Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
// SPDX-License-Identifier: GPL-2.0
#define DEBG(x)
#define DEBG1(x)
/* inflate.c -- Not copyrighted 1992 by Mark Adler
   version c10p1, 10 January 1993 */

/* 
 * Adapted for booting Linux by Hannu Savolainen 1993
 * based on gzip-1.0.3 
 *
 * Nicolas Pitre <nico@fluxnic.net>, 1999/04/14 :
 *   Little mods for all variable to reside either into rodata or bss segments
 *   by marking constant variables with 'const' and initializing all the others
 *   at run-time only.  This allows for the kernel uncompressor to run
 *   directly from Flash or ROM memory on embedded systems.
 */

/*
   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
   method searches for as much of the current string of bytes (up to a
   length of 258) in the previous 32 K bytes.  If it doesn't find any
   matches (of at least length 3), it codes the next byte.  Otherwise, it
   codes the length of the matched string and its distance backwards from
   the current position.  There is a single Huffman code that codes both
   single bytes (called "literals") and match lengths.  A second Huffman
   code codes the distance information, which follows a length code.  Each
   length or distance code actually represents a base value and a number
   of "extra" (sometimes zero) bits to get to add to the base value.  At
   the end of each deflated block is a special end-of-block (EOB) literal/
   length code.  The decoding process is basically: get a literal/length
   code; if EOB then done; if a literal, emit the decoded byte; if a
   length then get the distance and emit the referred-to bytes from the
   sliding window of previously emitted data.

   There are (currently) three kinds of inflate blocks: stored, fixed, and
   dynamic.  The compressor deals with some chunk of data at a time, and
   decides which method to use on a chunk-by-chunk basis.  A chunk might
   typically be 32 K or 64 K.  If the chunk is incompressible, then the
   "stored" method is used.  In this case, the bytes are simply stored as
   is, eight bits per byte, with none of the above coding.  The bytes are
   preceded by a count, since there is no longer an EOB code.

   If the data is compressible, then either the fixed or dynamic methods
   are used.  In the dynamic method, the compressed data is preceded by
   an encoding of the literal/length and distance Huffman codes that are
   to be used to decode this block.  The representation is itself Huffman
   coded, and so is preceded by a description of that code.  These code
   descriptions take up a little space, and so for small blocks, there is
   a predefined set of codes, called the fixed codes.  The fixed method is
   used if the block codes up smaller that way (usually for quite small
   chunks), otherwise the dynamic method is used.  In the latter case, the
   codes are customized to the probabilities in the current block, and so
   can code it much better than the pre-determined fixed codes.
 
   The Huffman codes themselves are decoded using a multi-level table
   lookup, in order to maximize the speed of decoding plus the speed of
   building the decoding tables.  See the comments below that precede the
   lbits and dbits tuning parameters.
 */


/*
   Notes beyond the 1.93a appnote.txt:

   1. Distance pointers never point before the beginning of the output
      stream.
   2. Distance pointers can point back across blocks, up to 32k away.
   3. There is an implied maximum of 7 bits for the bit length table and
      15 bits for the actual data.
   4. If only one code exists, then it is encoded using one bit.  (Zero
      would be more efficient, but perhaps a little confusing.)  If two
      codes exist, they are coded using one bit each (0 and 1).
   5. There is no way of sending zero distance codes--a dummy must be
      sent if there are none.  (History: a pre 2.0 version of PKZIP would
      store blocks with no distance codes, but this was discovered to be
      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
      zero distance codes, which is sent as one code of zero bits in
      length.
   6. There are up to 286 literal/length codes.  Code 256 represents the
      end-of-block.  Note however that the static length tree defines
      288 codes just to fill out the Huffman codes.  Codes 286 and 287
      cannot be used though, since there is no length base or extra bits
      defined for them.  Similarly, there are up to 30 distance codes.
      However, static trees define 32 codes (all 5 bits) to fill out the
      Huffman codes, but the last two had better not show up in the data.
   7. Unzip can check dynamic Huffman blocks for complete code sets.
      The exception is that a single code would not be complete (see #4).
   8. The five bits following the block type is really the number of
      literal codes sent minus 257.
   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
      (1+6+6).  Therefore, to output three times the length, you output
      three codes (1+1+1), whereas to output four times the same length,
      you only need two codes (1+3).  Hmm.
  10. In the tree reconstruction algorithm, Code = Code + Increment
      only if BitLength(i) is not zero.  (Pretty obvious.)
  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
  12. Note: length code 284 can represent 227-258, but length code 285
      really is 258.  The last length deserves its own, short code
      since it gets used a lot in very redundant files.  The length
      258 is special since 258 - 3 (the min match length) is 255.
  13. The literal/length and distance code bit lengths are read as a
      single stream of lengths.  It is possible (and advantageous) for
      a repeat code (16, 17, or 18) to go across the boundary between
      the two sets of lengths.
 */
#include <linux/compiler.h>
#ifdef NO_INFLATE_MALLOC
#include <linux/slab.h>
#endif

