/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
/******************************************************************************
* kernel data segment
*****************************************************************************/
#ifdef INCLUDE_PROC
proc_kern:
process(PROC_KERN, 0, 0)
proc_list_head:
#endif
#ifdef INCLUDE_DATA
proc_list_tail:
time_prev: .b32 0
time_next: .b32 0
#endif
/******************************************************************************
* kernel code segment
*****************************************************************************/
#ifdef INCLUDE_CODE
bra #init
// read nv register
//
// $r15 - current
// $r14 - addr
// $r13 - data (return)
// $r0 - zero
rd32:
nv_iowr(NV_PPWR_MMIO_ADDR, $r14)
imm32($r13, NV_PPWR_MMIO_CTRL_OP_RD | NV_PPWR_MMIO_CTRL_TRIGGER)
nv_iowr(NV_PPWR_MMIO_CTRL, $r13)
rd32_wait:
nv_iord($r13, NV_PPWR_MMIO_CTRL)
and $r13 NV_PPWR_MMIO_CTRL_STATUS
bra nz #rd32_wait
nv_iord($r13, NV_PPWR_MMIO_DATA)
ret
// write nv register
//
// $r15 - current
// $r14 - addr
// $r13 - data
// $r0 - zero
wr32:
nv_iowr(NV_PPWR_MMIO_ADDR, $r14)
nv_iowr(NV_PPWR_MMIO_DATA, $r13)
imm32($r13, NV_PPWR_MMIO_CTRL_OP_WR | NV_PPWR_MMIO_CTRL_MASK_B32_0 | NV_PPWR_MMIO_CTRL_TRIGGER)
#ifdef NVKM_FALCON_MMIO_TRAP
push $r13
mov $r13 NV_PPWR_INTR_TRIGGER_USER1
nv_iowr(NV_PPWR_INTR_TRIGGER, $r13)
wr32_host:
nv_iord($r13, NV_PPWR_INTR)
and $r13 NV_PPWR_INTR_USER1
bra nz #wr32_host
pop $r13
#endif
nv_iowr(NV_PPWR_MMIO_CTRL, $r13)
wr32_wait:
nv_iord($r13, NV_PPWR_MMIO_CTRL)
and $r13 NV_PPWR_MMIO_CTRL_STATUS
bra nz #wr32_wait
ret
// busy-wait for a period of time
//
// $r15 - current
// $r14 - ns
// $r0 - zero
nsec:
push $r9
push $r8
nv_iord($r8, NV_PPWR_TIMER_LOW)
nsec_loop:
nv_iord($r9, NV_PPWR_TIMER_LOW)
sub b32 $r9 $r8
cmp b32 $r9 $r14
bra l #nsec_loop
pop $r8
pop $r9
ret
// busy-wait for a period of time
//
// $r15 - current
// $r14 - addr
// $r13 - mask
// $r12 - data
// $r11 - timeout (ns)
// $r0 - zero
wait:
push $r9
push $r8
nv_iord($r8, NV_PPWR_TIMER_LOW)
wait_loop:
nv_rd32($r10, $r14)
and $r10 $r13
cmp b32 $r10 $r12
bra e #wait_done
nv_iord($r9, NV_PPWR_TIMER_LOW)
sub b32 $r9 $r8
cmp b32 $r9 $r11
bra l #wait_loop
wait_done:
pop $r8
pop $r9
ret
// $r15 - current (kern)
// $r14 - process
// $r8 - NV_PPWR_INTR
intr_watchdog:
// read process' timer status, skip if not enabled
ld b32 $r9 D[$r14 + #proc_time]
cmp b32 $r9 0
bra z #intr_watchdog_next_proc
// subtract last timer's value from process' timer,
// if it's <= 0 then the timer has expired
ld b32 $r10 D[$r0 + #time_prev]
sub b32 $r9 $r10
bra g #intr_watchdog_next_time
mov $r13 KMSG_ALARM
call(send_proc)
clear b32 $r9
bra #intr_watchdog_next_proc
// otherwise, update the next timer's value if this
// process' timer is the soonest
intr_watchdog_next_time:
// ... or if there's no next timer yet
ld b32 $r10 D[$r0 + #time_next]
cmp b32 $r10 0
bra z #intr_watchdog_next_time_set
cmp b32 $r9 $r10
bra g #intr_watchdog_next_proc
intr_watchdog_next_time_set:
st b32 D[$r0 + #time_next] $r9
// update process' timer status, and advance
intr_watchdog_next_proc:
st b32 D[$r14 + #proc_time] $r9
add b32 $r14 #proc_size
cmp b32 $r14 #proc_list_tail
bra ne #intr_watchdog
ret
intr:
push $r0
clear b32 $r0
push $r8
push $r9
push $r10
push $r11
push $r12
push $r13
push $r14
push $r15
mov $r15 #proc_kern
mov $r8 $flags
push $r8
nv_iord($r8, NV_PPWR_DSCRATCH(0))
add b32 $r8 1
nv_iowr(NV_PPWR_DSCRATCH(0), $r8)
