Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
// SPDX-License-Identifier: GPL-2.0-only
/*
 * tools/testing/selftests/kvm/lib/x86_64/processor.c
 *
 * Copyright (C) 2018, Google LLC.
 */

#define _GNU_SOURCE /* for program_invocation_name */

#include "test_util.h"
#include "kvm_util.h"
#include "../kvm_util_internal.h"
#include "processor.h"

/* Minimum physical address used for virtual translation tables. */
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000

/* Virtual translation table structure declarations */
struct pageMapL4Entry {
	uint64_t present:1;
	uint64_t writable:1;
	uint64_t user:1;
	uint64_t write_through:1;
	uint64_t cache_disable:1;
	uint64_t accessed:1;
	uint64_t ignored_06:1;
	uint64_t page_size:1;
	uint64_t ignored_11_08:4;
	uint64_t address:40;
	uint64_t ignored_62_52:11;
	uint64_t execute_disable:1;
};

struct pageDirectoryPointerEntry {
	uint64_t present:1;
	uint64_t writable:1;
	uint64_t user:1;
	uint64_t write_through:1;
	uint64_t cache_disable:1;
	uint64_t accessed:1;
	uint64_t ignored_06:1;
	uint64_t page_size:1;
	uint64_t ignored_11_08:4;
	uint64_t address:40;
	uint64_t ignored_62_52:11;
	uint64_t execute_disable:1;
};

struct pageDirectoryEntry {
	uint64_t present:1;
	uint64_t writable:1;
	uint64_t user:1;
	uint64_t write_through:1;
	uint64_t cache_disable:1;
	uint64_t accessed:1;
	uint64_t ignored_06:1;
	uint64_t page_size:1;
	uint64_t ignored_11_08:4;
	uint64_t address:40;
	uint64_t ignored_62_52:11;
	uint64_t execute_disable:1;
};

struct pageTableEntry {
	uint64_t present:1;
	uint64_t writable:1;
	uint64_t user:1;
	uint64_t write_through:1;
	uint64_t cache_disable:1;
	uint64_t accessed:1;
	uint64_t dirty:1;
	uint64_t reserved_07:1;
	uint64_t global:1;
	uint64_t ignored_11_09:3;
	uint64_t address:40;
	uint64_t ignored_62_52:11;
	uint64_t execute_disable:1;
};

/* Register Dump
 *
 * Input Args:
 *   indent - Left margin indent amount
 *   regs - register
 *
 * Output Args:
 *   stream - Output FILE stream
 *
 * Return: None
 *
 * Dumps the state of the registers given by regs, to the FILE stream
 * given by steam.
 */
void regs_dump(FILE *stream, struct kvm_regs *regs,
	       uint8_t indent)
{
	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
		indent, "",
		regs->rax, regs->rbx, regs->rcx, regs->rdx);
	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
		indent, "",
		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
		"r10: 0x%.16llx r11: 0x%.16llx\n",
		indent, "",
		regs->r8, regs->r9, regs->r10, regs->r11);
	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
		"r14: 0x%.16llx r15: 0x%.16llx\n",
		indent, "",
		regs->r12, regs->r13, regs->r14, regs->r15);
	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
		indent, "",
		regs->rip, regs->rflags);
}

/* Segment Dump
 *
 * Input Args:
 *   indent - Left margin indent amount
 *   segment - KVM segment
 *
 * Output Args:
 *   stream - Output FILE stream
 *
 * Return: None
 *
 * Dumps the state of the KVM segment given by segment, to the FILE stream
 * given by steam.
 */
static void segment_dump(FILE *stream, struct kvm_segment *segment,
			 uint8_t indent)
{
	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
		"selector: 0x%.4x type: 0x%.2x\n",
		indent, "", segment->base, segment->limit,
		segment->selector, segment->type);
	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
		indent, "", segment->present, segment->dpl,
		segment->db, segment->s, segment->l);
	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
		"unusable: 0x%.2x padding: 0x%.2x\n",
		indent, "", segment->g, segment->avl,
		segment->unusable, segment->padding);
}