#ifdef RCSID
static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
#endif

#ifndef STATIC

#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
#  include <sys/types.h>
#  include <stdlib.h>
#endif

#include "gzip.h"
#define STATIC
#endif /* !STATIC */

#ifndef INIT
#define INIT
#endif
	
#define slide window

/* Huffman code lookup table entry--this entry is four bytes for machines
   that have 16-bit pointers (e.g. PC's in the small or medium model).
   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
   means that v is a literal, 16 < e < 32 means that v is a pointer to
   the next table, which codes e - 16 bits, and lastly e == 99 indicates
   an unused code.  If a code with e == 99 is looked up, this implies an
   error in the data. */
struct huft {
  uch e;                /* number of extra bits or operation */
  uch b;                /* number of bits in this code or subcode */
  union {
    ush n;              /* literal, length base, or distance base */
    struct huft *t;     /* pointer to next level of table */
  } v;
};


/* Function prototypes */
STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, 
		const ush *, const ush *, struct huft **, int *));
STATIC int INIT huft_free OF((struct huft *));
STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int));
STATIC int INIT inflate_stored OF((void));
STATIC int INIT inflate_fixed OF((void));
STATIC int INIT inflate_dynamic OF((void));
STATIC int INIT inflate_block OF((int *));
STATIC int INIT inflate OF((void));


/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
   stream to find repeated byte strings.  This is implemented here as a
   circular buffer.  The index is updated simply by incrementing and then
   ANDing with 0x7fff (32K-1). */
/* It is left to other modules to supply the 32 K area.  It is assumed
   to be usable as if it were declared "uch slide[32768];" or as just
   "uch *slide;" and then malloc'ed in the latter case.  The definition
   must be in unzip.h, included above. */
/* unsigned wp;             current position in slide */
#define wp outcnt
#define flush_output(w) (wp=(w),flush_window())

/* Tables for deflate from PKZIP's appnote.txt. */
static const unsigned border[] = {    /* Order of the bit length code lengths */
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
        /* note: see note #13 above about the 258 in this list. */
static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577};
static const ush cpdext[] = {         /* Extra bits for distance codes */
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
        12, 12, 13, 13};



/* Macros for inflate() bit peeking and grabbing.
   The usage is:
   
        NEEDBITS(j)
        x = b & mask_bits[j];
        DUMPBITS(j)

   where NEEDBITS makes sure that b has at least j bits in it, and
   DUMPBITS removes the bits from b.  The macros use the variable k
   for the number of bits in b.  Normally, b and k are register
   variables for speed, and are initialized at the beginning of a
   routine that uses these macros from a global bit buffer and count.

   If we assume that EOB will be the longest code, then we will never
   ask for bits with NEEDBITS that are beyond the end of the stream.
   So, NEEDBITS should not read any more bytes than are needed to
   meet the request.  Then no bytes need to be "returned" to the buffer
   at the end of the last block.

   However, this assumption is not true for fixed blocks--the EOB code
   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
   (The EOB code is shorter than other codes because fixed blocks are
   generally short.  So, while a block always has an EOB, many other
   literal/length codes have a significantly lower probability of
   showing up at all.)  However, by making the first table have a
   lookup of seven bits, the EOB code will be found in that first
   lookup, and so will not require that too many bits be pulled from
   the stream.
 */

STATIC ulg bb;                         /* bit buffer */
STATIC unsigned bk;                    /* bits in bit buffer */

STATIC const ush mask_bits[] = {
    0x0000,
    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};

#define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; })
#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
#define DUMPBITS(n) {b>>=(n);k-=(n);}

#ifndef NO_INFLATE_MALLOC
/* A trivial malloc implementation, adapted from
 *  malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
 */

static unsigned long malloc_ptr;
static int malloc_count;

static void *malloc(int size)
{
       void *p;

       if (size < 0)
		error("Malloc error");
       if (!malloc_ptr)
		malloc_ptr = free_mem_ptr;

       malloc_ptr = (malloc_ptr + 3) & ~3;     /* Align */

       p = (void *)malloc_ptr;
       malloc_ptr += size;

       if (free_mem_end_ptr && malloc_ptr >= free_mem_end_ptr)
		error("Out of memory");

       malloc_count++;
       return p;
}

static void free(void *where)
{
       malloc_count--;
       if (!malloc_count)
		malloc_ptr = free_mem_ptr;
}
#else
#define malloc(a) kmalloc(a, GFP_KERNEL)
#define free(a) kfree(a)
#endif

