Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
// SPDX-License-Identifier: GPL-2.0+
/*
 * abstraction of the spi interface of HopeRf rf69 radio module
 *
 * Copyright (C) 2016 Wolf-Entwicklungen
 *	Marcus Wolf <linux@wolf-entwicklungen.de>
 */

/* enable prosa debug info */
#undef DEBUG
/* enable print of values on reg access */
#undef DEBUG_VALUES
/* enable print of values on fifo access */
#undef DEBUG_FIFO_ACCESS

#include <linux/types.h>
#include <linux/spi/spi.h>

#include "rf69.h"
#include "rf69_registers.h"

#define F_OSC	  32000000 /* in Hz */
#define FIFO_SIZE 66	   /* in byte */

/*-------------------------------------------------------------------------*/

static u8 rf69_read_reg(struct spi_device *spi, u8 addr)
{
	int retval;

	retval = spi_w8r8(spi, addr);

#ifdef DEBUG_VALUES
	if (retval < 0)
		/*
		 * should never happen, since we already checked,
		 * that module is connected. Therefore no error
		 * handling, just an optional error message...
		 */
		dev_dbg(&spi->dev, "read 0x%x FAILED\n", addr);
	else
		dev_dbg(&spi->dev, "read 0x%x from reg 0x%x\n", retval, addr);
#endif

	return retval;
}

static int rf69_write_reg(struct spi_device *spi, u8 addr, u8 value)
{
	int retval;
	char buffer[2];

	buffer[0] = addr | WRITE_BIT;
	buffer[1] = value;

	retval = spi_write(spi, &buffer, 2);

#ifdef DEBUG_VALUES
	if (retval < 0)
		/*
		 * should never happen, since we already checked,
		 * that module is connected. Therefore no error
		 * handling, just an optional error message...
		 */
		dev_dbg(&spi->dev, "write 0x%x to 0x%x FAILED\n", value, addr);
	else
		dev_dbg(&spi->dev, "wrote 0x%x to reg 0x%x\n", value, addr);
#endif

	return retval;
}

/*-------------------------------------------------------------------------*/

static int rf69_set_bit(struct spi_device *spi, u8 reg, u8 mask)
{
	u8 tmp;

	tmp = rf69_read_reg(spi, reg);
	tmp = tmp | mask;
	return rf69_write_reg(spi, reg, tmp);
}

static int rf69_clear_bit(struct spi_device *spi, u8 reg, u8 mask)
{
	u8 tmp;

	tmp = rf69_read_reg(spi, reg);
	tmp = tmp & ~mask;
	return rf69_write_reg(spi, reg, tmp);
}

static inline int rf69_read_mod_write(struct spi_device *spi, u8 reg,
				      u8 mask, u8 value)
{
	u8 tmp;

	tmp = rf69_read_reg(spi, reg);
	tmp = (tmp & ~mask) | value;
	return rf69_write_reg(spi, reg, tmp);
}

/*-------------------------------------------------------------------------*/

int rf69_set_mode(struct spi_device *spi, enum mode mode)
{
	static const u8 mode_map[] = {
		[transmit] = OPMODE_MODE_TRANSMIT,
		[receive] = OPMODE_MODE_RECEIVE,
		[synthesizer] = OPMODE_MODE_SYNTHESIZER,
		[standby] = OPMODE_MODE_STANDBY,
		[mode_sleep] = OPMODE_MODE_SLEEP,
	};

	if (unlikely(mode >= ARRAY_SIZE(mode_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE,
				   mode_map[mode]);

	/*
	 * we are using packet mode, so this check is not really needed
	 * but waiting for mode ready is necessary when going from sleep
	 * because the FIFO may not be immediately available from previous mode
	 * while (_mode == RF69_MODE_SLEEP && (READ_REG(REG_IRQFLAGS1) &
		  RF_IRQFLAGS1_MODEREADY) == 0x00); // Wait for ModeReady
	 */
}

int rf69_set_data_mode(struct spi_device *spi, u8 data_mode)
{
	return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODE,
				   data_mode);
}

int rf69_set_modulation(struct spi_device *spi, enum modulation modulation)
{
	static const u8 modulation_map[] = {
		[OOK] = DATAMODUL_MODULATION_TYPE_OOK,
		[FSK] = DATAMODUL_MODULATION_TYPE_FSK,
	};

	if (unlikely(modulation >= ARRAY_SIZE(modulation_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_read_mod_write(spi, REG_DATAMODUL,
				   MASK_DATAMODUL_MODULATION_TYPE,
				   modulation_map[modulation]);
}

