Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
 *
 * This is an implementation of a DWARF unwinder. Its main purpose is
 * for generating stacktrace information. Based on the DWARF 3
 * specification from http://www.dwarfstd.org.
 *
 * TODO:
 *	- DWARF64 doesn't work.
 *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly.
 */

/* #define DEBUG */
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/mempool.h>
#include <linux/mm.h>
#include <linux/elf.h>
#include <linux/ftrace.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <asm/dwarf.h>
#include <asm/unwinder.h>
#include <asm/sections.h>
#include <asm/unaligned.h>
#include <asm/stacktrace.h>

/* Reserve enough memory for two stack frames */
#define DWARF_FRAME_MIN_REQ	2
/* ... with 4 registers per frame. */
#define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4)

static struct kmem_cache *dwarf_frame_cachep;
static mempool_t *dwarf_frame_pool;

static struct kmem_cache *dwarf_reg_cachep;
static mempool_t *dwarf_reg_pool;

static struct rb_root cie_root;
static DEFINE_SPINLOCK(dwarf_cie_lock);

static struct rb_root fde_root;
static DEFINE_SPINLOCK(dwarf_fde_lock);

static struct dwarf_cie *cached_cie;

static unsigned int dwarf_unwinder_ready;

/**
 *	dwarf_frame_alloc_reg - allocate memory for a DWARF register
 *	@frame: the DWARF frame whose list of registers we insert on
 *	@reg_num: the register number
 *
 *	Allocate space for, and initialise, a dwarf reg from
 *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of
 *	dwarf registers for @frame.
 *
 *	Return the initialised DWARF reg.
 */
static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
					       unsigned int reg_num)
{
	struct dwarf_reg *reg;

	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
	if (!reg) {
		printk(KERN_WARNING "Unable to allocate a DWARF register\n");
		/*
		 * Let's just bomb hard here, we have no way to
		 * gracefully recover.
		 */
		UNWINDER_BUG();
	}

	reg->number = reg_num;
	reg->addr = 0;
	reg->flags = 0;

	list_add(&reg->link, &frame->reg_list);

	return reg;
}

static void dwarf_frame_free_regs(struct dwarf_frame *frame)
{
	struct dwarf_reg *reg, *n;

	list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
		list_del(&reg->link);
		mempool_free(reg, dwarf_reg_pool);
	}
}

/**
 *	dwarf_frame_reg - return a DWARF register
 *	@frame: the DWARF frame to search in for @reg_num
 *	@reg_num: the register number to search for
 *
 *	Lookup and return the dwarf reg @reg_num for this frame. Return
 *	NULL if @reg_num is an register invalid number.
 */
static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
					 unsigned int reg_num)
{
	struct dwarf_reg *reg;

	list_for_each_entry(reg, &frame->reg_list, link) {
		if (reg->number == reg_num)
			return reg;
	}

	return NULL;
}

/**
 *	dwarf_read_addr - read dwarf data
 *	@src: source address of data
 *	@dst: destination address to store the data to
 *
 *	Read 'n' bytes from @src, where 'n' is the size of an address on
 *	the native machine. We return the number of bytes read, which
 *	should always be 'n'. We also have to be careful when reading
 *	from @src and writing to @dst, because they can be arbitrarily
 *	aligned. Return 'n' - the number of bytes read.
 */
static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
{
	u32 val = get_unaligned(src);
	put_unaligned(val, dst);
	return sizeof(unsigned long *);
}

/**
 *	dwarf_read_uleb128 - read unsigned LEB128 data
 *	@addr: the address where the ULEB128 data is stored
 *	@ret: address to store the result
 *
 *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
 *	from Appendix C of the DWARF 3 spec. For information on the
 *	encodings refer to section "7.6 - Variable Length Data". Return
 *	the number of bytes read.
 */
static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
{
	unsigned int result;
	unsigned char byte;
	int shift, count;

	result = 0;
	shift = 0;
	count = 0;

	while (1) {
		byte = __raw_readb(addr);
		addr++;
		count++;

		result |= (byte & 0x7f) << shift;
		shift += 7;