/* dtable Dump
 *
 * Input Args:
 *   indent - Left margin indent amount
 *   dtable - KVM dtable
 *
 * Output Args:
 *   stream - Output FILE stream
 *
 * Return: None
 *
 * Dumps the state of the KVM dtable given by dtable, to the FILE stream
 * given by steam.
 */
static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
			uint8_t indent)
{
	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
		indent, "", dtable->base, dtable->limit,
		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
}

/* System Register Dump
 *
 * Input Args:
 *   indent - Left margin indent amount
 *   sregs - System registers
 *
 * Output Args:
 *   stream - Output FILE stream
 *
 * Return: None
 *
 * Dumps the state of the system registers given by sregs, to the FILE stream
 * given by steam.
 */
void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
		uint8_t indent)
{
	unsigned int i;

	fprintf(stream, "%*scs:\n", indent, "");
	segment_dump(stream, &sregs->cs, indent + 2);
	fprintf(stream, "%*sds:\n", indent, "");
	segment_dump(stream, &sregs->ds, indent + 2);
	fprintf(stream, "%*ses:\n", indent, "");
	segment_dump(stream, &sregs->es, indent + 2);
	fprintf(stream, "%*sfs:\n", indent, "");
	segment_dump(stream, &sregs->fs, indent + 2);
	fprintf(stream, "%*sgs:\n", indent, "");
	segment_dump(stream, &sregs->gs, indent + 2);
	fprintf(stream, "%*sss:\n", indent, "");
	segment_dump(stream, &sregs->ss, indent + 2);
	fprintf(stream, "%*str:\n", indent, "");
	segment_dump(stream, &sregs->tr, indent + 2);
	fprintf(stream, "%*sldt:\n", indent, "");
	segment_dump(stream, &sregs->ldt, indent + 2);

	fprintf(stream, "%*sgdt:\n", indent, "");
	dtable_dump(stream, &sregs->gdt, indent + 2);
	fprintf(stream, "%*sidt:\n", indent, "");
	dtable_dump(stream, &sregs->idt, indent + 2);

	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
		indent, "",
		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
		"apic_base: 0x%.16llx\n",
		indent, "",
		sregs->cr8, sregs->efer, sregs->apic_base);

	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
			sregs->interrupt_bitmap[i]);
	}
}

void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
{
	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);

	/* If needed, create page map l4 table. */
	if (!vm->pgd_created) {
		vm_paddr_t paddr = vm_phy_page_alloc(vm,
			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
		vm->pgd = paddr;
		vm->pgd_created = true;
	}
}

/* VM Virtual Page Map
 *
 * Input Args:
 *   vm - Virtual Machine
 *   vaddr - VM Virtual Address
 *   paddr - VM Physical Address
 *   pgd_memslot - Memory region slot for new virtual translation tables
 *
 * Output Args: None
 *
 * Return: None
 *
 * Within the VM given by vm, creates a virtual translation for the page
 * starting at vaddr to the page starting at paddr.
 */
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
	uint32_t pgd_memslot)
{
	uint16_t index[4];
	struct pageMapL4Entry *pml4e;

	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);

	TEST_ASSERT((vaddr % vm->page_size) == 0,
		"Virtual address not on page boundary,\n"
		"  vaddr: 0x%lx vm->page_size: 0x%x",
		vaddr, vm->page_size);
	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
		(vaddr >> vm->page_shift)),
		"Invalid virtual address, vaddr: 0x%lx",
		vaddr);
	TEST_ASSERT((paddr % vm->page_size) == 0,
		"Physical address not on page boundary,\n"
		"  paddr: 0x%lx vm->page_size: 0x%x",
		paddr, vm->page_size);
	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
		"Physical address beyond beyond maximum supported,\n"
		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
		paddr, vm->max_gfn, vm->page_size);

	index[0] = (vaddr >> 12) & 0x1ffu;
	index[1] = (vaddr >> 21) & 0x1ffu;
	index[2] = (vaddr >> 30) & 0x1ffu;
	index[3] = (vaddr >> 39) & 0x1ffu;

	/* Allocate page directory pointer table if not present. */
	pml4e = addr_gpa2hva(vm, vm->pgd);
	if (!pml4e[index[3]].present) {
		pml4e[index[3]].address = vm_phy_page_alloc(vm,
			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
			>> vm->page_shift;
		pml4e[index[3]].writable = true;
		pml4e[index[3]].present = true;
	}

