Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
// SPDX-License-Identifier: GPL-2.0
/*
 * This file is part the core part STM32 DFSDM driver
 *
 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
 * Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com> for STMicroelectronics.
 */

#include <linux/clk.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>

#include "stm32-dfsdm.h"

struct stm32_dfsdm_dev_data {
	unsigned int num_filters;
	unsigned int num_channels;
	const struct regmap_config *regmap_cfg;
};

#define STM32H7_DFSDM_NUM_FILTERS	4
#define STM32H7_DFSDM_NUM_CHANNELS	8
#define STM32MP1_DFSDM_NUM_FILTERS	6
#define STM32MP1_DFSDM_NUM_CHANNELS	8

static bool stm32_dfsdm_volatile_reg(struct device *dev, unsigned int reg)
{
	if (reg < DFSDM_FILTER_BASE_ADR)
		return false;

	/*
	 * Mask is done on register to avoid to list registers of all
	 * filter instances.
	 */
	switch (reg & DFSDM_FILTER_REG_MASK) {
	case DFSDM_CR1(0) & DFSDM_FILTER_REG_MASK:
	case DFSDM_ISR(0) & DFSDM_FILTER_REG_MASK:
	case DFSDM_JDATAR(0) & DFSDM_FILTER_REG_MASK:
	case DFSDM_RDATAR(0) & DFSDM_FILTER_REG_MASK:
		return true;
	}

	return false;
}

static const struct regmap_config stm32h7_dfsdm_regmap_cfg = {
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = sizeof(u32),
	.max_register = 0x2B8,
	.volatile_reg = stm32_dfsdm_volatile_reg,
	.fast_io = true,
};

static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_data = {
	.num_filters = STM32H7_DFSDM_NUM_FILTERS,
	.num_channels = STM32H7_DFSDM_NUM_CHANNELS,
	.regmap_cfg = &stm32h7_dfsdm_regmap_cfg,
};

static const struct regmap_config stm32mp1_dfsdm_regmap_cfg = {
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = sizeof(u32),
	.max_register = 0x7fc,
	.volatile_reg = stm32_dfsdm_volatile_reg,
	.fast_io = true,
};

static const struct stm32_dfsdm_dev_data stm32mp1_dfsdm_data = {
	.num_filters = STM32MP1_DFSDM_NUM_FILTERS,
	.num_channels = STM32MP1_DFSDM_NUM_CHANNELS,
	.regmap_cfg = &stm32mp1_dfsdm_regmap_cfg,
};

struct dfsdm_priv {
	struct platform_device *pdev; /* platform device */

	struct stm32_dfsdm dfsdm; /* common data exported for all instances */

	unsigned int spi_clk_out_div; /* SPI clkout divider value */
	atomic_t n_active_ch;	/* number of current active channels */

	struct clk *clk; /* DFSDM clock */
	struct clk *aclk; /* audio clock */
};

static inline struct dfsdm_priv *to_stm32_dfsdm_priv(struct stm32_dfsdm *dfsdm)
{
	return container_of(dfsdm, struct dfsdm_priv, dfsdm);
}

static int stm32_dfsdm_clk_prepare_enable(struct stm32_dfsdm *dfsdm)
{
	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
	int ret;

	ret = clk_prepare_enable(priv->clk);
	if (ret || !priv->aclk)
		return ret;

	ret = clk_prepare_enable(priv->aclk);
	if (ret)
		clk_disable_unprepare(priv->clk);

	return ret;
}

static void stm32_dfsdm_clk_disable_unprepare(struct stm32_dfsdm *dfsdm)
{
	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);

	if (priv->aclk)
		clk_disable_unprepare(priv->aclk);
	clk_disable_unprepare(priv->clk);
}

/**
 * stm32_dfsdm_start_dfsdm - start global dfsdm interface.
 *
 * Enable interface if n_active_ch is not null.
 * @dfsdm: Handle used to retrieve dfsdm context.
 */
int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm)
{
	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
	struct device *dev = &priv->pdev->dev;
	unsigned int clk_div = priv->spi_clk_out_div, clk_src;
	int ret;

	if (atomic_inc_return(&priv->n_active_ch) == 1) {
		ret = pm_runtime_get_sync(dev);
		if (ret < 0) {
			pm_runtime_put_noidle(dev);
			goto error_ret;
		}