/*
   Huffman code decoding is performed using a multi-level table lookup.
   The fastest way to decode is to simply build a lookup table whose
   size is determined by the longest code.  However, the time it takes
   to build this table can also be a factor if the data being decoded
   is not very long.  The most common codes are necessarily the
   shortest codes, so those codes dominate the decoding time, and hence
   the speed.  The idea is you can have a shorter table that decodes the
   shorter, more probable codes, and then point to subsidiary tables for
   the longer codes.  The time it costs to decode the longer codes is
   then traded against the time it takes to make longer tables.

   This results of this trade are in the variables lbits and dbits
   below.  lbits is the number of bits the first level table for literal/
   length codes can decode in one step, and dbits is the same thing for
   the distance codes.  Subsequent tables are also less than or equal to
   those sizes.  These values may be adjusted either when all of the
   codes are shorter than that, in which case the longest code length in
   bits is used, or when the shortest code is *longer* than the requested
   table size, in which case the length of the shortest code in bits is
   used.

   There are two different values for the two tables, since they code a
   different number of possibilities each.  The literal/length table
   codes 286 possible values, or in a flat code, a little over eight
   bits.  The distance table codes 30 possible values, or a little less
   than five bits, flat.  The optimum values for speed end up being
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   The optimum values may differ though from machine to machine, and
   possibly even between compilers.  Your mileage may vary.
 */


STATIC const int lbits = 9;          /* bits in base literal/length lookup table */
STATIC const int dbits = 6;          /* bits in base distance lookup table */


/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
#define BMAX 16         /* maximum bit length of any code (16 for explode) */
#define N_MAX 288       /* maximum number of codes in any set */


STATIC unsigned hufts;         /* track memory usage */


STATIC int INIT huft_build(
	unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
	unsigned n,             /* number of codes (assumed <= N_MAX) */
	unsigned s,             /* number of simple-valued codes (0..s-1) */
	const ush *d,           /* list of base values for non-simple codes */
	const ush *e,           /* list of extra bits for non-simple codes */
	struct huft **t,        /* result: starting table */
	int *m                  /* maximum lookup bits, returns actual */
	)
/* Given a list of code lengths and a maximum table size, make a set of
   tables to decode that set of codes.  Return zero on success, one if
   the given code set is incomplete (the tables are still built in this
   case), two if the input is invalid (all zero length codes or an
   oversubscribed set of lengths), and three if not enough memory. */
{
  unsigned a;                   /* counter for codes of length k */
  unsigned f;                   /* i repeats in table every f entries */
  int g;                        /* maximum code length */
  int h;                        /* table level */
  register unsigned i;          /* counter, current code */
  register unsigned j;          /* counter */
  register int k;               /* number of bits in current code */
  int l;                        /* bits per table (returned in m) */
  register unsigned *p;         /* pointer into c[], b[], or v[] */
  register struct huft *q;      /* points to current table */
  struct huft r;                /* table entry for structure assignment */
  register int w;               /* bits before this table == (l * h) */
  unsigned *xp;                 /* pointer into x */
  int y;                        /* number of dummy codes added */
  unsigned z;                   /* number of entries in current table */
  struct {
    unsigned c[BMAX+1];           /* bit length count table */
    struct huft *u[BMAX];         /* table stack */
    unsigned v[N_MAX];            /* values in order of bit length */
    unsigned x[BMAX+1];           /* bit offsets, then code stack */
  } *stk;
  unsigned *c, *v, *x;
  struct huft **u;
  int ret;

DEBG("huft1 ");

  stk = malloc(sizeof(*stk));
  if (stk == NULL)
    return 3;			/* out of memory */

  c = stk->c;
  v = stk->v;
  x = stk->x;
  u = stk->u;

  /* Generate counts for each bit length */
  memzero(stk->c, sizeof(stk->c));
  p = b;  i = n;
  do {
    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 
	    n-i, *p));
    c[*p]++;                    /* assume all entries <= BMAX */
    p++;                      /* Can't combine with above line (Solaris bug) */
  } while (--i);
  if (c[0] == n)                /* null input--all zero length codes */
  {
    *t = (struct huft *)NULL;
    *m = 0;
    ret = 2;
    goto out;
  }