	/* Allocate page directory table if not present. */
	struct pageDirectoryPointerEntry *pdpe;
	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
	if (!pdpe[index[2]].present) {
		pdpe[index[2]].address = vm_phy_page_alloc(vm,
			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
			>> vm->page_shift;
		pdpe[index[2]].writable = true;
		pdpe[index[2]].present = true;
	}

	/* Allocate page table if not present. */
	struct pageDirectoryEntry *pde;
	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
	if (!pde[index[1]].present) {
		pde[index[1]].address = vm_phy_page_alloc(vm,
			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
			>> vm->page_shift;
		pde[index[1]].writable = true;
		pde[index[1]].present = true;
	}

	/* Fill in page table entry. */
	struct pageTableEntry *pte;
	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
	pte[index[0]].address = paddr >> vm->page_shift;
	pte[index[0]].writable = true;
	pte[index[0]].present = 1;
}

/* Virtual Translation Tables Dump
 *
 * Input Args:
 *   vm - Virtual Machine
 *   indent - Left margin indent amount
 *
 * Output Args:
 *   stream - Output FILE stream
 *
 * Return: None
 *
 * Dumps to the FILE stream given by stream, the contents of all the
 * virtual translation tables for the VM given by vm.
 */
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
	struct pageMapL4Entry *pml4e, *pml4e_start;
	struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
	struct pageDirectoryEntry *pde, *pde_start;
	struct pageTableEntry *pte, *pte_start;

	if (!vm->pgd_created)
		return;

	fprintf(stream, "%*s                                          "
		"                no\n", indent, "");
	fprintf(stream, "%*s      index hvaddr         gpaddr         "
		"addr         w exec dirty\n",
		indent, "");
	pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
		vm->pgd);
	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
		pml4e = &pml4e_start[n1];
		if (!pml4e->present)
			continue;
		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
			" %u\n",
			indent, "",
			pml4e - pml4e_start, pml4e,
			addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
			pml4e->writable, pml4e->execute_disable);

		pdpe_start = addr_gpa2hva(vm, pml4e->address
			* vm->page_size);
		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
			pdpe = &pdpe_start[n2];
			if (!pdpe->present)
				continue;
			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
				"%u  %u\n",
				indent, "",
				pdpe - pdpe_start, pdpe,
				addr_hva2gpa(vm, pdpe),
				(uint64_t) pdpe->address, pdpe->writable,
				pdpe->execute_disable);

			pde_start = addr_gpa2hva(vm,
				pdpe->address * vm->page_size);
			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
				pde = &pde_start[n3];
				if (!pde->present)
					continue;
				fprintf(stream, "%*spde   0x%-3zx %p "
					"0x%-12lx 0x%-10lx %u  %u\n",
					indent, "", pde - pde_start, pde,
					addr_hva2gpa(vm, pde),
					(uint64_t) pde->address, pde->writable,
					pde->execute_disable);

				pte_start = addr_gpa2hva(vm,
					pde->address * vm->page_size);
				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
					pte = &pte_start[n4];
					if (!pte->present)
						continue;
					fprintf(stream, "%*spte   0x%-3zx %p "
						"0x%-12lx 0x%-10lx %u  %u "
						"    %u    0x%-10lx\n",
						indent, "",
						pte - pte_start, pte,
						addr_hva2gpa(vm, pte),
						(uint64_t) pte->address,
						pte->writable,
						pte->execute_disable,
						pte->dirty,
						((uint64_t) n1 << 27)
							| ((uint64_t) n2 << 18)
							| ((uint64_t) n3 << 9)
							| ((uint64_t) n4));
				}
			}
		}
	}
}