		if (!(byte & 0x80))
			break;
	}

	*ret = result;

	return count;
}

/**
 *	dwarf_read_leb128 - read signed LEB128 data
 *	@addr: the address of the LEB128 encoded data
 *	@ret: address to store the result
 *
 *	Decode signed LEB128 data. The algorithm is taken from Appendix
 *	C of the DWARF 3 spec. Return the number of bytes read.
 */
static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
{
	unsigned char byte;
	int result, shift;
	int num_bits;
	int count;

	result = 0;
	shift = 0;
	count = 0;

	while (1) {
		byte = __raw_readb(addr);
		addr++;
		result |= (byte & 0x7f) << shift;
		shift += 7;
		count++;

		if (!(byte & 0x80))
			break;
	}

	/* The number of bits in a signed integer. */
	num_bits = 8 * sizeof(result);

	if ((shift < num_bits) && (byte & 0x40))
		result |= (-1 << shift);

	*ret = result;

	return count;
}

/**
 *	dwarf_read_encoded_value - return the decoded value at @addr
 *	@addr: the address of the encoded value
 *	@val: where to write the decoded value
 *	@encoding: the encoding with which we can decode @addr
 *
 *	GCC emits encoded address in the .eh_frame FDE entries. Decode
 *	the value at @addr using @encoding. The decoded value is written
 *	to @val and the number of bytes read is returned.
 */
static int dwarf_read_encoded_value(char *addr, unsigned long *val,
				    char encoding)
{
	unsigned long decoded_addr = 0;
	int count = 0;

	switch (encoding & 0x70) {
	case DW_EH_PE_absptr:
		break;
	case DW_EH_PE_pcrel:
		decoded_addr = (unsigned long)addr;
		break;
	default:
		pr_debug("encoding=0x%x\n", (encoding & 0x70));
		UNWINDER_BUG();
	}

	if ((encoding & 0x07) == 0x00)
		encoding |= DW_EH_PE_udata4;

	switch (encoding & 0x0f) {
	case DW_EH_PE_sdata4:
	case DW_EH_PE_udata4:
		count += 4;
		decoded_addr += get_unaligned((u32 *)addr);
		__raw_writel(decoded_addr, val);
		break;
	default:
		pr_debug("encoding=0x%x\n", encoding);
		UNWINDER_BUG();
	}

	return count;
}

/**
 *	dwarf_entry_len - return the length of an FDE or CIE
 *	@addr: the address of the entry
 *	@len: the length of the entry
 *
 *	Read the initial_length field of the entry and store the size of
 *	the entry in @len. We return the number of bytes read. Return a
 *	count of 0 on error.
 */
static inline int dwarf_entry_len(char *addr, unsigned long *len)
{
	u32 initial_len;
	int count;

	initial_len = get_unaligned((u32 *)addr);
	count = 4;

	/*
	 * An initial length field value in the range DW_LEN_EXT_LO -
	 * DW_LEN_EXT_HI indicates an extension, and should not be
	 * interpreted as a length. The only extension that we currently
	 * understand is the use of DWARF64 addresses.
	 */
	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
		/*
		 * The 64-bit length field immediately follows the
		 * compulsory 32-bit length field.
		 */
		if (initial_len == DW_EXT_DWARF64) {
			*len = get_unaligned((u64 *)addr + 4);
			count = 12;
		} else {
			printk(KERN_WARNING "Unknown DWARF extension\n");
			count = 0;
		}
	} else
		*len = initial_len;

	return count;
}

/**
 *	dwarf_lookup_cie - locate the cie
 *	@cie_ptr: pointer to help with lookup
 */
static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
{
	struct rb_node **rb_node = &cie_root.rb_node;
	struct dwarf_cie *cie = NULL;
	unsigned long flags;

	spin_lock_irqsave(&dwarf_cie_lock, flags);

	/*
	 * We've cached the last CIE we looked up because chances are
	 * that the FDE wants this CIE.
	 */
	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
		cie = cached_cie;
		goto out;
	}

	while (*rb_node) {
		struct dwarf_cie *cie_tmp;