		/* select clock source, e.g. 0 for "dfsdm" or 1 for "audio" */
		clk_src = priv->aclk ? 1 : 0;
		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
					 DFSDM_CHCFGR1_CKOUTSRC_MASK,
					 DFSDM_CHCFGR1_CKOUTSRC(clk_src));
		if (ret < 0)
			goto pm_put;

		/* Output the SPI CLKOUT (if clk_div == 0 clock if OFF) */
		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
					 DFSDM_CHCFGR1_CKOUTDIV(clk_div));
		if (ret < 0)
			goto pm_put;

		/* Global enable of DFSDM interface */
		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
					 DFSDM_CHCFGR1_DFSDMEN_MASK,
					 DFSDM_CHCFGR1_DFSDMEN(1));
		if (ret < 0)
			goto pm_put;
	}

	dev_dbg(dev, "%s: n_active_ch %d\n", __func__,
		atomic_read(&priv->n_active_ch));

	return 0;

pm_put:
	pm_runtime_put_sync(dev);
error_ret:
	atomic_dec(&priv->n_active_ch);

	return ret;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_start_dfsdm);

/**
 * stm32_dfsdm_stop_dfsdm - stop global DFSDM interface.
 *
 * Disable interface if n_active_ch is null
 * @dfsdm: Handle used to retrieve dfsdm context.
 */
int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm)
{
	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
	int ret;

	if (atomic_dec_and_test(&priv->n_active_ch)) {
		/* Global disable of DFSDM interface */
		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
					 DFSDM_CHCFGR1_DFSDMEN_MASK,
					 DFSDM_CHCFGR1_DFSDMEN(0));
		if (ret < 0)
			return ret;

		/* Stop SPI CLKOUT */
		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
					 DFSDM_CHCFGR1_CKOUTDIV(0));
		if (ret < 0)
			return ret;

		pm_runtime_put_sync(&priv->pdev->dev);
	}
	dev_dbg(&priv->pdev->dev, "%s: n_active_ch %d\n", __func__,
		atomic_read(&priv->n_active_ch));

	return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_stop_dfsdm);

static int stm32_dfsdm_parse_of(struct platform_device *pdev,
				struct dfsdm_priv *priv)
{
	struct device_node *node = pdev->dev.of_node;
	struct resource *res;
	unsigned long clk_freq, divider;
	unsigned int spi_freq, rem;
	int ret;

	if (!node)
		return -EINVAL;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get memory resource\n");
		return -ENODEV;
	}
	priv->dfsdm.phys_base = res->start;
	priv->dfsdm.base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(priv->dfsdm.base))
		return PTR_ERR(priv->dfsdm.base);

	/*
	 * "dfsdm" clock is mandatory for DFSDM peripheral clocking.
	 * "dfsdm" or "audio" clocks can be used as source clock for
	 * the SPI clock out signal and internal processing, depending
	 * on use case.
	 */
	priv->clk = devm_clk_get(&pdev->dev, "dfsdm");
	if (IS_ERR(priv->clk)) {
		ret = PTR_ERR(priv->clk);
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "Failed to get clock (%d)\n", ret);
		return ret;
	}

	priv->aclk = devm_clk_get(&pdev->dev, "audio");
	if (IS_ERR(priv->aclk))
		priv->aclk = NULL;

	if (priv->aclk)
		clk_freq = clk_get_rate(priv->aclk);
	else
		clk_freq = clk_get_rate(priv->clk);

	/* SPI clock out frequency */
	ret = of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
				   &spi_freq);
	if (ret < 0) {
		/* No SPI master mode */
		return 0;
	}

	divider = div_u64_rem(clk_freq, spi_freq, &rem);
	/* Round up divider when ckout isn't precise, not to exceed spi_freq */
	if (rem)
		divider++;

	/* programmable divider is in range of [2:256] */
	if (divider < 2 || divider > 256) {
		dev_err(&pdev->dev, "spi-max-frequency not achievable\n");
		return -EINVAL;
	}

	/* SPI clock output divider is: divider = CKOUTDIV + 1 */
	priv->spi_clk_out_div = divider - 1;
	priv->dfsdm.spi_master_freq = clk_freq / (priv->spi_clk_out_div + 1);

	if (rem) {
		dev_warn(&pdev->dev, "SPI clock not accurate\n");
		dev_warn(&pdev->dev, "%ld = %d * %d + %d\n",
			 clk_freq, spi_freq, priv->spi_clk_out_div + 1, rem);
	}

	return 0;
};

static const struct of_device_id stm32_dfsdm_of_match[] = {
	{
		.compatible = "st,stm32h7-dfsdm",
		.data = &stm32h7_dfsdm_data,
	},
	{
		.compatible = "st,stm32mp1-dfsdm",
		.data = &stm32mp1_dfsdm_data,
	},
	{}
};
MODULE_DEVICE_TABLE(of, stm32_dfsdm_of_match);

static int stm32_dfsdm_probe(struct platform_device *pdev)
{
	struct dfsdm_priv *priv;
	const struct stm32_dfsdm_dev_data *dev_data;
	struct stm32_dfsdm *dfsdm;
	int ret;

