Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
===============================
Adjunct Processor (AP) facility
===============================


Introduction
============
The Adjunct Processor (AP) facility is an IBM Z cryptographic facility comprised
of three AP instructions and from 1 up to 256 PCIe cryptographic adapter cards.
The AP devices provide cryptographic functions to all CPUs assigned to a
linux system running in an IBM Z system LPAR.

The AP adapter cards are exposed via the AP bus. The motivation for vfio-ap
is to make AP cards available to KVM guests using the VFIO mediated device
framework. This implementation relies considerably on the s390 virtualization
facilities which do most of the hard work of providing direct access to AP
devices.

AP Architectural Overview
=========================
To facilitate the comprehension of the design, let's start with some
definitions:

* AP adapter

  An AP adapter is an IBM Z adapter card that can perform cryptographic
  functions. There can be from 0 to 256 adapters assigned to an LPAR. Adapters
  assigned to the LPAR in which a linux host is running will be available to
  the linux host. Each adapter is identified by a number from 0 to 255; however,
  the maximum adapter number is determined by machine model and/or adapter type.
  When installed, an AP adapter is accessed by AP instructions executed by any
  CPU.

  The AP adapter cards are assigned to a given LPAR via the system's Activation
  Profile which can be edited via the HMC. When the linux host system is IPL'd
  in the LPAR, the AP bus detects the AP adapter cards assigned to the LPAR and
  creates a sysfs device for each assigned adapter. For example, if AP adapters
  4 and 10 (0x0a) are assigned to the LPAR, the AP bus will create the following
  sysfs device entries::

    /sys/devices/ap/card04
    /sys/devices/ap/card0a

  Symbolic links to these devices will also be created in the AP bus devices
  sub-directory::

    /sys/bus/ap/devices/[card04]
    /sys/bus/ap/devices/[card04]

* AP domain

  An adapter is partitioned into domains. An adapter can hold up to 256 domains
  depending upon the adapter type and hardware configuration. A domain is
  identified by a number from 0 to 255; however, the maximum domain number is
  determined by machine model and/or adapter type.. A domain can be thought of
  as a set of hardware registers and memory used for processing AP commands. A
  domain can be configured with a secure private key used for clear key
  encryption. A domain is classified in one of two ways depending upon how it
  may be accessed:

    * Usage domains are domains that are targeted by an AP instruction to
      process an AP command.

    * Control domains are domains that are changed by an AP command sent to a
      usage domain; for example, to set the secure private key for the control
      domain.

  The AP usage and control domains are assigned to a given LPAR via the system's
  Activation Profile which can be edited via the HMC. When a linux host system
  is IPL'd in the LPAR, the AP bus module detects the AP usage and control
  domains assigned to the LPAR. The domain number of each usage domain and
  adapter number of each AP adapter are combined to create AP queue devices
  (see AP Queue section below). The domain number of each control domain will be
  represented in a bitmask and stored in a sysfs file
  /sys/bus/ap/ap_control_domain_mask. The bits in the mask, from most to least
  significant bit, correspond to domains 0-255.

* AP Queue

  An AP queue is the means by which an AP command is sent to a usage domain
  inside a specific adapter. An AP queue is identified by a tuple
  comprised of an AP adapter ID (APID) and an AP queue index (APQI). The
  APQI corresponds to a given usage domain number within the adapter. This tuple
  forms an AP Queue Number (APQN) uniquely identifying an AP queue. AP
  instructions include a field containing the APQN to identify the AP queue to
  which the AP command is to be sent for processing.

  The AP bus will create a sysfs device for each APQN that can be derived from
  the cross product of the AP adapter and usage domain numbers detected when the
  AP bus module is loaded. For example, if adapters 4 and 10 (0x0a) and usage
  domains 6 and 71 (0x47) are assigned to the LPAR, the AP bus will create the
  following sysfs entries::

    /sys/devices/ap/card04/04.0006
    /sys/devices/ap/card04/04.0047
    /sys/devices/ap/card0a/0a.0006
    /sys/devices/ap/card0a/0a.0047

  The following symbolic links to these devices will be created in the AP bus
  devices subdirectory::

    /sys/bus/ap/devices/[04.0006]
    /sys/bus/ap/devices/[04.0047]
    /sys/bus/ap/devices/[0a.0006]
    /sys/bus/ap/devices/[0a.0047]

* AP Instructions:

  There are three AP instructions:

  * NQAP: to enqueue an AP command-request message to a queue
  * DQAP: to dequeue an AP command-reply message from a queue
  * PQAP: to administer the queues

  AP instructions identify the domain that is targeted to process the AP
  command; this must be one of the usage domains. An AP command may modify a
  domain that is not one of the usage domains, but the modified domain
  must be one of the control domains.