DEBG("huft2 ");

  /* Find minimum and maximum length, bound *m by those */
  l = *m;
  for (j = 1; j <= BMAX; j++)
    if (c[j])
      break;
  k = j;                        /* minimum code length */
  if ((unsigned)l < j)
    l = j;
  for (i = BMAX; i; i--)
    if (c[i])
      break;
  g = i;                        /* maximum code length */
  if ((unsigned)l > i)
    l = i;
  *m = l;

DEBG("huft3 ");

  /* Adjust last length count to fill out codes, if needed */
  for (y = 1 << j; j < i; j++, y <<= 1)
    if ((y -= c[j]) < 0) {
      ret = 2;                 /* bad input: more codes than bits */
      goto out;
    }
  if ((y -= c[i]) < 0) {
    ret = 2;
    goto out;
  }
  c[i] += y;

DEBG("huft4 ");

  /* Generate starting offsets into the value table for each length */
  x[1] = j = 0;
  p = c + 1;  xp = x + 2;
  while (--i) {                 /* note that i == g from above */
    *xp++ = (j += *p++);
  }

DEBG("huft5 ");

  /* Make a table of values in order of bit lengths */
  p = b;  i = 0;
  do {
    if ((j = *p++) != 0)
      v[x[j]++] = i;
  } while (++i < n);
  n = x[g];                   /* set n to length of v */

DEBG("h6 ");

  /* Generate the Huffman codes and for each, make the table entries */
  x[0] = i = 0;                 /* first Huffman code is zero */
  p = v;                        /* grab values in bit order */
  h = -1;                       /* no tables yet--level -1 */
  w = -l;                       /* bits decoded == (l * h) */
  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
  q = (struct huft *)NULL;      /* ditto */
  z = 0;                        /* ditto */
DEBG("h6a ");

  /* go through the bit lengths (k already is bits in shortest code) */
  for (; k <= g; k++)
  {
DEBG("h6b ");
    a = c[k];
    while (a--)
    {
DEBG("h6b1 ");
      /* here i is the Huffman code of length k bits for value *p */
      /* make tables up to required level */
      while (k > w + l)
      {
DEBG1("1 ");
        h++;
        w += l;                 /* previous table always l bits */

        /* compute minimum size table less than or equal to l bits */
        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
        {                       /* too few codes for k-w bit table */
DEBG1("2 ");
          f -= a + 1;           /* deduct codes from patterns left */
          xp = c + k;
          if (j < z)
            while (++j < z)       /* try smaller tables up to z bits */
            {
              if ((f <<= 1) <= *++xp)
                break;            /* enough codes to use up j bits */
              f -= *xp;           /* else deduct codes from patterns */
            }
        }
DEBG1("3 ");
        z = 1 << j;             /* table entries for j-bit table */

        /* allocate and link in new table */
        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
            (struct huft *)NULL)
        {
          if (h)
            huft_free(u[0]);
          ret = 3;             /* not enough memory */
	  goto out;
        }
DEBG1("4 ");
        hufts += z + 1;         /* track memory usage */
        *t = q + 1;             /* link to list for huft_free() */
        *(t = &(q->v.t)) = (struct huft *)NULL;
        u[h] = ++q;             /* table starts after link */

DEBG1("5 ");
        /* connect to last table, if there is one */
        if (h)
        {
          x[h] = i;             /* save pattern for backing up */
          r.b = (uch)l;         /* bits to dump before this table */
          r.e = (uch)(16 + j);  /* bits in this table */
          r.v.t = q;            /* pointer to this table */
          j = i >> (w - l);     /* (get around Turbo C bug) */
          u[h-1][j] = r;        /* connect to last table */
        }
DEBG1("6 ");
      }
DEBG("h6c ");

      /* set up table entry in r */
      r.b = (uch)(k - w);
      if (p >= v + n)
        r.e = 99;               /* out of values--invalid code */
      else if (*p < s)
      {
        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
        r.v.n = (ush)(*p);             /* simple code is just the value */
	p++;                           /* one compiler does not like *p++ */
      }
      else
      {
        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
        r.v.n = d[*p++ - s];
      }
DEBG("h6d ");

      /* fill code-like entries with r */
      f = 1 << (k - w);
      for (j = i >> w; j < z; j += f)
        q[j] = r;

      /* backwards increment the k-bit code i */
      for (j = 1 << (k - 1); i & j; j >>= 1)
        i ^= j;
      i ^= j;

      /* backup over finished tables */
      while ((i & ((1 << w) - 1)) != x[h])
      {
        h--;                    /* don't need to update q */
        w -= l;
      }
DEBG("h6e ");
    }
DEBG("h6f ");
  }