static enum modulation rf69_get_modulation(struct spi_device *spi)
{
	u8 modulation_reg;

	modulation_reg = rf69_read_reg(spi, REG_DATAMODUL);

	switch (modulation_reg & MASK_DATAMODUL_MODULATION_TYPE) {
	case DATAMODUL_MODULATION_TYPE_OOK:
		return OOK;
	case DATAMODUL_MODULATION_TYPE_FSK:
		return FSK;
	default:
		return UNDEF;
	}
}

int rf69_set_modulation_shaping(struct spi_device *spi,
				enum mod_shaping mod_shaping)
{
	switch (rf69_get_modulation(spi)) {
	case FSK:
		switch (mod_shaping) {
		case SHAPING_OFF:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_NONE);
		case SHAPING_1_0:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_1_0);
		case SHAPING_0_5:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_0_5);
		case SHAPING_0_3:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_0_3);
		default:
			dev_dbg(&spi->dev, "set: illegal input param");
			return -EINVAL;
		}
	case OOK:
		switch (mod_shaping) {
		case SHAPING_OFF:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_NONE);
		case SHAPING_BR:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_BR);
		case SHAPING_2BR:
			return rf69_read_mod_write(spi, REG_DATAMODUL,
						   MASK_DATAMODUL_MODULATION_SHAPE,
						   DATAMODUL_MODULATION_SHAPE_2BR);
		default:
			dev_dbg(&spi->dev, "set: illegal input param");
			return -EINVAL;
		}
	default:
		dev_dbg(&spi->dev, "set: modulation undefined");
		return -EINVAL;
	}
}

int rf69_set_bit_rate(struct spi_device *spi, u16 bit_rate)
{
	int retval;
	u32 bit_rate_min;
	u32 bit_rate_reg;
	u8 msb;
	u8 lsb;

	// check input value
	bit_rate_min = F_OSC / 8388608; // 8388608 = 2^23;
	if (bit_rate < bit_rate_min) {
		dev_dbg(&spi->dev, "setBitRate: illegal input param");
		return -EINVAL;
	}

	// calculate reg settings
	bit_rate_reg = (F_OSC / bit_rate);

	msb = (bit_rate_reg & 0xff00) >> 8;
	lsb = (bit_rate_reg & 0xff);

	// transmit to RF 69
	retval = rf69_write_reg(spi, REG_BITRATE_MSB, msb);
	if (retval)
		return retval;
	retval = rf69_write_reg(spi, REG_BITRATE_LSB, lsb);
	if (retval)
		return retval;

	return 0;
}

int rf69_set_deviation(struct spi_device *spi, u32 deviation)
{
	int retval;
	u64 f_reg;
	u64 f_step;
	u8 msb;
	u8 lsb;
	u64 factor = 1000000; // to improve precision of calculation

	// TODO: Dependency to bitrate
	if (deviation < 600 || deviation > 500000) {
		dev_dbg(&spi->dev, "set_deviation: illegal input param");
		return -EINVAL;
	}

	// calculat f step
	f_step = F_OSC * factor;
	do_div(f_step, 524288); //  524288 = 2^19

	// calculate register settings
	f_reg = deviation * factor;
	do_div(f_reg, f_step);

	msb = (f_reg & 0xff00) >> 8;
	lsb = (f_reg & 0xff);

	// check msb
	if (msb & ~FDEVMASB_MASK) {
		dev_dbg(&spi->dev, "set_deviation: err in calc of msb");
		return -EINVAL;
	}

	// write to chip
	retval = rf69_write_reg(spi, REG_FDEV_MSB, msb);
	if (retval)
		return retval;
	retval = rf69_write_reg(spi, REG_FDEV_LSB, lsb);
	if (retval)
		return retval;

	return 0;
}

int rf69_set_frequency(struct spi_device *spi, u32 frequency)
{
	int retval;
	u32 f_max;
	u64 f_reg;
	u64 f_step;
	u8 msb;
	u8 mid;
	u8 lsb;
	u64 factor = 1000000; // to improve precision of calculation

	// calculat f step
	f_step = F_OSC * factor;
	do_div(f_step, 524288); //  524288 = 2^19

	// check input value
	f_max = div_u64(f_step * 8388608, factor);
	if (frequency > f_max) {
		dev_dbg(&spi->dev, "setFrequency: illegal input param");
		return -EINVAL;
	}