/* Set Unusable Segment
 *
 * Input Args: None
 *
 * Output Args:
 *   segp - Pointer to segment register
 *
 * Return: None
 *
 * Sets the segment register pointed to by segp to an unusable state.
 */
static void kvm_seg_set_unusable(struct kvm_segment *segp)
{
	memset(segp, 0, sizeof(*segp));
	segp->unusable = true;
}

static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
{
	void *gdt = addr_gva2hva(vm, vm->gdt);
	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;

	desc->limit0 = segp->limit & 0xFFFF;
	desc->base0 = segp->base & 0xFFFF;
	desc->base1 = segp->base >> 16;
	desc->s = segp->s;
	desc->type = segp->type;
	desc->dpl = segp->dpl;
	desc->p = segp->present;
	desc->limit1 = segp->limit >> 16;
	desc->l = segp->l;
	desc->db = segp->db;
	desc->g = segp->g;
	desc->base2 = segp->base >> 24;
	if (!segp->s)
		desc->base3 = segp->base >> 32;
}


/* Set Long Mode Flat Kernel Code Segment
 *
 * Input Args:
 *   vm - VM whose GDT is being filled, or NULL to only write segp
 *   selector - selector value
 *
 * Output Args:
 *   segp - Pointer to KVM segment
 *
 * Return: None
 *
 * Sets up the KVM segment pointed to by segp, to be a code segment
 * with the selector value given by selector.
 */
static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
	struct kvm_segment *segp)
{
	memset(segp, 0, sizeof(*segp));
	segp->selector = selector;
	segp->limit = 0xFFFFFFFFu;
	segp->s = 0x1; /* kTypeCodeData */
	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
					  * | kFlagCodeReadable
					  */
	segp->g = true;
	segp->l = true;
	segp->present = 1;
	if (vm)
		kvm_seg_fill_gdt_64bit(vm, segp);
}

/* Set Long Mode Flat Kernel Data Segment
 *
 * Input Args:
 *   vm - VM whose GDT is being filled, or NULL to only write segp
 *   selector - selector value
 *
 * Output Args:
 *   segp - Pointer to KVM segment
 *
 * Return: None
 *
 * Sets up the KVM segment pointed to by segp, to be a data segment
 * with the selector value given by selector.
 */
static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
	struct kvm_segment *segp)
{
	memset(segp, 0, sizeof(*segp));
	segp->selector = selector;
	segp->limit = 0xFFFFFFFFu;
	segp->s = 0x1; /* kTypeCodeData */
	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
					  * | kFlagDataWritable
					  */
	segp->g = true;
	segp->present = true;
	if (vm)
		kvm_seg_fill_gdt_64bit(vm, segp);
}

/* Address Guest Virtual to Guest Physical
 *
 * Input Args:
 *   vm - Virtual Machine
 *   gpa - VM virtual address
 *
 * Output Args: None
 *
 * Return:
 *   Equivalent VM physical address
 *
 * Translates the VM virtual address given by gva to a VM physical
 * address and then locates the memory region containing the VM
 * physical address, within the VM given by vm.  When found, the host
 * virtual address providing the memory to the vm physical address is returned.
 * A TEST_ASSERT failure occurs if no region containing translated
 * VM virtual address exists.
 */
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
	uint16_t index[4];
	struct pageMapL4Entry *pml4e;
	struct pageDirectoryPointerEntry *pdpe;
	struct pageDirectoryEntry *pde;
	struct pageTableEntry *pte;

	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);

	index[0] = (gva >> 12) & 0x1ffu;
	index[1] = (gva >> 21) & 0x1ffu;
	index[2] = (gva >> 30) & 0x1ffu;
	index[3] = (gva >> 39) & 0x1ffu;

	if (!vm->pgd_created)
		goto unmapped_gva;
	pml4e = addr_gpa2hva(vm, vm->pgd);
	if (!pml4e[index[3]].present)
		goto unmapped_gva;

	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
	if (!pdpe[index[2]].present)
		goto unmapped_gva;

	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
	if (!pde[index[1]].present)
		goto unmapped_gva;

	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
	if (!pte[index[0]].present)
		goto unmapped_gva;

	return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);

unmapped_gva:
	TEST_ASSERT(false, "No mapping for vm virtual address, "
		    "gva: 0x%lx", gva);
	exit(EXIT_FAILURE);
}

static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
			  int pgd_memslot)
{
	if (!vm->gdt)
		vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
			KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);

	dt->base = vm->gdt;
	dt->limit = getpagesize();
}

static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
				int selector, int gdt_memslot,
				int pgd_memslot)
{
	if (!vm->tss)
		vm->tss = vm_vaddr_alloc(vm, getpagesize(),
			KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);

	memset(segp, 0, sizeof(*segp));
	segp->base = vm->tss;
	segp->limit = 0x67;
	segp->selector = selector;
	segp->type = 0xb;
	segp->present = 1;
	kvm_seg_fill_gdt_64bit(vm, segp);
}

static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
{
	struct kvm_sregs sregs;