	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->pdev = pdev;

	dev_data = of_device_get_match_data(&pdev->dev);

	dfsdm = &priv->dfsdm;
	dfsdm->fl_list = devm_kcalloc(&pdev->dev, dev_data->num_filters,
				      sizeof(*dfsdm->fl_list), GFP_KERNEL);
	if (!dfsdm->fl_list)
		return -ENOMEM;

	dfsdm->num_fls = dev_data->num_filters;
	dfsdm->ch_list = devm_kcalloc(&pdev->dev, dev_data->num_channels,
				      sizeof(*dfsdm->ch_list),
				      GFP_KERNEL);
	if (!dfsdm->ch_list)
		return -ENOMEM;
	dfsdm->num_chs = dev_data->num_channels;

	ret = stm32_dfsdm_parse_of(pdev, priv);
	if (ret < 0)
		return ret;

	dfsdm->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dfsdm",
						  dfsdm->base,
						  dev_data->regmap_cfg);
	if (IS_ERR(dfsdm->regmap)) {
		ret = PTR_ERR(dfsdm->regmap);
		dev_err(&pdev->dev, "%s: Failed to allocate regmap: %d\n",
			__func__, ret);
		return ret;
	}

	platform_set_drvdata(pdev, dfsdm);

	ret = stm32_dfsdm_clk_prepare_enable(dfsdm);
	if (ret) {
		dev_err(&pdev->dev, "Failed to start clock\n");
		return ret;
	}

	pm_runtime_get_noresume(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
	if (ret)
		goto pm_put;

	pm_runtime_put(&pdev->dev);

	return 0;

pm_put:
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);
	pm_runtime_put_noidle(&pdev->dev);
	stm32_dfsdm_clk_disable_unprepare(dfsdm);

	return ret;
}

static int stm32_dfsdm_core_remove(struct platform_device *pdev)
{
	struct stm32_dfsdm *dfsdm = platform_get_drvdata(pdev);

	pm_runtime_get_sync(&pdev->dev);
	of_platform_depopulate(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);
	pm_runtime_put_noidle(&pdev->dev);
	stm32_dfsdm_clk_disable_unprepare(dfsdm);

	return 0;
}

static int __maybe_unused stm32_dfsdm_core_suspend(struct device *dev)
{
	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
	int ret;

	ret = pm_runtime_force_suspend(dev);
	if (ret)
		return ret;

	/* Balance devm_regmap_init_mmio_clk() clk_prepare() */
	clk_unprepare(priv->clk);

	return pinctrl_pm_select_sleep_state(dev);
}

static int __maybe_unused stm32_dfsdm_core_resume(struct device *dev)
{
	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		return ret;

	ret = clk_prepare(priv->clk);
	if (ret)
		return ret;

	return pm_runtime_force_resume(dev);
}

static int __maybe_unused stm32_dfsdm_core_runtime_suspend(struct device *dev)
{
	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);

	stm32_dfsdm_clk_disable_unprepare(dfsdm);

	return 0;
}

static int __maybe_unused stm32_dfsdm_core_runtime_resume(struct device *dev)
{
	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);

	return stm32_dfsdm_clk_prepare_enable(dfsdm);
}

static const struct dev_pm_ops stm32_dfsdm_core_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(stm32_dfsdm_core_suspend,
				stm32_dfsdm_core_resume)
	SET_RUNTIME_PM_OPS(stm32_dfsdm_core_runtime_suspend,
			   stm32_dfsdm_core_runtime_resume,
			   NULL)
};

static struct platform_driver stm32_dfsdm_driver = {
	.probe = stm32_dfsdm_probe,
	.remove = stm32_dfsdm_core_remove,
	.driver = {
		.name = "stm32-dfsdm",
		.of_match_table = stm32_dfsdm_of_match,
		.pm = &stm32_dfsdm_core_pm_ops,
	},
};

module_platform_driver(stm32_dfsdm_driver);

MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 dfsdm driver");
MODULE_LICENSE("GPL v2");