nv_iord($r8, NV_PPWR_INTR)
and $r9 $r8 NV_PPWR_INTR_WATCHDOG
bra z #intr_skip_watchdog
st b32 D[$r0 + #time_next] $r0
mov $r14 #proc_list_head
call(intr_watchdog)
ld b32 $r9 D[$r0 + #time_next]
cmp b32 $r9 0
bra z #intr_skip_watchdog
nv_iowr(NV_PPWR_WATCHDOG_TIME, $r9)
st b32 D[$r0 + #time_prev] $r9
intr_skip_watchdog:
and $r9 $r8 NV_PPWR_INTR_SUBINTR
bra z #intr_skip_subintr
nv_iord($r9, NV_PPWR_SUBINTR)
and $r10 $r9 NV_PPWR_SUBINTR_FIFO
bra z #intr_subintr_skip_fifo
nv_iord($r12, NV_PPWR_FIFO_INTR)
push $r12
imm32($r14, PROC_HOST)
mov $r13 KMSG_FIFO
call(send)
pop $r12
nv_iowr(NV_PPWR_FIFO_INTR, $r12)
intr_subintr_skip_fifo:
nv_iowr(NV_PPWR_SUBINTR, $r9)
intr_skip_subintr:
mov $r9 (NV_PPWR_INTR_USER0 | NV_PPWR_INTR_USER1 | NV_PPWR_INTR_PAUSE)
not b32 $r9
and $r8 $r9
nv_iowr(NV_PPWR_INTR_ACK, $r8)
pop $r8
mov $flags $r8
pop $r15
pop $r14
pop $r13
pop $r12
pop $r11
pop $r10
pop $r9
pop $r8
pop $r0
bclr $flags $p0
iret
// calculate the number of ticks in the specified nanoseconds delay
//
// $r15 - current
// $r14 - ns
// $r14 - ticks (return)
// $r0 - zero
ticks_from_ns:
push $r12
push $r11
/* try not losing precision (multiply then divide) */
imm32($r13, HW_TICKS_PER_US)
call(mulu32_32_64)
/* use an immeditate, it's ok because HW_TICKS_PER_US < 16 bits */
div $r12 $r12 1000
/* check if there wasn't any overflow */
cmpu b32 $r11 0
bra e #ticks_from_ns_quit
/* let's divide then multiply, too bad for the precision! */
div $r14 $r14 1000
imm32($r13, HW_TICKS_PER_US)
call(mulu32_32_64)
/* this cannot overflow as long as HW_TICKS_PER_US < 1000 */
ticks_from_ns_quit:
mov b32 $r14 $r12
pop $r11
pop $r12
ret
// calculate the number of ticks in the specified microsecond delay
//
// $r15 - current
// $r14 - us
// $r14 - ticks (return)
// $r0 - zero
ticks_from_us:
push $r12
push $r11
/* simply multiply $us by HW_TICKS_PER_US */
imm32($r13, HW_TICKS_PER_US)
call(mulu32_32_64)
mov b32 $r14 $r12
/* check if there wasn't any overflow */
cmpu b32 $r11 0
bra e #ticks_from_us_quit
/* Overflow! */
clear b32 $r14
ticks_from_us_quit:
pop $r11
pop $r12
ret
// calculate the number of ticks in the specified microsecond delay
//
// $r15 - current
// $r14 - ticks
// $r14 - us (return)
// $r0 - zero
ticks_to_us:
/* simply divide $ticks by HW_TICKS_PER_US */
imm32($r13, HW_TICKS_PER_US)
div $r14 $r14 $r13
ret
// request the current process be sent a message after a timeout expires
//
// $r15 - current
// $r14 - ticks (make sure it is < 2^31 to avoid any possible overflow)
// $r0 - zero
timer:
push $r9
push $r8
// interrupts off to prevent racing with timer isr
bclr $flags ie0
// if current process already has a timer set, bail
ld b32 $r8 D[$r15 + #proc_time]
cmp b32 $r8 0
bra g #timer_done
// halt watchdog timer temporarily
clear b32 $r8
nv_iowr(NV_PPWR_WATCHDOG_ENABLE, $r8)
// find out how much time elapsed since the last update
// of the watchdog and add this time to the wanted ticks
nv_iord($r8, NV_PPWR_WATCHDOG_TIME)
ld b32 $r9 D[$r0 + #time_prev]
sub b32 $r9 $r8
add b32 $r14 $r9
st b32 D[$r15 + #proc_time] $r14
// check for a pending interrupt. if there's one already
// pending, we can just bail since the timer isr will
// queue the next soonest right after it's done
nv_iord($r8, NV_PPWR_INTR)
and $r8 NV_PPWR_INTR_WATCHDOG
bra nz #timer_enable
// update the watchdog if this timer should expire first,
// or if there's no timeout already set
nv_iord($r8, NV_PPWR_WATCHDOG_TIME)
