region.source_address = 0;
	fdm.hpte_region.source_len =
		cpu_to_be64(fadump_conf->hpte_region_size);
	fdm.hpte_region.destination_address = cpu_to_be64(addr);
	addr += fadump_conf->hpte_region_size;

	/* RMA region section */
	fdm.rmr_region.request_flag = cpu_to_be32(RTAS_FADUMP_REQUEST_FLAG);
	fdm.rmr_region.source_data_type =
		cpu_to_be16(RTAS_FADUMP_REAL_MODE_REGION);
	fdm.rmr_region.source_address = cpu_to_be64(0);
	fdm.rmr_region.source_len = cpu_to_be64(fadump_conf->boot_memory_size);
	fdm.rmr_region.destination_address = cpu_to_be64(addr);
	addr += fadump_conf->boot_memory_size;

	rtas_fadump_update_config(fadump_conf, &fdm);

	return addr;
}

static u64 rtas_fadump_get_bootmem_min(void)
{
	return RTAS_FADUMP_MIN_BOOT_MEM;
}

static int rtas_fadump_register(struct fw_dump *fadump_conf)
{
	unsigned int wait_time;
	int rc, err = -EIO;

	/* TODO: Add upper time limit for the delay */
	do {
		rc =  rtas_call(fadump_conf->ibm_configure_kernel_dump, 3, 1,
				NULL, FADUMP_REGISTER, &fdm,
				sizeof(struct rtas_fadump_mem_struct));

		wait_time = rtas_busy_delay_time(rc);
		if (wait_time)
			mdelay(wait_time);

	} while (wait_time);

	switch (rc) {
	case 0:
		pr_info("Registration is successful!\n");
		fadump_conf->dump_registered = 1;
		err = 0;
		break;
	case -1:
		pr_err("Failed to register. Hardware Error(%d).\n", rc);
		break;
	case -3:
		if (!is_fadump_boot_mem_contiguous())
			pr_err("Can't have holes in boot memory area.\n");
		else if (!is_fadump_reserved_mem_contiguous())
			pr_err("Can't have holes in reserved memory area.\n");

		pr_err("Failed to register. Parameter Error(%d).\n", rc);
		err = -EINVAL;
		break;
	case -9:
		pr_err("Already registered!\n");
		fadump_conf->dump_registered = 1;
		err = -EEXIST;
		break;
	default:
		pr_err("Failed to register. Unknown Error(%d).\n", rc);
		break;
	}

	return err;
}

static int rtas_fadump_unregister(struct fw_dump *fadump_conf)
{
	unsigned int wait_time;
	int rc;

	/* TODO: Add upper time limit for the delay */
	do {
		rc =  rtas_call(fadump_conf->ibm_configure_kernel_dump, 3, 1,
				NULL, FADUMP_UNREGISTER, &fdm,
				sizeof(struct rtas_fadump_mem_struct));

		wait_time = rtas_busy_delay_time(rc);
		if (wait_time)
			mdelay(wait_time);
	} while (wait_time);

	if (rc) {
		pr_err("Failed to un-register - unexpected error(%d).\n", rc);
		return -EIO;
	}

	fadump_conf->dump_registered = 0;
	return 0;
}

static int rtas_fadump_invalidate(struct fw_dump *fadump_conf)
{
	unsigned int wait_time;
	int rc;

	/* TODO: Add upper time limit for the delay */
	do {
		rc =  rtas_call(fadump_conf->ibm_configure_kernel_dump, 3, 1,
				NULL, FADUMP_INVALIDATE, fdm_active,
				sizeof(struct rtas_fadump_mem_struct));

		wait_time = rtas_busy_delay_time(rc);
		if (wait_time)
			mdelay(wait_time);
	} while (wait_time);

	if (rc) {
		pr_err("Failed to invalidate - unexpected error (%d).\n", rc);
		return -EIO;
	}

	fadump_conf->dump_active = 0;
	fdm_active = NULL;
	return 0;
}

#define RTAS_FADUMP_GPR_MASK		0xffffff0000000000
static inline int rtas_fadump_gpr_index(u64 id)
{
	char str[3];
	int i = -1;

	if ((id & RTAS_FADUMP_GPR_MASK) == fadump_str_to_u64("GPR")) {
		/* get the digits at the end */
		id &= ~RTAS_FADUMP_GPR_MASK;
		id >>= 24;
		str[2] = '\0';
		str[1] = id & 0xff;
		str[0] = (id >> 8) & 0xff;
		if (kstrtoint(str, 10, &i))
			i = -EINVAL;
		if (i > 31)
			i = -1;
	}
	return i;
}

void rtas_fadump_set_regval(struct pt_regs *regs, u64 reg_id, u64 reg_val)
{
	int i;