	// calculate reg settings
	f_reg = frequency * factor;
	do_div(f_reg, f_step);

	msb = (f_reg & 0xff0000) >> 16;
	mid = (f_reg & 0xff00)   >>  8;
	lsb = (f_reg & 0xff);

	// write to chip
	retval = rf69_write_reg(spi, REG_FRF_MSB, msb);
	if (retval)
		return retval;
	retval = rf69_write_reg(spi, REG_FRF_MID, mid);
	if (retval)
		return retval;
	retval = rf69_write_reg(spi, REG_FRF_LSB, lsb);
	if (retval)
		return retval;

	return 0;
}

int rf69_enable_amplifier(struct spi_device *spi, u8 amplifier_mask)
{
	return rf69_set_bit(spi, REG_PALEVEL, amplifier_mask);
}

int rf69_disable_amplifier(struct spi_device *spi, u8 amplifier_mask)
{
	return rf69_clear_bit(spi, REG_PALEVEL, amplifier_mask);
}

int rf69_set_output_power_level(struct spi_device *spi, u8 power_level)
{
	u8 pa_level, ocp, test_pa1, test_pa2;
	bool pa0, pa1, pa2, high_power;
	u8 min_power_level;

	// check register pa_level
	pa_level = rf69_read_reg(spi, REG_PALEVEL);
	pa0 = pa_level & MASK_PALEVEL_PA0;
	pa1 = pa_level & MASK_PALEVEL_PA1;
	pa2 = pa_level & MASK_PALEVEL_PA2;

	// check high power mode
	ocp = rf69_read_reg(spi, REG_OCP);
	test_pa1 = rf69_read_reg(spi, REG_TESTPA1);
	test_pa2 = rf69_read_reg(spi, REG_TESTPA2);
	high_power = (ocp == 0x0f) && (test_pa1 == 0x5d) && (test_pa2 == 0x7c);

	if (pa0 && !pa1 && !pa2) {
		power_level += 18;
		min_power_level = 0;
	} else if (!pa0 && pa1 && !pa2) {
		power_level += 18;
		min_power_level = 16;
	} else if (!pa0 && pa1 && pa2) {
		if (high_power)
			power_level += 11;
		else
			power_level += 14;
		min_power_level = 16;
	} else {
		goto failed;
	}

	// check input value
	if (power_level > 0x1f)
		goto failed;

	if (power_level < min_power_level)
		goto failed;

	// write value
	return rf69_read_mod_write(spi, REG_PALEVEL, MASK_PALEVEL_OUTPUT_POWER,
				   power_level);
failed:
	dev_dbg(&spi->dev, "set: illegal input param");
	return -EINVAL;
}

int rf69_set_pa_ramp(struct spi_device *spi, enum pa_ramp pa_ramp)
{
	static const u8 pa_ramp_map[] = {
		[ramp3400] = PARAMP_3400,
		[ramp2000] = PARAMP_2000,
		[ramp1000] = PARAMP_1000,
		[ramp500] = PARAMP_500,
		[ramp250] = PARAMP_250,
		[ramp125] = PARAMP_125,
		[ramp100] = PARAMP_100,
		[ramp62] = PARAMP_62,
		[ramp50] = PARAMP_50,
		[ramp40] = PARAMP_40,
		[ramp31] = PARAMP_31,
		[ramp25] = PARAMP_25,
		[ramp20] = PARAMP_20,
		[ramp15] = PARAMP_15,
		[ramp10] = PARAMP_10,
	};

	if (unlikely(pa_ramp >= ARRAY_SIZE(pa_ramp_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_write_reg(spi, REG_PARAMP, pa_ramp_map[pa_ramp]);
}

int rf69_set_antenna_impedance(struct spi_device *spi,
			       enum antenna_impedance antenna_impedance)
{
	switch (antenna_impedance) {
	case fifty_ohm:
		return rf69_clear_bit(spi, REG_LNA, MASK_LNA_ZIN);
	case two_hundred_ohm:
		return rf69_set_bit(spi, REG_LNA, MASK_LNA_ZIN);
	default:
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}
}

int rf69_set_lna_gain(struct spi_device *spi, enum lna_gain lna_gain)
{
	static const u8 lna_gain_map[] = {
		[automatic] = LNA_GAIN_AUTO,
		[max] = LNA_GAIN_MAX,
		[max_minus_6] = LNA_GAIN_MAX_MINUS_6,
		[max_minus_12] = LNA_GAIN_MAX_MINUS_12,
		[max_minus_24] = LNA_GAIN_MAX_MINUS_24,
		[max_minus_36] = LNA_GAIN_MAX_MINUS_36,
		[max_minus_48] = LNA_GAIN_MAX_MINUS_48,
	};

	if (unlikely(lna_gain >= ARRAY_SIZE(lna_gain_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN,
				   lna_gain_map[lna_gain]);
}

static int rf69_set_bandwidth_intern(struct spi_device *spi, u8 reg,
				     enum mantisse mantisse, u8 exponent)
{
	u8 bandwidth;