AP and SIE
==========
Let's now take a look at how AP instructions executed on a guest are interpreted
by the hardware.

A satellite control block called the Crypto Control Block (CRYCB) is attached to
our main hardware virtualization control block. The CRYCB contains three fields
to identify the adapters, usage domains and control domains assigned to the KVM
guest:

* The AP Mask (APM) field is a bit mask that identifies the AP adapters assigned
  to the KVM guest. Each bit in the mask, from left to right (i.e. from most
  significant to least significant bit in big endian order), corresponds to
  an APID from 0-255. If a bit is set, the corresponding adapter is valid for
  use by the KVM guest.

* The AP Queue Mask (AQM) field is a bit mask identifying the AP usage domains
  assigned to the KVM guest. Each bit in the mask, from left to right (i.e. from
  most significant to least significant bit in big endian order), corresponds to
  an AP queue index (APQI) from 0-255. If a bit is set, the corresponding queue
  is valid for use by the KVM guest.

* The AP Domain Mask field is a bit mask that identifies the AP control domains
  assigned to the KVM guest. The ADM bit mask controls which domains can be
  changed by an AP command-request message sent to a usage domain from the
  guest. Each bit in the mask, from left to right (i.e. from most significant to
  least significant bit in big endian order), corresponds to a domain from
  0-255. If a bit is set, the corresponding domain can be modified by an AP
  command-request message sent to a usage domain.

If you recall from the description of an AP Queue, AP instructions include
an APQN to identify the AP queue to which an AP command-request message is to be
sent (NQAP and PQAP instructions), or from which a command-reply message is to
be received (DQAP instruction). The validity of an APQN is defined by the matrix
calculated from the APM and AQM; it is the cross product of all assigned adapter
numbers (APM) with all assigned queue indexes (AQM). For example, if adapters 1
and 2 and usage domains 5 and 6 are assigned to a guest, the APQNs (1,5), (1,6),
(2,5) and (2,6) will be valid for the guest.

The APQNs can provide secure key functionality - i.e., a private key is stored
on the adapter card for each of its domains - so each APQN must be assigned to
at most one guest or to the linux host::

   Example 1: Valid configuration:
   ------------------------------
   Guest1: adapters 1,2  domains 5,6
   Guest2: adapter  1,2  domain 7

   This is valid because both guests have a unique set of APQNs:
      Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);
      Guest2 has APQNs (1,7), (2,7)

   Example 2: Valid configuration:
   ------------------------------
   Guest1: adapters 1,2 domains 5,6
   Guest2: adapters 3,4 domains 5,6

   This is also valid because both guests have a unique set of APQNs:
      Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);
      Guest2 has APQNs (3,5), (3,6), (4,5), (4,6)

   Example 3: Invalid configuration:
   --------------------------------
   Guest1: adapters 1,2  domains 5,6
   Guest2: adapter  1    domains 6,7

   This is an invalid configuration because both guests have access to
   APQN (1,6).

The Design
==========
The design introduces three new objects:

1. AP matrix device
2. VFIO AP device driver (vfio_ap.ko)
3. VFIO AP mediated matrix pass-through device

The VFIO AP device driver
-------------------------
The VFIO AP (vfio_ap) device driver serves the following purposes:

1. Provides the interfaces to secure APQNs for exclusive use of KVM guests.

2. Sets up the VFIO mediated device interfaces to manage a mediated matrix
   device and creates the sysfs interfaces for assigning adapters, usage
   domains, and control domains comprising the matrix for a KVM guest.

3. Configures the APM, AQM and ADM in the CRYCB referenced by a KVM guest's
   SIE state description to grant the guest access to a matrix of AP devices

Reserve APQNs for exclusive use of KVM guests
---------------------------------------------
The following block diagram illustrates the mechanism by which APQNs are
reserved::