		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
		BUG_ON(!cie_tmp);

		if (cie_ptr == cie_tmp->cie_pointer) {
			cie = cie_tmp;
			cached_cie = cie_tmp;
			goto out;
		} else {
			if (cie_ptr < cie_tmp->cie_pointer)
				rb_node = &(*rb_node)->rb_left;
			else
				rb_node = &(*rb_node)->rb_right;
		}
	}

out:
	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
	return cie;
}

/**
 *	dwarf_lookup_fde - locate the FDE that covers pc
 *	@pc: the program counter
 */
struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
{
	struct rb_node **rb_node = &fde_root.rb_node;
	struct dwarf_fde *fde = NULL;
	unsigned long flags;

	spin_lock_irqsave(&dwarf_fde_lock, flags);

	while (*rb_node) {
		struct dwarf_fde *fde_tmp;
		unsigned long tmp_start, tmp_end;

		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
		BUG_ON(!fde_tmp);

		tmp_start = fde_tmp->initial_location;
		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;

		if (pc < tmp_start) {
			rb_node = &(*rb_node)->rb_left;
		} else {
			if (pc < tmp_end) {
				fde = fde_tmp;
				goto out;
			} else
				rb_node = &(*rb_node)->rb_right;
		}
	}

out:
	spin_unlock_irqrestore(&dwarf_fde_lock, flags);

	return fde;
}

/**
 *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
 *	@insn_start: address of the first instruction
 *	@insn_end: address of the last instruction
 *	@cie: the CIE for this function
 *	@fde: the FDE for this function
 *	@frame: the instructions calculate the CFA for this frame
 *	@pc: the program counter of the address we're interested in
 *
 *	Execute the Call Frame instruction sequence starting at
 *	@insn_start and ending at @insn_end. The instructions describe
 *	how to calculate the Canonical Frame Address of a stackframe.
 *	Store the results in @frame.
 */
static int dwarf_cfa_execute_insns(unsigned char *insn_start,
				   unsigned char *insn_end,
				   struct dwarf_cie *cie,
				   struct dwarf_fde *fde,
				   struct dwarf_frame *frame,
				   unsigned long pc)
{
	unsigned char insn;
	unsigned char *current_insn;
	unsigned int count, delta, reg, expr_len, offset;
	struct dwarf_reg *regp;

	current_insn = insn_start;

	while (current_insn < insn_end && frame->pc <= pc) {
		insn = __raw_readb(current_insn++);

		/*
		 * Firstly, handle the opcodes that embed their operands
		 * in the instructions.
		 */
		switch (DW_CFA_opcode(insn)) {
		case DW_CFA_advance_loc:
			delta = DW_CFA_operand(insn);
			delta *= cie->code_alignment_factor;
			frame->pc += delta;
			continue;
			/* NOTREACHED */
		case DW_CFA_offset:
			reg = DW_CFA_operand(insn);
			count = dwarf_read_uleb128(current_insn, &offset);
			current_insn += count;
			offset *= cie->data_alignment_factor;
			regp = dwarf_frame_alloc_reg(frame, reg);
			regp->addr = offset;
			regp->flags |= DWARF_REG_OFFSET;
			continue;
			/* NOTREACHED */
		case DW_CFA_restore:
			reg = DW_CFA_operand(insn);
			continue;
			/* NOTREACHED */
		}