cmp b32 $r14 $r0
bra e #timer_reset
cmp b32 $r14 $r8
bra g #timer_enable
timer_reset:
nv_iowr(NV_PPWR_WATCHDOG_TIME, $r14)
st b32 D[$r0 + #time_prev] $r14
// re-enable the watchdog timer
timer_enable:
mov $r8 1
nv_iowr(NV_PPWR_WATCHDOG_ENABLE, $r8)
// interrupts back on
timer_done:
bset $flags ie0
pop $r8
pop $r9
ret
// send message to another process
//
// $r15 - current
// $r14 - process
// $r13 - message
// $r12 - message data 0
// $r11 - message data 1
// $r0 - zero
send_proc:
push $r8
push $r9
// check for space in queue
ld b32 $r8 D[$r14 + #proc_qget]
ld b32 $r9 D[$r14 + #proc_qput]
xor $r8 #proc_qmaskb
cmp b32 $r8 $r9
bra e #send_done
// enqueue message
and $r8 $r9 #proc_qmaskp
shl b32 $r8 $r8 #proc_qlen
add b32 $r8 #proc_queue
add b32 $r8 $r14
ld b32 $r10 D[$r15 + #proc_id]
st b32 D[$r8 + #msg_process] $r10
st b32 D[$r8 + #msg_message] $r13
st b32 D[$r8 + #msg_data0] $r12
st b32 D[$r8 + #msg_data1] $r11
// increment PUT
add b32 $r9 1
and $r9 #proc_qmaskf
st b32 D[$r14 + #proc_qput] $r9
bset $flags $p2
send_done:
pop $r9
pop $r8
ret
// lookup process structure by its name
//
// $r15 - current
// $r14 - process name
// $r0 - zero
//
// $r14 - process
// $p1 - success
find:
push $r8
mov $r8 #proc_list_head
bset $flags $p1
find_loop:
ld b32 $r10 D[$r8 + #proc_id]
cmp b32 $r10 $r14
bra e #find_done
add b32 $r8 #proc_size
cmp b32 $r8 #proc_list_tail
bra ne #find_loop
bclr $flags $p1
find_done:
mov b32 $r14 $r8
pop $r8
ret
// send message to another process
//
// $r15 - current
// $r14 - process id
// $r13 - message
// $r12 - message data 0
// $r11 - message data 1
// $r0 - zero
send:
call(find)
bra $p1 #send_proc
ret
// process single message for a given process
//
// $r15 - current
// $r14 - process
// $r0 - zero
recv:
push $r9
push $r8
ld b32 $r8 D[$r14 + #proc_qget]
ld b32 $r9 D[$r14 + #proc_qput]
bclr $flags $p1
cmp b32 $r8 $r9
bra e #recv_done
// dequeue message
and $r9 $r8 #proc_qmaskp
add b32 $r8 1
and $r8 #proc_qmaskf
st b32 D[$r14 + #proc_qget] $r8
ld b32 $r10 D[$r14 + #proc_recv]
push $r15
mov $r15 $flags
push $r15
mov b32 $r15 $r14
shl b32 $r9 $r9 #proc_qlen
add b32 $r14 $r9
add b32 $r14 #proc_queue
ld b32 $r11 D[$r14 + #msg_data1]
ld b32 $r12 D[$r14 + #msg_data0]
ld b32 $r13 D[$r14 + #msg_message]
ld b32 $r14 D[$r14 + #msg_process]
// process it
call $r10
pop $r15
mov $flags $r15
bset $flags $p1
pop $r15
recv_done:
pop $r8
pop $r9
ret
init:
// setup stack
nv_iord($r1, NV_PPWR_CAPS)
extr $r1 $r1 9:17
shl b32 $r1 8
mov $sp $r1
#ifdef NVKM_FALCON_MMIO_UAS
// somehow allows the magic "access mmio via D[]" stuff that's
// used by the nv_rd32/nv_wr32 macros to work
imm32($r1, 0x10 | NV_PPWR_UAS_CONFIG_ENABLE)
nv_iowrs(NV_PPWR_UAS_CONFIG, $r1)
#endif
// route all interrupts except user0/1 and pause to fuc
imm32($r1, 0xe0)
nv_iowr(NV_PPWR_INTR_ROUTE, $r1)
// enable watchdog and subintr intrs
mov $r1 NV_PPWR_INTR_EN_CLR_MASK
nv_iowr(NV_PPWR_INTR_EN_CLR, $r1)
mov $r1 NV_PPWR_INTR_EN_SET_WATCHDOG
or $r1 NV_PPWR_INTR_EN_SET_SUBINTR
nv_iowr(NV_PPWR_INTR_EN_SET, $r1)
// enable interrupts globally
imm32($r1, #intr)
and $r1 0xffff
mov $iv0 $r1
bset $flags ie0
// enable watchdog timer
mov $r1 1
nv_iowr(NV_PPWR_WATCHDOG_ENABLE, $r1)
// bootstrap processes, idle process will be last, and not return
mov $r15 #proc_list_head
init_proc:
ld b32 $r1 D[$r15 + #proc_init]
cmp b32 $r1 0
bra z #init_proc
call $r1
add b32 $r15 #proc_size
bra #init_proc
#endif