DEBG("huft7 ");

  /* Return true (1) if we were given an incomplete table */
  ret = y != 0 && g != 1;

  out:
  free(stk);
  return ret;
}



STATIC int INIT huft_free(
	struct huft *t         /* table to free */
	)
/* Free the malloc'ed tables built by huft_build(), which makes a linked
   list of the tables it made, with the links in a dummy first entry of
   each table. */
{
  register struct huft *p, *q;


  /* Go through linked list, freeing from the malloced (t[-1]) address. */
  p = t;
  while (p != (struct huft *)NULL)
  {
    q = (--p)->v.t;
    free((char*)p);
    p = q;
  } 
  return 0;
}


STATIC int INIT inflate_codes(
	struct huft *tl,    /* literal/length decoder tables */
	struct huft *td,    /* distance decoder tables */
	int bl,             /* number of bits decoded by tl[] */
	int bd              /* number of bits decoded by td[] */
	)
/* inflate (decompress) the codes in a deflated (compressed) block.
   Return an error code or zero if it all goes ok. */
{
  register unsigned e;  /* table entry flag/number of extra bits */
  unsigned n, d;        /* length and index for copy */
  unsigned w;           /* current window position */
  struct huft *t;       /* pointer to table entry */
  unsigned ml, md;      /* masks for bl and bd bits */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */


  /* make local copies of globals */
  b = bb;                       /* initialize bit buffer */
  k = bk;
  w = wp;                       /* initialize window position */

  /* inflate the coded data */
  ml = mask_bits[bl];           /* precompute masks for speed */
  md = mask_bits[bd];
  for (;;)                      /* do until end of block */
  {
    NEEDBITS((unsigned)bl)
    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
      do {
        if (e == 99)
          return 1;
        DUMPBITS(t->b)
        e -= 16;
        NEEDBITS(e)
      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
    DUMPBITS(t->b)
    if (e == 16)                /* then it's a literal */
    {
      slide[w++] = (uch)t->v.n;
      Tracevv((stderr, "%c", slide[w-1]));
      if (w == WSIZE)
      {
        flush_output(w);
        w = 0;
      }
    }
    else                        /* it's an EOB or a length */
    {
      /* exit if end of block */
      if (e == 15)
        break;

      /* get length of block to copy */
      NEEDBITS(e)
      n = t->v.n + ((unsigned)b & mask_bits[e]);
      DUMPBITS(e);

      /* decode distance of block to copy */
      NEEDBITS((unsigned)bd)
      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
        do {
          if (e == 99)
            return 1;
          DUMPBITS(t->b)
          e -= 16;
          NEEDBITS(e)
        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
      DUMPBITS(t->b)
      NEEDBITS(e)
      d = w - t->v.n - ((unsigned)b & mask_bits[e]);
      DUMPBITS(e)
      Tracevv((stderr,"\\[%d,%d]", w-d, n));

      /* do the copy */
      do {
        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
#if !defined(NOMEMCPY) && !defined(DEBUG)
        if (w - d >= e)         /* (this test assumes unsigned comparison) */
        {
          memcpy(slide + w, slide + d, e);
          w += e;
          d += e;
        }
        else                      /* do it slow to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
          do {
            slide[w++] = slide[d++];
	    Tracevv((stderr, "%c", slide[w-1]));
          } while (--e);
        if (w == WSIZE)
        {
          flush_output(w);
          w = 0;
        }
      } while (n);
    }
  }


  /* restore the globals from the locals */
  wp = w;                       /* restore global window pointer */
  bb = b;                       /* restore global bit buffer */
  bk = k;

  /* done */
  return 0;

 underrun:
  return 4;			/* Input underrun */
}



STATIC int INIT inflate_stored(void)
/* "decompress" an inflated type 0 (stored) block. */
{
  unsigned n;           /* number of bytes in block */
  unsigned w;           /* current window position */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */

DEBG("<stor");

  /* make local copies of globals */
  b = bb;                       /* initialize bit buffer */
  k = bk;
  w = wp;                       /* initialize window position */


  /* go to byte boundary */
  n = k & 7;
  DUMPBITS(n);


  /* get the length and its complement */
  NEEDBITS(16)
  n = ((unsigned)b & 0xffff);
  DUMPBITS(16)
  NEEDBITS(16)
  if (n != (unsigned)((~b) & 0xffff))
    return 1;                   /* error in compressed data */
  DUMPBITS(16)