	/* Set mode specific system register values. */
	vcpu_sregs_get(vm, vcpuid, &sregs);

	sregs.idt.limit = 0;

	kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);

	switch (vm->mode) {
	case VM_MODE_PXXV48_4K:
		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);

		kvm_seg_set_unusable(&sregs.ldt);
		kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs);
		kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds);
		kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es);
		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
		break;

	default:
		TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode);
	}

	sregs.cr3 = vm->pgd;
	vcpu_sregs_set(vm, vcpuid, &sregs);
}
/* Adds a vCPU with reasonable defaults (i.e., a stack)
 *
 * Input Args:
 *   vcpuid - The id of the VCPU to add to the VM.
 *   guest_code - The vCPU's entry point
 */
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
{
	struct kvm_mp_state mp_state;
	struct kvm_regs regs;
	vm_vaddr_t stack_vaddr;
	stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
				     DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);

	/* Create VCPU */
	vm_vcpu_add(vm, vcpuid);
	vcpu_setup(vm, vcpuid, 0, 0);

	/* Setup guest general purpose registers */
	vcpu_regs_get(vm, vcpuid, &regs);
	regs.rflags = regs.rflags | 0x2;
	regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
	regs.rip = (unsigned long) guest_code;
	vcpu_regs_set(vm, vcpuid, &regs);

	/* Setup the MP state */
	mp_state.mp_state = 0;
	vcpu_set_mp_state(vm, vcpuid, &mp_state);
}

/* Allocate an instance of struct kvm_cpuid2
 *
 * Input Args: None
 *
 * Output Args: None
 *
 * Return: A pointer to the allocated struct. The caller is responsible
 * for freeing this struct.
 *
 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
 * array to be decided at allocation time, allocation is slightly
 * complicated. This function uses a reasonable default length for
 * the array and performs the appropriate allocation.
 */
static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
{
	struct kvm_cpuid2 *cpuid;
	int nent = 100;
	size_t size;

	size = sizeof(*cpuid);
	size += nent * sizeof(struct kvm_cpuid_entry2);
	cpuid = malloc(size);
	if (!cpuid) {
		perror("malloc");
		abort();
	}

	cpuid->nent = nent;

	return cpuid;
}

/* KVM Supported CPUID Get
 *
 * Input Args: None
 *
 * Output Args:
 *
 * Return: The supported KVM CPUID
 *
 * Get the guest CPUID supported by KVM.
 */
struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
{
	static struct kvm_cpuid2 *cpuid;
	int ret;
	int kvm_fd;

	if (cpuid)
		return cpuid;

	cpuid = allocate_kvm_cpuid2();
	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
	if (kvm_fd < 0)
		exit(KSFT_SKIP);

	ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
	TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
		    ret, errno);

	close(kvm_fd);
	return cpuid;
}

/* Locate a cpuid entry.
 *
 * Input Args:
 *   cpuid: The cpuid.
 *   function: The function of the cpuid entry to find.
 *
 * Output Args: None
 *
 * Return: A pointer to the cpuid entry. Never returns NULL.
 */
struct kvm_cpuid_entry2 *
kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
{
	struct kvm_cpuid2 *cpuid;
	struct kvm_cpuid_entry2 *entry = NULL;
	int i;

	cpuid = kvm_get_supported_cpuid();
	for (i = 0; i < cpuid->nent; i++) {
		if (cpuid->entries[i].function == function &&
		    cpuid->entries[i].index == index) {
			entry = &cpuid->entries[i];
			break;
		}
	}

	TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
		    function, index);
	return entry;
}

/* VM VCPU CPUID Set
 *
 * Input Args:
 *   vm - Virtual Machine
 *   vcpuid - VCPU id
 *   cpuid - The CPUID values to set.
 *
 * Output Args: None
 *
 * Return: void
 *
 * Set the VCPU's CPUID.
 */
void vcpu_set_cpuid(struct kvm_vm *vm,
		uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
{
	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
	int rc;