		/*
		 * Secondly, handle the opcodes that don't embed their
		 * operands in the instruction.
		 */
		switch (insn) {
		case DW_CFA_nop:
			continue;
		case DW_CFA_advance_loc1:
			delta = *current_insn++;
			frame->pc += delta * cie->code_alignment_factor;
			break;
		case DW_CFA_advance_loc2:
			delta = get_unaligned((u16 *)current_insn);
			current_insn += 2;
			frame->pc += delta * cie->code_alignment_factor;
			break;
		case DW_CFA_advance_loc4:
			delta = get_unaligned((u32 *)current_insn);
			current_insn += 4;
			frame->pc += delta * cie->code_alignment_factor;
			break;
		case DW_CFA_offset_extended:
			count = dwarf_read_uleb128(current_insn, &reg);
			current_insn += count;
			count = dwarf_read_uleb128(current_insn, &offset);
			current_insn += count;
			offset *= cie->data_alignment_factor;
			break;
		case DW_CFA_restore_extended:
			count = dwarf_read_uleb128(current_insn, &reg);
			current_insn += count;
			break;
		case DW_CFA_undefined:
			count = dwarf_read_uleb128(current_insn, &reg);
			current_insn += count;
			regp = dwarf_frame_alloc_reg(frame, reg);
			regp->flags |= DWARF_UNDEFINED;
			break;
		case DW_CFA_def_cfa:
			count = dwarf_read_uleb128(current_insn,
						   &frame->cfa_register);
			current_insn += count;
			count = dwarf_read_uleb128(current_insn,
						   &frame->cfa_offset);
			current_insn += count;

			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
			break;
		case DW_CFA_def_cfa_register:
			count = dwarf_read_uleb128(current_insn,
						   &frame->cfa_register);
			current_insn += count;
			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
			break;
		case DW_CFA_def_cfa_offset:
			count = dwarf_read_uleb128(current_insn, &offset);
			current_insn += count;
			frame->cfa_offset = offset;
			break;
		case DW_CFA_def_cfa_expression:
			count = dwarf_read_uleb128(current_insn, &expr_len);
			current_insn += count;

			frame->cfa_expr = current_insn;
			frame->cfa_expr_len = expr_len;
			current_insn += expr_len;

			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
			break;
		case DW_CFA_offset_extended_sf:
			count = dwarf_read_uleb128(current_insn, &reg);
			current_insn += count;
			count = dwarf_read_leb128(current_insn, &offset);
			current_insn += count;
			offset *= cie->data_alignment_factor;
			regp = dwarf_frame_alloc_reg(frame, reg);
			regp->flags |= DWARF_REG_OFFSET;
			regp->addr = offset;
			break;
		case DW_CFA_val_offset:
			count = dwarf_read_uleb128(current_insn, &reg);
			current_insn += count;
			count = dwarf_read_leb128(current_insn, &offset);
			offset *= cie->data_alignment_factor;
			regp = dwarf_frame_alloc_reg(frame, reg);
			regp->flags |= DWARF_VAL_OFFSET;
			regp->addr = offset;
			break;
		case DW_CFA_GNU_args_size:
			count = dwarf_read_uleb128(current_insn, &offset);
			current_insn += count;
			break;
		case DW_CFA_GNU_negative_offset_extended:
			count = dwarf_read_uleb128(current_insn, &reg);
			current_insn += count;
			count = dwarf_read_uleb128(current_insn, &offset);
			offset *= cie->data_alignment_factor;

			regp = dwarf_frame_alloc_reg(frame, reg);
			regp->flags |= DWARF_REG_OFFSET;
			regp->addr = -offset;
			break;
		default:
			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
			UNWINDER_BUG();
			break;
		}
	}

	return 0;
}

/**
 *	dwarf_free_frame - free the memory allocated for @frame
 *	@frame: the frame to free
 */
void dwarf_free_frame(struct dwarf_frame *frame)
{
	dwarf_frame_free_regs(frame);
	mempool_free(frame, dwarf_frame_pool);
}

extern void ret_from_irq(void);

/**
 *	dwarf_unwind_stack - unwind the stack
 *
 *	@pc: address of the function to unwind
 *	@prev: struct dwarf_frame of the previous stackframe on the callstack
 *
 *	Return a struct dwarf_frame representing the most recent frame
 *	on the callstack. Each of the lower (older) stack frames are
 *	linked via the "prev" member.
 */
struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
				       struct dwarf_frame *prev)
{
	struct dwarf_frame *frame;
	struct dwarf_cie *cie;
	struct dwarf_fde *fde;
	struct dwarf_reg *reg;
	unsigned long addr;

	/*
	 * If we've been called in to before initialization has
	 * completed, bail out immediately.
	 */
	if (!dwarf_unwinder_ready)
		return NULL;