	i = rtas_fadump_gpr_index(reg_id);
	if (i >= 0)
		regs->gpr[i] = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("NIA"))
		regs->nip = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("MSR"))
		regs->msr = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("CTR"))
		regs->ctr = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("LR"))
		regs->link = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("XER"))
		regs->xer = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("CR"))
		regs->ccr = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("DAR"))
		regs->dar = (unsigned long)reg_val;
	else if (reg_id == fadump_str_to_u64("DSISR"))
		regs->dsisr = (unsigned long)reg_val;
}

static struct rtas_fadump_reg_entry*
rtas_fadump_read_regs(struct rtas_fadump_reg_entry *reg_entry,
		      struct pt_regs *regs)
{
	memset(regs, 0, sizeof(struct pt_regs));

	while (be64_to_cpu(reg_entry->reg_id) != fadump_str_to_u64("CPUEND")) {
		rtas_fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
				       be64_to_cpu(reg_entry->reg_value));
		reg_entry++;
	}
	reg_entry++;
	return reg_entry;
}

/*
 * Read CPU state dump data and convert it into ELF notes.
 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 * used to access the data to allow for additional fields to be added without
 * affecting compatibility. Each list of registers for a CPU starts with
 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 * of register value. For more details refer to PAPR document.
 *
 * Only for the crashing cpu we ignore the CPU dump data and get exact
 * state from fadump crash info structure populated by first kernel at the
 * time of crash.
 */
static int __init rtas_fadump_build_cpu_notes(struct fw_dump *fadump_conf)
{
	struct rtas_fadump_reg_save_area_header *reg_header;
	struct fadump_crash_info_header *fdh = NULL;
	struct rtas_fadump_reg_entry *reg_entry;
	u32 num_cpus, *note_buf;
	int i, rc = 0, cpu = 0;
	struct pt_regs regs;
	unsigned long addr;
	void *vaddr;

	addr = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
	vaddr = __va(addr);

	reg_header = vaddr;
	if (be64_to_cpu(reg_header->magic_number) !=
	    fadump_str_to_u64("REGSAVE")) {
		pr_err("Unable to read register save area.\n");
		return -ENOENT;
	}

	pr_debug("--------CPU State Data------------\n");
	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));

	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
	pr_debug("NumCpus     : %u\n", num_cpus);
	vaddr += sizeof(u32);
	reg_entry = (struct rtas_fadump_reg_entry *)vaddr;

	rc = fadump_setup_cpu_notes_buf(num_cpus);
	if (rc != 0)
		return rc;

	note_buf = (u32 *)fadump_conf->cpu_notes_buf_vaddr;

	if (fadump_conf->fadumphdr_addr)
		fdh = __va(fadump_conf->fadumphdr_addr);

	for (i = 0; i < num_cpus; i++) {
		if (be64_to_cpu(reg_entry->reg_id) !=
		    fadump_str_to_u64("CPUSTRT")) {
			pr_err("Unable to read CPU state data\n");
			rc = -ENOENT;
			goto error_out;
		}
		/* Lower 4 bytes of reg_value contains logical cpu id */
		cpu = (be64_to_cpu(reg_entry->reg_value) &
		       RTAS_FADUMP_CPU_ID_MASK);
		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
			RTAS_FADUMP_SKIP_TO_NEXT_CPU(reg_entry);
			continue;
		}
		pr_debug("Reading register data for cpu %d...\n", cpu);
		if (fdh && fdh->crashing_cpu == cpu) {
			regs = fdh->regs;
			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
			RTAS_FADUMP_SKIP_TO_NEXT_CPU(reg_entry);
		} else {
			reg_entry++;
			reg_entry = rtas_fadump_read_regs(reg_entry, &regs);
			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
		}
	}
	final_note(note_buf);

	if (fdh) {
		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
			 fdh->elfcorehdr_addr);
		fadump_update_elfcore_header(__va(fdh->elfcorehdr_addr));
	}
	return 0;

error_out:
	fadump_free_cpu_notes_buf();
	return rc;

}

/*
 * Validate and process the dump data stored by firmware before exporting
 * it through '/proc/vmcore'.
 */
static int __init rtas_fadump_process(struct fw_dump *fadump_conf)
{
	struct fadump_crash_info_header *fdh;
	int rc = 0;

	if (!fdm_active || !fadump_conf->fadumphdr_addr)
		return -EINVAL;

	/* Check if the dump data is valid. */
	if ((be16_to_cpu(fdm_active->header.dump_status_flag) ==
			RTAS_FADUMP_ERROR_FLAG) ||
			(fdm_active->cpu_state_data.error_flags != 0) ||
			(fdm_active->rmr_region.error_flags != 0)) {
		pr_err("Dump taken by platform is not valid\n");
		return -EINVAL;
	}
	if ((fdm_active->rmr_region.bytes_dumped !=
			fdm_active->rmr_region.source_len) ||
			!fdm_active->cpu_state_data.bytes_dumped) {
		pr_err("Dump taken by platform is incomplete\n");
		return -EINVAL;
	}