				+------------------+
		 7 remove       |                  |
	   +--------------------> cex4queue driver |
	   |                    |                  |
	   |                    +------------------+
	   |
	   |
	   |                    +------------------+          +----------------+
	   |  5 register driver |                  | 3 create |                |
	   |   +---------------->   Device core    +---------->  matrix device |
	   |   |                |                  |          |                |
	   |   |                +--------^---------+          +----------------+
	   |   |                         |
	   |   |                         +-------------------+
	   |   | +-----------------------------------+       |
	   |   | |      4 register AP driver         |       | 2 register device
	   |   | |                                   |       |
  +--------+---+-v---+                      +--------+-------+-+
  |                  |                      |                  |
  |      ap_bus      +--------------------- >  vfio_ap driver  |
  |                  |       8 probe        |                  |
  +--------^---------+                      +--^--^------------+
  6 edit   |                                   |  |
    apmask |     +-----------------------------+  | 9 mdev create
    aqmask |     |           1 modprobe           |
  +--------+-----+---+           +----------------+-+         +----------------+
  |                  |           |                  |8 create |     mediated   |
  |      admin       |           | VFIO device core |--------->     matrix     |
  |                  +           |                  |         |     device     |
  +------+-+---------+           +--------^---------+         +--------^-------+
	 | |                              |                            |
	 | | 9 create vfio_ap-passthrough |                            |
	 | +------------------------------+                            |
	 +-------------------------------------------------------------+
		     10  assign adapter/domain/control domain

The process for reserving an AP queue for use by a KVM guest is:

1. The administrator loads the vfio_ap device driver
2. The vfio-ap driver during its initialization will register a single 'matrix'
   device with the device core. This will serve as the parent device for
   all mediated matrix devices used to configure an AP matrix for a guest.
3. The /sys/devices/vfio_ap/matrix device is created by the device core
4. The vfio_ap device driver will register with the AP bus for AP queue devices
   of type 10 and higher (CEX4 and newer). The driver will provide the vfio_ap
   driver's probe and remove callback interfaces. Devices older than CEX4 queues
   are not supported to simplify the implementation by not needlessly
   complicating the design by supporting older devices that will go out of
   service in the relatively near future, and for which there are few older
   systems around on which to test.
5. The AP bus registers the vfio_ap device driver with the device core
6. The administrator edits the AP adapter and queue masks to reserve AP queues
   for use by the vfio_ap device driver.
7. The AP bus removes the AP queues reserved for the vfio_ap driver from the
   default zcrypt cex4queue driver.
8. The AP bus probes the vfio_ap device driver to bind the queues reserved for
   it.
9. The administrator creates a passthrough type mediated matrix device to be
   used by a guest
10. The administrator assigns the adapters, usage domains and control domains
    to be exclusively used by a guest.

Set up the VFIO mediated device interfaces
------------------------------------------
The VFIO AP device driver utilizes the common interface of the VFIO mediated
device core driver to:

* Register an AP mediated bus driver to add a mediated matrix device to and
  remove it from a VFIO group.
* Create and destroy a mediated matrix device
* Add a mediated matrix device to and remove it from the AP mediated bus driver
* Add a mediated matrix device to and remove it from an IOMMU group

The following high-level block diagram shows the main components and interfaces
of the VFIO AP mediated matrix device driver::

   +-------------+
   |             |
   | +---------+ | mdev_register_driver() +--------------+
   | |  Mdev   | +<-----------------------+              |
   | |  bus    | |                        | vfio_mdev.ko |
   | | driver  | +----------------------->+              |<-> VFIO user
   | +---------+ |    probe()/remove()    +--------------+    APIs
   |             |
   |  MDEV CORE  |
   |   MODULE    |
   |   mdev.ko   |
   | +---------+ | mdev_register_device() +--------------+
   | |Physical | +<-----------------------+              |
   | | device  | |                        |  vfio_ap.ko  |<-> matrix
   | |interface| +----------------------->+              |    device
   | +---------+ |       callback         +--------------+
   +-------------+

During initialization of the vfio_ap module, the matrix device is registered
with an 'mdev_parent_ops' structure that provides the sysfs attribute
structures, mdev functions and callback interfaces for managing the mediated
matrix device.

* sysfs attribute structures:

  supported_type_groups
    The VFIO mediated device framework supports creation of user-defined
    mediated device types. These mediated device types are specified
    via the 'supported_type_groups' structure when a device is registered
    with the mediated device framework. The registration process creates the
    sysfs structures for each mediated device type specified in the
    'mdev_supported_types' sub-directory of the device being registered. Along
    with the device type, the sysfs attributes of the mediated device type are
    provided.