	/*
	 * If we're starting at the top of the stack we need get the
	 * contents of a physical register to get the CFA in order to
	 * begin the virtual unwinding of the stack.
	 *
	 * NOTE: the return address is guaranteed to be setup by the
	 * time this function makes its first function call.
	 */
	if (!pc || !prev)
		pc = _THIS_IP_;

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	/*
	 * If our stack has been patched by the function graph tracer
	 * then we might see the address of return_to_handler() where we
	 * expected to find the real return address.
	 */
	if (pc == (unsigned long)&return_to_handler) {
		struct ftrace_ret_stack *ret_stack;

		ret_stack = ftrace_graph_get_ret_stack(current, 0);
		if (ret_stack)
			pc = ret_stack->ret;
		/*
		 * We currently have no way of tracking how many
		 * return_to_handler()'s we've seen. If there is more
		 * than one patched return address on our stack,
		 * complain loudly.
		 */
		WARN_ON(ftrace_graph_get_ret_stack(current, 1));
	}
#endif

	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
	if (!frame) {
		printk(KERN_ERR "Unable to allocate a dwarf frame\n");
		UNWINDER_BUG();
	}

	INIT_LIST_HEAD(&frame->reg_list);
	frame->flags = 0;
	frame->prev = prev;
	frame->return_addr = 0;

	fde = dwarf_lookup_fde(pc);
	if (!fde) {
		/*
		 * This is our normal exit path. There are two reasons
		 * why we might exit here,
		 *
		 *	a) pc has no asscociated DWARF frame info and so
		 *	we don't know how to unwind this frame. This is
		 *	usually the case when we're trying to unwind a
		 *	frame that was called from some assembly code
		 *	that has no DWARF info, e.g. syscalls.
		 *
		 *	b) the DEBUG info for pc is bogus. There's
		 *	really no way to distinguish this case from the
		 *	case above, which sucks because we could print a
		 *	warning here.
		 */
		goto bail;
	}

	cie = dwarf_lookup_cie(fde->cie_pointer);

	frame->pc = fde->initial_location;

	/* CIE initial instructions */
	dwarf_cfa_execute_insns(cie->initial_instructions,
				cie->instructions_end, cie, fde,
				frame, pc);

	/* FDE instructions */
	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
				fde, frame, pc);

	/* Calculate the CFA */
	switch (frame->flags) {
	case DWARF_FRAME_CFA_REG_OFFSET:
		if (prev) {
			reg = dwarf_frame_reg(prev, frame->cfa_register);
			UNWINDER_BUG_ON(!reg);
			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);

			addr = prev->cfa + reg->addr;
			frame->cfa = __raw_readl(addr);

		} else {
			/*
			 * Again, we're starting from the top of the
			 * stack. We need to physically read
			 * the contents of a register in order to get
			 * the Canonical Frame Address for this
			 * function.
			 */
			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
		}

		frame->cfa += frame->cfa_offset;
		break;
	default:
		UNWINDER_BUG();
	}

	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);

	/*
	 * If we haven't seen the return address register or the return
	 * address column is undefined then we must assume that this is
	 * the end of the callstack.
	 */
	if (!reg || reg->flags == DWARF_UNDEFINED)
		goto bail;

	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);

	addr = frame->cfa + reg->addr;
	frame->return_addr = __raw_readl(addr);

	/*
	 * Ah, the joys of unwinding through interrupts.
	 *
	 * Interrupts are tricky - the DWARF info needs to be _really_
	 * accurate and unfortunately I'm seeing a lot of bogus DWARF
	 * info. For example, I've seen interrupts occur in epilogues
	 * just after the frame pointer (r14) had been restored. The
	 * problem was that the DWARF info claimed that the CFA could be
	 * reached by using the value of the frame pointer before it was
	 * restored.
	 *
	 * So until the compiler can be trusted to produce reliable
	 * DWARF info when it really matters, let's stop unwinding once
	 * we've calculated the function that was interrupted.
	 */
	if (prev && prev->pc == (unsigned long)ret_from_irq)
		frame->return_addr = 0;

	return frame;

bail:
	dwarf_free_frame(frame);
	return NULL;
}

static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
			   unsigned char *end, struct module *mod)
{
	struct rb_node **rb_node = &cie_root.rb_node;
	struct rb_node *parent = *rb_node;
	struct dwarf_cie *cie;
	unsigned long flags;
	int count;