	// check value for mantisse and exponent
	if (exponent > 7) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	if ((mantisse != mantisse16) &&
	    (mantisse != mantisse20) &&
	    (mantisse != mantisse24)) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	// read old value
	bandwidth = rf69_read_reg(spi, reg);

	// "delete" mantisse and exponent = just keep the DCC setting
	bandwidth = bandwidth & MASK_BW_DCC_FREQ;

	// add new mantisse
	switch (mantisse) {
	case mantisse16:
		bandwidth = bandwidth | BW_MANT_16;
		break;
	case mantisse20:
		bandwidth = bandwidth | BW_MANT_20;
		break;
	case mantisse24:
		bandwidth = bandwidth | BW_MANT_24;
		break;
	}

	// add new exponent
	bandwidth = bandwidth | exponent;

	// write back
	return rf69_write_reg(spi, reg, bandwidth);
}

int rf69_set_bandwidth(struct spi_device *spi, enum mantisse mantisse,
		       u8 exponent)
{
	return rf69_set_bandwidth_intern(spi, REG_RXBW, mantisse, exponent);
}

int rf69_set_bandwidth_during_afc(struct spi_device *spi,
				  enum mantisse mantisse,
				  u8 exponent)
{
	return rf69_set_bandwidth_intern(spi, REG_AFCBW, mantisse, exponent);
}

int rf69_set_ook_threshold_dec(struct spi_device *spi,
			       enum threshold_decrement threshold_decrement)
{
	static const u8 td_map[] = {
		[dec_every8th] = OOKPEAK_THRESHDEC_EVERY_8TH,
		[dec_every4th] = OOKPEAK_THRESHDEC_EVERY_4TH,
		[dec_every2nd] = OOKPEAK_THRESHDEC_EVERY_2ND,
		[dec_once] = OOKPEAK_THRESHDEC_ONCE,
		[dec_twice] = OOKPEAK_THRESHDEC_TWICE,
		[dec_4times] = OOKPEAK_THRESHDEC_4_TIMES,
		[dec_8times] = OOKPEAK_THRESHDEC_8_TIMES,
		[dec_16times] = OOKPEAK_THRESHDEC_16_TIMES,
	};

	if (unlikely(threshold_decrement >= ARRAY_SIZE(td_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC,
				   td_map[threshold_decrement]);
}

int rf69_set_dio_mapping(struct spi_device *spi, u8 dio_number, u8 value)
{
	u8 mask;
	u8 shift;
	u8 dio_addr;
	u8 dio_value;

	switch (dio_number) {
	case 0:
		mask = MASK_DIO0;
		shift = SHIFT_DIO0;
		dio_addr = REG_DIOMAPPING1;
		break;
	case 1:
		mask = MASK_DIO1;
		shift = SHIFT_DIO1;
		dio_addr = REG_DIOMAPPING1;
		break;
	case 2:
		mask = MASK_DIO2;
		shift = SHIFT_DIO2;
		dio_addr = REG_DIOMAPPING1;
		break;
	case 3:
		mask = MASK_DIO3;
		shift = SHIFT_DIO3;
		dio_addr = REG_DIOMAPPING1;
		break;
	case 4:
		mask = MASK_DIO4;
		shift = SHIFT_DIO4;
		dio_addr = REG_DIOMAPPING2;
		break;
	case 5:
		mask = MASK_DIO5;
		shift = SHIFT_DIO5;
		dio_addr = REG_DIOMAPPING2;
		break;
	default:
	dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	// read reg
	dio_value = rf69_read_reg(spi, dio_addr);
	// delete old value
	dio_value = dio_value & ~mask;
	// add new value
	dio_value = dio_value | value << shift;
	// write back
	return rf69_write_reg(spi, dio_addr, dio_value);
}