    The VFIO AP device driver will register one mediated device type for
    passthrough devices:

      /sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough

    Only the read-only attributes required by the VFIO mdev framework will
    be provided::

	... name
	... device_api
	... available_instances
	... device_api

    Where:

	* name:
	    specifies the name of the mediated device type
	* device_api:
	    the mediated device type's API
	* available_instances:
	    the number of mediated matrix passthrough devices
	    that can be created
	* device_api:
	    specifies the VFIO API
  mdev_attr_groups
    This attribute group identifies the user-defined sysfs attributes of the
    mediated device. When a device is registered with the VFIO mediated device
    framework, the sysfs attribute files identified in the 'mdev_attr_groups'
    structure will be created in the mediated matrix device's directory. The
    sysfs attributes for a mediated matrix device are:

    assign_adapter / unassign_adapter:
      Write-only attributes for assigning/unassigning an AP adapter to/from the
      mediated matrix device. To assign/unassign an adapter, the APID of the
      adapter is echoed to the respective attribute file.
    assign_domain / unassign_domain:
      Write-only attributes for assigning/unassigning an AP usage domain to/from
      the mediated matrix device. To assign/unassign a domain, the domain
      number of the the usage domain is echoed to the respective attribute
      file.
    matrix:
      A read-only file for displaying the APQNs derived from the cross product
      of the adapter and domain numbers assigned to the mediated matrix device.
    assign_control_domain / unassign_control_domain:
      Write-only attributes for assigning/unassigning an AP control domain
      to/from the mediated matrix device. To assign/unassign a control domain,
      the ID of the domain to be assigned/unassigned is echoed to the respective
      attribute file.
    control_domains:
      A read-only file for displaying the control domain numbers assigned to the
      mediated matrix device.

* functions:

  create:
    allocates the ap_matrix_mdev structure used by the vfio_ap driver to:

    * Store the reference to the KVM structure for the guest using the mdev
    * Store the AP matrix configuration for the adapters, domains, and control
      domains assigned via the corresponding sysfs attributes files

  remove:
    deallocates the mediated matrix device's ap_matrix_mdev structure. This will
    be allowed only if a running guest is not using the mdev.

* callback interfaces

  open:
    The vfio_ap driver uses this callback to register a
    VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the mdev matrix
    device. The open is invoked when QEMU connects the VFIO iommu group
    for the mdev matrix device to the MDEV bus. Access to the KVM structure used
    to configure the KVM guest is provided via this callback. The KVM structure,
    is used to configure the guest's access to the AP matrix defined via the
    mediated matrix device's sysfs attribute files.
  release:
    unregisters the VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the
    mdev matrix device and deconfigures the guest's AP matrix.

Configure the APM, AQM and ADM in the CRYCB
-------------------------------------------
Configuring the AP matrix for a KVM guest will be performed when the
VFIO_GROUP_NOTIFY_SET_KVM notifier callback is invoked. The notifier
function is called when QEMU connects to KVM. The guest's AP matrix is
configured via it's CRYCB by:

* Setting the bits in the APM corresponding to the APIDs assigned to the
  mediated matrix device via its 'assign_adapter' interface.
* Setting the bits in the AQM corresponding to the domains assigned to the
  mediated matrix device via its 'assign_domain' interface.
* Setting the bits in the ADM corresponding to the domain dIDs assigned to the
  mediated matrix device via its 'assign_control_domains' interface.

The CPU model features for AP
-----------------------------
The AP stack relies on the presence of the AP instructions as well as two
facilities: The AP Facilities Test (APFT) facility; and the AP Query
Configuration Information (QCI) facility. These features/facilities are made
available to a KVM guest via the following CPU model features:

1. ap: Indicates whether the AP instructions are installed on the guest. This
   feature will be enabled by KVM only if the AP instructions are installed
   on the host.

2. apft: Indicates the APFT facility is available on the guest. This facility
   can be made available to the guest only if it is available on the host (i.e.,
   facility bit 15 is set).

3. apqci: Indicates the AP QCI facility is available on the guest. This facility
   can be made available to the guest only if it is available on the host (i.e.,
   facility bit 12 is set).

Note: If the user chooses to specify a CPU model different than the 'host'
model to QEMU, the CPU model features and facilities need to be turned on
explicitly; for example::

     /usr/bin/qemu-system-s390x ... -cpu z13,ap=on,apqci=on,apft=on

A guest can be precluded from using AP features/facilities by turning them off
explicitly; for example::

     /usr/bin/qemu-system-s390x ... -cpu host,ap=off,apqci=off,apft=off

Note: If the APFT facility is turned off (apft=off) for the guest, the guest
will not see any AP devices. The zcrypt device drivers that register for type 10
and newer AP devices - i.e., the cex4card and cex4queue device drivers - need
the APFT facility to ascertain the facilities installed on a given AP device. If
the APFT facility is not installed on the guest, then the probe of device
drivers will fail since only type 10 and newer devices can be configured for
guest use.