	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
	if (!cie)
		return -ENOMEM;

	cie->length = len;

	/*
	 * Record the offset into the .eh_frame section
	 * for this CIE. It allows this CIE to be
	 * quickly and easily looked up from the
	 * corresponding FDE.
	 */
	cie->cie_pointer = (unsigned long)entry;

	cie->version = *(char *)p++;
	UNWINDER_BUG_ON(cie->version != 1);

	cie->augmentation = p;
	p += strlen(cie->augmentation) + 1;

	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
	p += count;

	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
	p += count;

	/*
	 * Which column in the rule table contains the
	 * return address?
	 */
	if (cie->version == 1) {
		cie->return_address_reg = __raw_readb(p);
		p++;
	} else {
		count = dwarf_read_uleb128(p, &cie->return_address_reg);
		p += count;
	}

	if (cie->augmentation[0] == 'z') {
		unsigned int length, count;
		cie->flags |= DWARF_CIE_Z_AUGMENTATION;

		count = dwarf_read_uleb128(p, &length);
		p += count;

		UNWINDER_BUG_ON((unsigned char *)p > end);

		cie->initial_instructions = p + length;
		cie->augmentation++;
	}

	while (*cie->augmentation) {
		/*
		 * "L" indicates a byte showing how the
		 * LSDA pointer is encoded. Skip it.
		 */
		if (*cie->augmentation == 'L') {
			p++;
			cie->augmentation++;
		} else if (*cie->augmentation == 'R') {
			/*
			 * "R" indicates a byte showing
			 * how FDE addresses are
			 * encoded.
			 */
			cie->encoding = *(char *)p++;
			cie->augmentation++;
		} else if (*cie->augmentation == 'P') {
			/*
			 * "R" indicates a personality
			 * routine in the CIE
			 * augmentation.
			 */
			UNWINDER_BUG();
		} else if (*cie->augmentation == 'S') {
			UNWINDER_BUG();
		} else {
			/*
			 * Unknown augmentation. Assume
			 * 'z' augmentation.
			 */
			p = cie->initial_instructions;
			UNWINDER_BUG_ON(!p);
			break;
		}
	}

	cie->initial_instructions = p;
	cie->instructions_end = end;

	/* Add to list */
	spin_lock_irqsave(&dwarf_cie_lock, flags);

	while (*rb_node) {
		struct dwarf_cie *cie_tmp;

		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);

		parent = *rb_node;

		if (cie->cie_pointer < cie_tmp->cie_pointer)
			rb_node = &parent->rb_left;
		else if (cie->cie_pointer >= cie_tmp->cie_pointer)
			rb_node = &parent->rb_right;
		else
			WARN_ON(1);
	}

	rb_link_node(&cie->node, parent, rb_node);
	rb_insert_color(&cie->node, &cie_root);

#ifdef CONFIG_MODULES
	if (mod != NULL)
		list_add_tail(&cie->link, &mod->arch.cie_list);
#endif

	spin_unlock_irqrestore(&dwarf_cie_lock, flags);

	return 0;
}

static int dwarf_parse_fde(void *entry, u32 entry_type,
			   void *start, unsigned long len,
			   unsigned char *end, struct module *mod)
{
	struct rb_node **rb_node = &fde_root.rb_node;
	struct rb_node *parent = *rb_node;
	struct dwarf_fde *fde;
	struct dwarf_cie *cie;
	unsigned long flags;
	int count;
	void *p = start;

	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
	if (!fde)
		return -ENOMEM;

	fde->length = len;