bool rf69_get_flag(struct spi_device *spi, enum flag flag)
{
	switch (flag) {
	case mode_switch_completed:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_MODE_READY);
	case ready_to_receive:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_RX_READY);
	case ready_to_send:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_TX_READY);
	case pll_locked:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_PLL_LOCK);
	case rssi_exceeded_threshold:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_RSSI);
	case timeout:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_TIMEOUT);
	case automode:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_AUTOMODE);
	case sync_address_match:
		return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_SYNC_ADDRESS_MATCH);
	case fifo_full:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_FULL);
/*
 *	case fifo_not_empty:
 *		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_NOT_EMPTY);
 */
	case fifo_empty:
		return !(rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_NOT_EMPTY);
	case fifo_level_below_threshold:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_LEVEL);
	case fifo_overrun:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_OVERRUN);
	case packet_sent:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_PACKET_SENT);
	case payload_ready:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_PAYLOAD_READY);
	case crc_ok:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_CRC_OK);
	case battery_low:
		return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_LOW_BAT);
	default:			 return false;
	}
}

int rf69_set_rssi_threshold(struct spi_device *spi, u8 threshold)
{
	/* no value check needed - u8 exactly matches register size */

	return rf69_write_reg(spi, REG_RSSITHRESH, threshold);
}

int rf69_set_preamble_length(struct spi_device *spi, u16 preamble_length)
{
	int retval;
	u8 msb, lsb;

	/* no value check needed - u16 exactly matches register size */

	/* calculate reg settings */
	msb = (preamble_length & 0xff00) >> 8;
	lsb = (preamble_length & 0xff);

	/* transmit to chip */
	retval = rf69_write_reg(spi, REG_PREAMBLE_MSB, msb);
	if (retval)
		return retval;
	return rf69_write_reg(spi, REG_PREAMBLE_LSB, lsb);
}

int rf69_enable_sync(struct spi_device *spi)
{
	return rf69_set_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_ON);
}

int rf69_disable_sync(struct spi_device *spi)
{
	return rf69_clear_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_ON);
}

int rf69_set_fifo_fill_condition(struct spi_device *spi,
				 enum fifo_fill_condition fifo_fill_condition)
{
	switch (fifo_fill_condition) {
	case always:
		return rf69_set_bit(spi, REG_SYNC_CONFIG,
				    MASK_SYNC_CONFIG_FIFO_FILL_CONDITION);
	case after_sync_interrupt:
		return rf69_clear_bit(spi, REG_SYNC_CONFIG,
				      MASK_SYNC_CONFIG_FIFO_FILL_CONDITION);
	default:
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}
}

int rf69_set_sync_size(struct spi_device *spi, u8 sync_size)
{
	// check input value
	if (sync_size > 0x07) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	// write value
	return rf69_read_mod_write(spi, REG_SYNC_CONFIG,
				   MASK_SYNC_CONFIG_SYNC_SIZE,
				   (sync_size << 3));
}

int rf69_set_sync_values(struct spi_device *spi, u8 sync_values[8])
{
	int retval = 0;

	retval += rf69_write_reg(spi, REG_SYNCVALUE1, sync_values[0]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE2, sync_values[1]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE3, sync_values[2]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE4, sync_values[3]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE5, sync_values[4]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE6, sync_values[5]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE7, sync_values[6]);
	retval += rf69_write_reg(spi, REG_SYNCVALUE8, sync_values[7]);

	return retval;
}

int rf69_set_packet_format(struct spi_device *spi,
			   enum packet_format packet_format)
{
	switch (packet_format) {
	case packet_length_var:
		return rf69_set_bit(spi, REG_PACKETCONFIG1,
				    MASK_PACKETCONFIG1_PACKET_FORMAT_VARIABLE);
	case packet_length_fix:
		return rf69_clear_bit(spi, REG_PACKETCONFIG1,
				      MASK_PACKETCONFIG1_PACKET_FORMAT_VARIABLE);
	default:
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}
}

int rf69_enable_crc(struct spi_device *spi)
{
	return rf69_set_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_CRC_ON);
}

int rf69_disable_crc(struct spi_device *spi)
{
	return rf69_clear_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_CRC_ON);
}

int rf69_set_address_filtering(struct spi_device *spi,
			       enum address_filtering address_filtering)
{
	static const u8 af_map[] = {
		[filtering_off] = PACKETCONFIG1_ADDRESSFILTERING_OFF,
		[node_address] = PACKETCONFIG1_ADDRESSFILTERING_NODE,
		[node_or_broadcast_address] =
			PACKETCONFIG1_ADDRESSFILTERING_NODEBROADCAST,
	};