  /* read and output the compressed data */
  while (n--)
  {
    NEEDBITS(8)
    slide[w++] = (uch)b;
    if (w == WSIZE)
    {
      flush_output(w);
      w = 0;
    }
    DUMPBITS(8)
  }


  /* restore the globals from the locals */
  wp = w;                       /* restore global window pointer */
  bb = b;                       /* restore global bit buffer */
  bk = k;

  DEBG(">");
  return 0;

 underrun:
  return 4;			/* Input underrun */
}


/*
 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
 */
STATIC int noinline INIT inflate_fixed(void)
/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
   either replace this with a custom decoder, or at least precompute the
   Huffman tables. */
{
  int i;                /* temporary variable */
  struct huft *tl;      /* literal/length code table */
  struct huft *td;      /* distance code table */
  int bl;               /* lookup bits for tl */
  int bd;               /* lookup bits for td */
  unsigned *l;          /* length list for huft_build */

DEBG("<fix");

  l = malloc(sizeof(*l) * 288);
  if (l == NULL)
    return 3;			/* out of memory */

  /* set up literal table */
  for (i = 0; i < 144; i++)
    l[i] = 8;
  for (; i < 256; i++)
    l[i] = 9;
  for (; i < 280; i++)
    l[i] = 7;
  for (; i < 288; i++)          /* make a complete, but wrong code set */
    l[i] = 8;
  bl = 7;
  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) {
    free(l);
    return i;
  }

  /* set up distance table */
  for (i = 0; i < 30; i++)      /* make an incomplete code set */
    l[i] = 5;
  bd = 5;
  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
  {
    huft_free(tl);
    free(l);

    DEBG(">");
    return i;
  }


  /* decompress until an end-of-block code */
  if (inflate_codes(tl, td, bl, bd)) {
    free(l);
    return 1;
  }

  /* free the decoding tables, return */
  free(l);
  huft_free(tl);
  huft_free(td);
  return 0;
}


/*
 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
 */
STATIC int noinline INIT inflate_dynamic(void)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
  int i;                /* temporary variables */
  unsigned j;
  unsigned l;           /* last length */
  unsigned m;           /* mask for bit lengths table */
  unsigned n;           /* number of lengths to get */
  struct huft *tl;      /* literal/length code table */
  struct huft *td;      /* distance code table */
  int bl;               /* lookup bits for tl */
  int bd;               /* lookup bits for td */
  unsigned nb;          /* number of bit length codes */
  unsigned nl;          /* number of literal/length codes */
  unsigned nd;          /* number of distance codes */
  unsigned *ll;         /* literal/length and distance code lengths */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */
  int ret;

DEBG("<dyn");

#ifdef PKZIP_BUG_WORKAROUND
  ll = malloc(sizeof(*ll) * (288+32));  /* literal/length and distance code lengths */
#else
  ll = malloc(sizeof(*ll) * (286+30));  /* literal/length and distance code lengths */
#endif

  if (ll == NULL)
    return 1;

  /* make local bit buffer */
  b = bb;
  k = bk;


  /* read in table lengths */
  NEEDBITS(5)
  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
  DUMPBITS(5)
  NEEDBITS(5)
  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
  DUMPBITS(5)
  NEEDBITS(4)
  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
  DUMPBITS(4)
#ifdef PKZIP_BUG_WORKAROUND
  if (nl > 288 || nd > 32)
#else
  if (nl > 286 || nd > 30)
#endif
  {
    ret = 1;             /* bad lengths */
    goto out;
  }

DEBG("dyn1 ");

  /* read in bit-length-code lengths */
  for (j = 0; j < nb; j++)
  {
    NEEDBITS(3)
    ll[border[j]] = (unsigned)b & 7;
    DUMPBITS(3)
  }
  for (; j < 19; j++)
    ll[border[j]] = 0;

DEBG("dyn2 ");

  /* build decoding table for trees--single level, 7 bit lookup */
  bl = 7;
  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
  {
    if (i == 1)
      huft_free(tl);
    ret = i;                   /* incomplete code set */
    goto out;
  }

DEBG("dyn3 ");