	/*
	 * In a .eh_frame section the CIE pointer is the
	 * delta between the address within the FDE
	 */
	fde->cie_pointer = (unsigned long)(p - entry_type - 4);

	cie = dwarf_lookup_cie(fde->cie_pointer);
	fde->cie = cie;

	if (cie->encoding)
		count = dwarf_read_encoded_value(p, &fde->initial_location,
						 cie->encoding);
	else
		count = dwarf_read_addr(p, &fde->initial_location);

	p += count;

	if (cie->encoding)
		count = dwarf_read_encoded_value(p, &fde->address_range,
						 cie->encoding & 0x0f);
	else
		count = dwarf_read_addr(p, &fde->address_range);

	p += count;

	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
		unsigned int length;
		count = dwarf_read_uleb128(p, &length);
		p += count + length;
	}

	/* Call frame instructions. */
	fde->instructions = p;
	fde->end = end;

	/* Add to list. */
	spin_lock_irqsave(&dwarf_fde_lock, flags);

	while (*rb_node) {
		struct dwarf_fde *fde_tmp;
		unsigned long tmp_start, tmp_end;
		unsigned long start, end;

		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);

		start = fde->initial_location;
		end = fde->initial_location + fde->address_range;

		tmp_start = fde_tmp->initial_location;
		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;

		parent = *rb_node;

		if (start < tmp_start)
			rb_node = &parent->rb_left;
		else if (start >= tmp_end)
			rb_node = &parent->rb_right;
		else
			WARN_ON(1);
	}

	rb_link_node(&fde->node, parent, rb_node);
	rb_insert_color(&fde->node, &fde_root);

#ifdef CONFIG_MODULES
	if (mod != NULL)
		list_add_tail(&fde->link, &mod->arch.fde_list);
#endif

	spin_unlock_irqrestore(&dwarf_fde_lock, flags);

	return 0;
}

static void dwarf_unwinder_dump(struct task_struct *task,
				struct pt_regs *regs,
				unsigned long *sp,
				const struct stacktrace_ops *ops,
				void *data)
{
	struct dwarf_frame *frame, *_frame;
	unsigned long return_addr;

	_frame = NULL;
	return_addr = 0;

	while (1) {
		frame = dwarf_unwind_stack(return_addr, _frame);

		if (_frame)
			dwarf_free_frame(_frame);

		_frame = frame;

		if (!frame || !frame->return_addr)
			break;

		return_addr = frame->return_addr;
		ops->address(data, return_addr, 1);
	}

	if (frame)
		dwarf_free_frame(frame);
}

static struct unwinder dwarf_unwinder = {
	.name = "dwarf-unwinder",
	.dump = dwarf_unwinder_dump,
	.rating = 150,
};

static void __init dwarf_unwinder_cleanup(void)
{
	struct dwarf_fde *fde, *next_fde;
	struct dwarf_cie *cie, *next_cie;

	/*
	 * Deallocate all the memory allocated for the DWARF unwinder.
	 * Traverse all the FDE/CIE lists and remove and free all the
	 * memory associated with those data structures.
	 */
	rbtree_postorder_for_each_entry_safe(fde, next_fde, &fde_root, node)
		kfree(fde);

	rbtree_postorder_for_each_entry_safe(cie, next_cie, &cie_root, node)
		kfree(cie);

	mempool_destroy(dwarf_reg_pool);
	mempool_destroy(dwarf_frame_pool);
	kmem_cache_destroy(dwarf_reg_cachep);
	kmem_cache_destroy(dwarf_frame_cachep);
}

/**
 *	dwarf_parse_section - parse DWARF section
 *	@eh_frame_start: start address of the .eh_frame section
 *	@eh_frame_end: end address of the .eh_frame section
 *	@mod: the kernel module containing the .eh_frame section
 *
 *	Parse the information in a .eh_frame section.
 */
static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
			       struct module *mod)
{
	u32 entry_type;
	void *p, *entry;
	int count, err = 0;
	unsigned long len = 0;
	unsigned int c_entries, f_entries;
	unsigned char *end;

	c_entries = 0;
	f_entries = 0;
	entry = eh_frame_start;

	while ((char *)entry < eh_frame_end) {
		p = entry;

		count = dwarf_entry_len(p, &len);
		if (count == 0) {
			/*
			 * We read a bogus length field value. There is
			 * nothing we can do here apart from disabling
			 * the DWARF unwinder. We can't even skip this
			 * entry and move to the next one because 'len'
			 * tells us where our next entry is.
			 */
			err = -EINVAL;
			goto out;
		} else
			p += count;