	if (unlikely(address_filtering >= ARRAY_SIZE(af_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_read_mod_write(spi, REG_PACKETCONFIG1,
				   MASK_PACKETCONFIG1_ADDRESSFILTERING,
				   af_map[address_filtering]);
}

int rf69_set_payload_length(struct spi_device *spi, u8 payload_length)
{
	return rf69_write_reg(spi, REG_PAYLOAD_LENGTH, payload_length);
}

int rf69_set_node_address(struct spi_device *spi, u8 node_address)
{
	return rf69_write_reg(spi, REG_NODEADRS, node_address);
}

int rf69_set_broadcast_address(struct spi_device *spi, u8 broadcast_address)
{
	return rf69_write_reg(spi, REG_BROADCASTADRS, broadcast_address);
}

int rf69_set_tx_start_condition(struct spi_device *spi,
				enum tx_start_condition tx_start_condition)
{
	switch (tx_start_condition) {
	case fifo_level:
		return rf69_clear_bit(spi, REG_FIFO_THRESH,
				      MASK_FIFO_THRESH_TXSTART);
	case fifo_not_empty:
		return rf69_set_bit(spi, REG_FIFO_THRESH,
				    MASK_FIFO_THRESH_TXSTART);
	default:
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}
}

int rf69_set_fifo_threshold(struct spi_device *spi, u8 threshold)
{
	int retval;

	/* check input value */
	if (threshold & 0x80) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	/* write value */
	retval = rf69_read_mod_write(spi, REG_FIFO_THRESH,
				     MASK_FIFO_THRESH_VALUE,
				     threshold);
	if (retval)
		return retval;

	/*
	 * access the fifo to activate new threshold
	 * retval (mis-) used as buffer here
	 */
	return rf69_read_fifo(spi, (u8 *)&retval, 1);
}

int rf69_set_dagc(struct spi_device *spi, enum dagc dagc)
{
	static const u8 dagc_map[] = {
		[normal_mode] = DAGC_NORMAL,
		[improve] = DAGC_IMPROVED_LOWBETA0,
		[improve_for_low_modulation_index] = DAGC_IMPROVED_LOWBETA1,
	};

	if (unlikely(dagc >= ARRAY_SIZE(dagc_map))) {
		dev_dbg(&spi->dev, "set: illegal input param");
		return -EINVAL;
	}

	return rf69_write_reg(spi, REG_TESTDAGC, dagc_map[dagc]);
}

/*-------------------------------------------------------------------------*/

int rf69_read_fifo(struct spi_device *spi, u8 *buffer, unsigned int size)
{
#ifdef DEBUG_FIFO_ACCESS
	int i;
#endif
	struct spi_transfer transfer;
	u8 local_buffer[FIFO_SIZE + 1];
	int retval;

	if (size > FIFO_SIZE) {
		dev_dbg(&spi->dev,
			"read fifo: passed in buffer bigger then internal buffer\n");
		return -EMSGSIZE;
	}

	/* prepare a bidirectional transfer */
	local_buffer[0] = REG_FIFO;
	memset(&transfer, 0, sizeof(transfer));
	transfer.tx_buf = local_buffer;
	transfer.rx_buf = local_buffer;
	transfer.len	= size + 1;

	retval = spi_sync_transfer(spi, &transfer, 1);

#ifdef DEBUG_FIFO_ACCESS
	for (i = 0; i < size; i++)
		dev_dbg(&spi->dev, "%d - 0x%x\n", i, local_buffer[i + 1]);
#endif

	memcpy(buffer, &local_buffer[1], size);

	return retval;
}

int rf69_write_fifo(struct spi_device *spi, u8 *buffer, unsigned int size)
{
#ifdef DEBUG_FIFO_ACCESS
	int i;
#endif
	u8 local_buffer[FIFO_SIZE + 1];

	if (size > FIFO_SIZE) {
		dev_dbg(&spi->dev,
			"read fifo: passed in buffer bigger then internal buffer\n");
		return -EMSGSIZE;
	}

	local_buffer[0] = REG_FIFO | WRITE_BIT;
	memcpy(&local_buffer[1], buffer, size);

#ifdef DEBUG_FIFO_ACCESS
	for (i = 0; i < size; i++)
		dev_dbg(&spi->dev, "0x%x\n", buffer[i]);
#endif

	return spi_write(spi, local_buffer, size + 1);
}