  /* read in literal and distance code lengths */
  n = nl + nd;
  m = mask_bits[bl];
  i = l = 0;
  while ((unsigned)i < n)
  {
    NEEDBITS((unsigned)bl)
    j = (td = tl + ((unsigned)b & m))->b;
    DUMPBITS(j)
    j = td->v.n;
    if (j < 16)                 /* length of code in bits (0..15) */
      ll[i++] = l = j;          /* save last length in l */
    else if (j == 16)           /* repeat last length 3 to 6 times */
    {
      NEEDBITS(2)
      j = 3 + ((unsigned)b & 3);
      DUMPBITS(2)
      if ((unsigned)i + j > n) {
        ret = 1;
	goto out;
      }
      while (j--)
        ll[i++] = l;
    }
    else if (j == 17)           /* 3 to 10 zero length codes */
    {
      NEEDBITS(3)
      j = 3 + ((unsigned)b & 7);
      DUMPBITS(3)
      if ((unsigned)i + j > n) {
        ret = 1;
	goto out;
      }
      while (j--)
        ll[i++] = 0;
      l = 0;
    }
    else                        /* j == 18: 11 to 138 zero length codes */
    {
      NEEDBITS(7)
      j = 11 + ((unsigned)b & 0x7f);
      DUMPBITS(7)
      if ((unsigned)i + j > n) {
        ret = 1;
	goto out;
      }
      while (j--)
        ll[i++] = 0;
      l = 0;
    }
  }

DEBG("dyn4 ");

  /* free decoding table for trees */
  huft_free(tl);

DEBG("dyn5 ");

  /* restore the global bit buffer */
  bb = b;
  bk = k;

DEBG("dyn5a ");

  /* build the decoding tables for literal/length and distance codes */
  bl = lbits;
  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
  {
DEBG("dyn5b ");
    if (i == 1) {
      error("incomplete literal tree");
      huft_free(tl);
    }
    ret = i;                   /* incomplete code set */
    goto out;
  }
DEBG("dyn5c ");
  bd = dbits;
  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
  {
DEBG("dyn5d ");
    if (i == 1) {
      error("incomplete distance tree");
#ifdef PKZIP_BUG_WORKAROUND
      i = 0;
    }
#else
      huft_free(td);
    }
    huft_free(tl);
    ret = i;                   /* incomplete code set */
    goto out;
#endif
  }

DEBG("dyn6 ");

  /* decompress until an end-of-block code */
  if (inflate_codes(tl, td, bl, bd)) {
    ret = 1;
    goto out;
  }

DEBG("dyn7 ");

  /* free the decoding tables, return */
  huft_free(tl);
  huft_free(td);

  DEBG(">");
  ret = 0;
out:
  free(ll);
  return ret;

underrun:
  ret = 4;			/* Input underrun */
  goto out;
}



STATIC int INIT inflate_block(
	int *e                  /* last block flag */
	)
/* decompress an inflated block */
{
  unsigned t;           /* block type */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */

  DEBG("<blk");

  /* make local bit buffer */
  b = bb;
  k = bk;


  /* read in last block bit */
  NEEDBITS(1)
  *e = (int)b & 1;
  DUMPBITS(1)


  /* read in block type */
  NEEDBITS(2)
  t = (unsigned)b & 3;
  DUMPBITS(2)


  /* restore the global bit buffer */
  bb = b;
  bk = k;

  /* inflate that block type */
  if (t == 2)
    return inflate_dynamic();
  if (t == 0)
    return inflate_stored();
  if (t == 1)
    return inflate_fixed();

  DEBG(">");

  /* bad block type */
  return 2;

 underrun:
  return 4;			/* Input underrun */
}



STATIC int INIT inflate(void)
/* decompress an inflated entry */
{
  int e;                /* last block flag */
  int r;                /* result code */
  unsigned h;           /* maximum struct huft's malloc'ed */

  /* initialize window, bit buffer */
  wp = 0;
  bk = 0;
  bb = 0;


  /* decompress until the last block */
  h = 0;
  do {
    hufts = 0;
#ifdef ARCH_HAS_DECOMP_WDOG
    arch_decomp_wdog();
#endif
    r = inflate_block(&e);
    if (r)
	    return r;
    if (hufts > h)
      h = hufts;
  } while (!e);

  /* Undo too much lookahead. The next read will be byte aligned so we
   * can discard unused bits in the last meaningful byte.
   */
  while (bk >= 8) {
    bk -= 8;
    inptr--;
  }

  /* flush out slide */
  flush_output(wp);


  /* return success */
#ifdef DEBUG
  fprintf(stderr, "<%u> ", h);
#endif /* DEBUG */
  return 0;
}

/**********************************************************************
 *
 * The following are support routines for inflate.c
 *
 **********************************************************************/

static ulg crc_32_tab[256];
static ulg crc;		/* initialized in makecrc() so it'll reside in bss */
#define CRC_VALUE (crc ^ 0xffffffffUL)