		/* initial length does not include itself */
		end = p + len;

		entry_type = get_unaligned((u32 *)p);
		p += 4;

		if (entry_type == DW_EH_FRAME_CIE) {
			err = dwarf_parse_cie(entry, p, len, end, mod);
			if (err < 0)
				goto out;
			else
				c_entries++;
		} else {
			err = dwarf_parse_fde(entry, entry_type, p, len,
					      end, mod);
			if (err < 0)
				goto out;
			else
				f_entries++;
		}

		entry = (char *)entry + len + 4;
	}

	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
	       c_entries, f_entries);

	return 0;

out:
	return err;
}

#ifdef CONFIG_MODULES
int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
			  struct module *me)
{
	unsigned int i, err;
	unsigned long start, end;
	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;

	start = end = 0;

	for (i = 1; i < hdr->e_shnum; i++) {
		/* Alloc bit cleared means "ignore it." */
		if ((sechdrs[i].sh_flags & SHF_ALLOC)
		    && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
			start = sechdrs[i].sh_addr;
			end = start + sechdrs[i].sh_size;
			break;
		}
	}

	/* Did we find the .eh_frame section? */
	if (i != hdr->e_shnum) {
		INIT_LIST_HEAD(&me->arch.cie_list);
		INIT_LIST_HEAD(&me->arch.fde_list);
		err = dwarf_parse_section((char *)start, (char *)end, me);
		if (err) {
			printk(KERN_WARNING "%s: failed to parse DWARF info\n",
			       me->name);
			return err;
		}
	}

	return 0;
}

/**
 *	module_dwarf_cleanup - remove FDE/CIEs associated with @mod
 *	@mod: the module that is being unloaded
 *
 *	Remove any FDEs and CIEs from the global lists that came from
 *	@mod's .eh_frame section because @mod is being unloaded.
 */
void module_dwarf_cleanup(struct module *mod)
{
	struct dwarf_fde *fde, *ftmp;
	struct dwarf_cie *cie, *ctmp;
	unsigned long flags;

	spin_lock_irqsave(&dwarf_cie_lock, flags);

	list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
		list_del(&cie->link);
		rb_erase(&cie->node, &cie_root);
		kfree(cie);
	}

	spin_unlock_irqrestore(&dwarf_cie_lock, flags);

	spin_lock_irqsave(&dwarf_fde_lock, flags);

	list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
		list_del(&fde->link);
		rb_erase(&fde->node, &fde_root);
		kfree(fde);
	}

	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
}
#endif /* CONFIG_MODULES */

/**
 *	dwarf_unwinder_init - initialise the dwarf unwinder
 *
 *	Build the data structures describing the .dwarf_frame section to
 *	make it easier to lookup CIE and FDE entries. Because the
 *	.eh_frame section is packed as tightly as possible it is not
 *	easy to lookup the FDE for a given PC, so we build a list of FDE
 *	and CIE entries that make it easier.
 */
static int __init dwarf_unwinder_init(void)
{
	int err = -ENOMEM;

	dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
			sizeof(struct dwarf_frame), 0,
			SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);

	dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
			sizeof(struct dwarf_reg), 0,
			SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);

	dwarf_frame_pool = mempool_create_slab_pool(DWARF_FRAME_MIN_REQ,
						    dwarf_frame_cachep);
	if (!dwarf_frame_pool)
		goto out;

	dwarf_reg_pool = mempool_create_slab_pool(DWARF_REG_MIN_REQ,
						  dwarf_reg_cachep);
	if (!dwarf_reg_pool)
		goto out;

	err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
	if (err)
		goto out;

	err = unwinder_register(&dwarf_unwinder);
	if (err)
		goto out;

	dwarf_unwinder_ready = 1;

	return 0;

out:
	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
	dwarf_unwinder_cleanup();
	return err;
}
early_initcall(dwarf_unwinder_init);