	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);

	rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
	TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
		    rc, errno);

}

/* Create a VM with reasonable defaults
 *
 * Input Args:
 *   vcpuid - The id of the single VCPU to add to the VM.
 *   extra_mem_pages - The size of extra memories to add (this will
 *                     decide how much extra space we will need to
 *                     setup the page tables using mem slot 0)
 *   guest_code - The vCPU's entry point
 *
 * Output Args: None
 *
 * Return:
 *   Pointer to opaque structure that describes the created VM.
 */
struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
				 void *guest_code)
{
	struct kvm_vm *vm;
	/*
	 * For x86 the maximum page table size for a memory region
	 * will be when only 4K pages are used.  In that case the
	 * total extra size for page tables (for extra N pages) will
	 * be: N/512+N/512^2+N/512^3+... which is definitely smaller
	 * than N/512*2.
	 */
	uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;

	/* Create VM */
	vm = vm_create(VM_MODE_DEFAULT,
		       DEFAULT_GUEST_PHY_PAGES + extra_pg_pages,
		       O_RDWR);

	/* Setup guest code */
	kvm_vm_elf_load(vm, program_invocation_name, 0, 0);

	/* Setup IRQ Chip */
	vm_create_irqchip(vm);

	/* Add the first vCPU. */
	vm_vcpu_add_default(vm, vcpuid, guest_code);

	return vm;
}

/* VCPU Get MSR
 *
 * Input Args:
 *   vm - Virtual Machine
 *   vcpuid - VCPU ID
 *   msr_index - Index of MSR
 *
 * Output Args: None
 *
 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 *
 * Get value of MSR for VCPU.
 */
uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
{
	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
	struct {
		struct kvm_msrs header;
		struct kvm_msr_entry entry;
	} buffer = {};
	int r;

	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
	buffer.header.nmsrs = 1;
	buffer.entry.index = msr_index;
	r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
	TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
		"  rc: %i errno: %i", r, errno);

	return buffer.entry.data;
}

/* VCPU Set MSR
 *
 * Input Args:
 *   vm - Virtual Machine
 *   vcpuid - VCPU ID
 *   msr_index - Index of MSR
 *   msr_value - New value of MSR
 *
 * Output Args: None
 *
 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
 *
 * Set value of MSR for VCPU.
 */
void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
	uint64_t msr_value)
{
	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
	struct {
		struct kvm_msrs header;
		struct kvm_msr_entry entry;
	} buffer = {};
	int r;

	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
	memset(&buffer, 0, sizeof(buffer));
	buffer.header.nmsrs = 1;
	buffer.entry.index = msr_index;
	buffer.entry.data = msr_value;
	r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
	TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
		"  rc: %i errno: %i", r, errno);
}

/* VM VCPU Args Set
 *
 * Input Args:
 *   vm - Virtual Machine
 *   vcpuid - VCPU ID
 *   num - number of arguments
 *   ... - arguments, each of type uint64_t
 *
 * Output Args: None
 *
 * Return: None
 *
 * Sets the first num function input arguments to the values
 * given as variable args.  Each of the variable args is expected to
 * be of type uint64_t.
 */
void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
{
	va_list ap;
	struct kvm_regs regs;

	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
		    "  num: %u\n",
		    num);

	va_start(ap, num);
	vcpu_regs_get(vm, vcpuid, &regs);

	if (num >= 1)
		regs.rdi = va_arg(ap, uint64_t);

	if (num >= 2)
		regs.rsi = va_arg(ap, uint64_t);

	if (num >= 3)
		regs.rdx = va_arg(ap, uint64_t);

	if (num >= 4)
		regs.rcx = va_arg(ap, uint64_t);

	if (num >= 5)
		regs.r8 = va_arg(ap, uint64_t);

	if (num >= 6)
		regs.r9 = va_arg(ap, uint64_t);