/*
 * Code to compute the CRC-32 table. Borrowed from 
 * gzip-1.0.3/makecrc.c.
 */

static void INIT
makecrc(void)
{
/* Not copyrighted 1990 Mark Adler	*/

  unsigned long c;      /* crc shift register */
  unsigned long e;      /* polynomial exclusive-or pattern */
  int i;                /* counter for all possible eight bit values */
  int k;                /* byte being shifted into crc apparatus */

  /* terms of polynomial defining this crc (except x^32): */
  static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};

  /* Make exclusive-or pattern from polynomial */
  e = 0;
  for (i = 0; i < sizeof(p)/sizeof(int); i++)
    e |= 1L << (31 - p[i]);

  crc_32_tab[0] = 0;

  for (i = 1; i < 256; i++)
  {
    c = 0;
    for (k = i | 256; k != 1; k >>= 1)
    {
      c = c & 1 ? (c >> 1) ^ e : c >> 1;
      if (k & 1)
        c ^= e;
    }
    crc_32_tab[i] = c;
  }

  /* this is initialized here so this code could reside in ROM */
  crc = (ulg)0xffffffffUL; /* shift register contents */
}

/* gzip flag byte */
#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
#define COMMENT      0x10 /* bit 4 set: file comment present */
#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
#define RESERVED     0xC0 /* bit 6,7:   reserved */

/*
 * Do the uncompression!
 */
static int INIT gunzip(void)
{
    uch flags;
    unsigned char magic[2]; /* magic header */
    char method;
    ulg orig_crc = 0;       /* original crc */
    ulg orig_len = 0;       /* original uncompressed length */
    int res;

    magic[0] = NEXTBYTE();
    magic[1] = NEXTBYTE();
    method   = NEXTBYTE();

    if (magic[0] != 037 ||
	((magic[1] != 0213) && (magic[1] != 0236))) {
	    error("bad gzip magic numbers");
	    return -1;
    }

    /* We only support method #8, DEFLATED */
    if (method != 8)  {
	    error("internal error, invalid method");
	    return -1;
    }

    flags  = (uch)get_byte();
    if ((flags & ENCRYPTED) != 0) {
	    error("Input is encrypted");
	    return -1;
    }
    if ((flags & CONTINUATION) != 0) {
	    error("Multi part input");
	    return -1;
    }
    if ((flags & RESERVED) != 0) {
	    error("Input has invalid flags");
	    return -1;
    }
    NEXTBYTE();	/* Get timestamp */
    NEXTBYTE();
    NEXTBYTE();
    NEXTBYTE();

    (void)NEXTBYTE();  /* Ignore extra flags for the moment */
    (void)NEXTBYTE();  /* Ignore OS type for the moment */

    if ((flags & EXTRA_FIELD) != 0) {
	    unsigned len = (unsigned)NEXTBYTE();
	    len |= ((unsigned)NEXTBYTE())<<8;
	    while (len--) (void)NEXTBYTE();
    }

    /* Get original file name if it was truncated */
    if ((flags & ORIG_NAME) != 0) {
	    /* Discard the old name */
	    while (NEXTBYTE() != 0) /* null */ ;
    } 

    /* Discard file comment if any */
    if ((flags & COMMENT) != 0) {
	    while (NEXTBYTE() != 0) /* null */ ;
    }

    /* Decompress */
    if ((res = inflate())) {
	    switch (res) {
	    case 0:
		    break;
	    case 1:
		    error("invalid compressed format (err=1)");
		    break;
	    case 2:
		    error("invalid compressed format (err=2)");
		    break;
	    case 3:
		    error("out of memory");
		    break;
	    case 4:
		    error("out of input data");
		    break;
	    default:
		    error("invalid compressed format (other)");
	    }
	    return -1;
    }
	    
    /* Get the crc and original length */
    /* crc32  (see algorithm.doc)
     * uncompressed input size modulo 2^32
     */
    orig_crc = (ulg) NEXTBYTE();
    orig_crc |= (ulg) NEXTBYTE() << 8;
    orig_crc |= (ulg) NEXTBYTE() << 16;
    orig_crc |= (ulg) NEXTBYTE() << 24;
    
    orig_len = (ulg) NEXTBYTE();
    orig_len |= (ulg) NEXTBYTE() << 8;
    orig_len |= (ulg) NEXTBYTE() << 16;
    orig_len |= (ulg) NEXTBYTE() << 24;
    
    /* Validate decompression */
    if (orig_crc != CRC_VALUE) {
	    error("crc error");
	    return -1;
    }
    if (orig_len != bytes_out) {
	    error("length error");
	    return -1;
    }
    return 0;

 underrun:			/* NEXTBYTE() goto's here if needed */
    error("out of input data");
    return -1;
}