	/* Validate the fadump crash info header */
	fdh = __va(fadump_conf->fadumphdr_addr);
	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
		pr_err("Crash info header is not valid.\n");
		return -EINVAL;
	}

	rc = rtas_fadump_build_cpu_notes(fadump_conf);
	if (rc)
		return rc;

	/*
	 * We are done validating dump info and elfcore header is now ready
	 * to be exported. set elfcorehdr_addr so that vmcore module will
	 * export the elfcore header through '/proc/vmcore'.
	 */
	elfcorehdr_addr = fdh->elfcorehdr_addr;

	return 0;
}

static void rtas_fadump_region_show(struct fw_dump *fadump_conf,
				    struct seq_file *m)
{
	const struct rtas_fadump_section *cpu_data_section;
	const struct rtas_fadump_mem_struct *fdm_ptr;

	if (fdm_active)
		fdm_ptr = fdm_active;
	else
		fdm_ptr = &fdm;

	cpu_data_section = &(fdm_ptr->cpu_state_data);
	seq_printf(m, "CPU :[%#016llx-%#016llx] %#llx bytes, Dumped: %#llx\n",
		   be64_to_cpu(cpu_data_section->destination_address),
		   be64_to_cpu(cpu_data_section->destination_address) +
		   be64_to_cpu(cpu_data_section->source_len) - 1,
		   be64_to_cpu(cpu_data_section->source_len),
		   be64_to_cpu(cpu_data_section->bytes_dumped));

	seq_printf(m, "HPTE:[%#016llx-%#016llx] %#llx bytes, Dumped: %#llx\n",
		   be64_to_cpu(fdm_ptr->hpte_region.destination_address),
		   be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
		   be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
		   be64_to_cpu(fdm_ptr->hpte_region.source_len),
		   be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));

	seq_printf(m, "DUMP: Src: %#016llx, Dest: %#016llx, ",
		   be64_to_cpu(fdm_ptr->rmr_region.source_address),
		   be64_to_cpu(fdm_ptr->rmr_region.destination_address));
	seq_printf(m, "Size: %#llx, Dumped: %#llx bytes\n",
		   be64_to_cpu(fdm_ptr->rmr_region.source_len),
		   be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));

	/* Dump is active. Show reserved area start address. */
	if (fdm_active) {
		seq_printf(m, "\nMemory above %#016lx is reserved for saving crash dump\n",
			   fadump_conf->reserve_dump_area_start);
	}
}

static void rtas_fadump_trigger(struct fadump_crash_info_header *fdh,
				const char *msg)
{
	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
	rtas_os_term((char *)msg);
}

static struct fadump_ops rtas_fadump_ops = {
	.fadump_init_mem_struct		= rtas_fadump_init_mem_struct,
	.fadump_get_bootmem_min		= rtas_fadump_get_bootmem_min,
	.fadump_register		= rtas_fadump_register,
	.fadump_unregister		= rtas_fadump_unregister,
	.fadump_invalidate		= rtas_fadump_invalidate,
	.fadump_process			= rtas_fadump_process,
	.fadump_region_show		= rtas_fadump_region_show,
	.fadump_trigger			= rtas_fadump_trigger,
};

void __init rtas_fadump_dt_scan(struct fw_dump *fadump_conf, u64 node)
{
	int i, size, num_sections;
	const __be32 *sections;
	const __be32 *token;

	/*
	 * Check if Firmware Assisted dump is supported. if yes, check
	 * if dump has been initiated on last reboot.
	 */
	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
	if (!token)
		return;

	fadump_conf->ibm_configure_kernel_dump = be32_to_cpu(*token);
	fadump_conf->ops		= &rtas_fadump_ops;
	fadump_conf->fadump_supported	= 1;

	/* Firmware supports 64-bit value for size, align it to pagesize. */
	fadump_conf->max_copy_size = _ALIGN_DOWN(U64_MAX, PAGE_SIZE);

	/*
	 * The 'ibm,kernel-dump' rtas node is present only if there is
	 * dump data waiting for us.
	 */
	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
	if (fdm_active) {
		pr_info("Firmware-assisted dump is active.\n");
		fadump_conf->dump_active = 1;
		rtas_fadump_get_config(fadump_conf, (void *)__pa(fdm_active));
	}

	/* Get the sizes required to store dump data for the firmware provided
	 * dump sections.
	 * For each dump section type supported, a 32bit cell which defines
	 * the ID of a supported section followed by two 32 bit cells which
	 * gives the size of the section in bytes.
	 */
	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
					&size);

	if (!sections)
		return;

	num_sections = size / (3 * sizeof(u32));

	for (i = 0; i < num_sections; i++, sections += 3) {
		u32 type = (u32)of_read_number(sections, 1);

		switch (type) {
		case RTAS_FADUMP_CPU_STATE_DATA:
			fadump_conf->cpu_state_data_size =
					of_read_ulong(&sections[1], 2);
			break;
		case RTAS_FADUMP_HPTE_REGION:
			fadump_conf->hpte_region_size =
					of_read_ulong(&sections[1], 2);
			break;
		}
	}
}