	vcpu_regs_set(vm, vcpuid, &regs);
	va_end(ap);
}

/*
 * VM VCPU Dump
 *
 * Input Args:
 *   vm - Virtual Machine
 *   vcpuid - VCPU ID
 *   indent - Left margin indent amount
 *
 * Output Args:
 *   stream - Output FILE stream
 *
 * Return: None
 *
 * Dumps the current state of the VCPU specified by vcpuid, within the VM
 * given by vm, to the FILE stream given by stream.
 */
void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
{
	struct kvm_regs regs;
	struct kvm_sregs sregs;

	fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);

	fprintf(stream, "%*sregs:\n", indent + 2, "");
	vcpu_regs_get(vm, vcpuid, &regs);
	regs_dump(stream, &regs, indent + 4);

	fprintf(stream, "%*ssregs:\n", indent + 2, "");
	vcpu_sregs_get(vm, vcpuid, &sregs);
	sregs_dump(stream, &sregs, indent + 4);
}

struct kvm_x86_state {
	struct kvm_vcpu_events events;
	struct kvm_mp_state mp_state;
	struct kvm_regs regs;
	struct kvm_xsave xsave;
	struct kvm_xcrs xcrs;
	struct kvm_sregs sregs;
	struct kvm_debugregs debugregs;
	union {
		struct kvm_nested_state nested;
		char nested_[16384];
	};
	struct kvm_msrs msrs;
};

static int kvm_get_num_msrs(struct kvm_vm *vm)
{
	struct kvm_msr_list nmsrs;
	int r;

	nmsrs.nmsrs = 0;
	r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
	TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
		r);

	return nmsrs.nmsrs;
}

struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
{
	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
	struct kvm_msr_list *list;
	struct kvm_x86_state *state;
	int nmsrs, r, i;
	static int nested_size = -1;

	if (nested_size == -1) {
		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
		TEST_ASSERT(nested_size <= sizeof(state->nested_),
			    "Nested state size too big, %i > %zi",
			    nested_size, sizeof(state->nested_));
	}

	/*
	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
	 * guest state is consistent only after userspace re-enters the
	 * kernel with KVM_RUN.  Complete IO prior to migrating state
	 * to a new VM.
	 */
	vcpu_run_complete_io(vm, vcpuid);

	nmsrs = kvm_get_num_msrs(vm);
	list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
	list->nmsrs = nmsrs;
	r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
                r);

	state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
	r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
                r);

	if (kvm_check_cap(KVM_CAP_XCRS)) {
		r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
			    r);
	}

	r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
                r);

	if (nested_size) {
		state->nested.size = sizeof(state->nested_);
		r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
			r);
		TEST_ASSERT(state->nested.size <= nested_size,
			"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
			state->nested.size, nested_size);
	} else
		state->nested.size = 0;

	state->msrs.nmsrs = nmsrs;
	for (i = 0; i < nmsrs; i++)
		state->msrs.entries[i].index = list->indices[i];
	r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
        TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
                r, r == nmsrs ? -1 : list->indices[r]);

	r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
                r);

	free(list);
	return state;
}

void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
{
	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
	int r;

	r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
                r);

	if (kvm_check_cap(KVM_CAP_XCRS)) {
		r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
			    r);
	}

	r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
        TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
                r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);

	r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
                r);

	r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
                r);

	if (state->nested.size) {
		r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
			r);
	}
}

bool is_intel_cpu(void)
{
	int eax, ebx, ecx, edx;
	const uint32_t *chunk;
	const int leaf = 0;

	__asm__ __volatile__(
		"cpuid"
		: /* output */ "=a"(eax), "=b"(ebx),
		  "=c"(ecx), "=d"(edx)
		: /* input */ "0"(leaf), "2"(0));

	chunk = (const uint32_t *)("GenuineIntel");
	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
}

uint32_t kvm_get_cpuid_max(void)
{
	return kvm_get_supported_cpuid_entry(0x80000000)->eax;
}

void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
{
	struct kvm_cpuid_entry2 *entry;
	bool pae;

	/* SDM 4.1.4 */
	if (kvm_get_cpuid_max() < 0x80000008) {
		pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
		*pa_bits = pae ? 36 : 32;
		*va_bits = 32;
	} else {
		entry = kvm_get_supported_cpuid_entry(0x80000008);
		*pa_bits = entry->eax & 0xff;
		*va_bits = (entry->eax >> 8) & 0xff;
	}
}