Example
=======
Let's now provide an example to illustrate how KVM guests may be given
access to AP facilities. For this example, we will show how to configure
three guests such that executing the lszcrypt command on the guests would
look like this:

Guest1
------
=========== ===== ============
CARD.DOMAIN TYPE  MODE
=========== ===== ============
05          CEX5C CCA-Coproc
05.0004     CEX5C CCA-Coproc
05.00ab     CEX5C CCA-Coproc
06          CEX5A Accelerator
06.0004     CEX5A Accelerator
06.00ab     CEX5C CCA-Coproc
=========== ===== ============

Guest2
------
=========== ===== ============
CARD.DOMAIN TYPE  MODE
=========== ===== ============
05          CEX5A Accelerator
05.0047     CEX5A Accelerator
05.00ff     CEX5A Accelerator
=========== ===== ============

Guest2
------
=========== ===== ============
CARD.DOMAIN TYPE  MODE
=========== ===== ============
06          CEX5A Accelerator
06.0047     CEX5A Accelerator
06.00ff     CEX5A Accelerator
=========== ===== ============

These are the steps:

1. Install the vfio_ap module on the linux host. The dependency chain for the
   vfio_ap module is:
   * iommu
   * s390
   * zcrypt
   * vfio
   * vfio_mdev
   * vfio_mdev_device
   * KVM

   To build the vfio_ap module, the kernel build must be configured with the
   following Kconfig elements selected:
   * IOMMU_SUPPORT
   * S390
   * ZCRYPT
   * S390_AP_IOMMU
   * VFIO
   * VFIO_MDEV
   * VFIO_MDEV_DEVICE
   * KVM

   If using make menuconfig select the following to build the vfio_ap module::

     -> Device Drivers
	-> IOMMU Hardware Support
	   select S390 AP IOMMU Support
	-> VFIO Non-Privileged userspace driver framework
	   -> Mediated device driver frramework
	      -> VFIO driver for Mediated devices
     -> I/O subsystem
	-> VFIO support for AP devices

2. Secure the AP queues to be used by the three guests so that the host can not
   access them. To secure them, there are two sysfs files that specify
   bitmasks marking a subset of the APQN range as 'usable by the default AP
   queue device drivers' or 'not usable by the default device drivers' and thus
   available for use by the vfio_ap device driver'. The location of the sysfs
   files containing the masks are::

     /sys/bus/ap/apmask
     /sys/bus/ap/aqmask

   The 'apmask' is a 256-bit mask that identifies a set of AP adapter IDs
   (APID). Each bit in the mask, from left to right (i.e., from most significant
   to least significant bit in big endian order), corresponds to an APID from
   0-255. If a bit is set, the APID is marked as usable only by the default AP
   queue device drivers; otherwise, the APID is usable by the vfio_ap
   device driver.

   The 'aqmask' is a 256-bit mask that identifies a set of AP queue indexes
   (APQI). Each bit in the mask, from left to right (i.e., from most significant
   to least significant bit in big endian order), corresponds to an APQI from
   0-255. If a bit is set, the APQI is marked as usable only by the default AP
   queue device drivers; otherwise, the APQI is usable by the vfio_ap device
   driver.

   Take, for example, the following mask::

      0x7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

    It indicates:

      1, 2, 3, 4, 5, and 7-255 belong to the default drivers' pool, and 0 and 6
      belong to the vfio_ap device driver's pool.

   The APQN of each AP queue device assigned to the linux host is checked by the
   AP bus against the set of APQNs derived from the cross product of APIDs
   and APQIs marked as usable only by the default AP queue device drivers. If a
   match is detected,  only the default AP queue device drivers will be probed;
   otherwise, the vfio_ap device driver will be probed.

   By default, the two masks are set to reserve all APQNs for use by the default
   AP queue device drivers. There are two ways the default masks can be changed:

   1. The sysfs mask files can be edited by echoing a string into the
      respective sysfs mask file in one of two formats:

      * An absolute hex string starting with 0x - like "0x12345678" - sets
	the mask. If the given string is shorter than the mask, it is padded
	with 0s on the right; for example, specifying a mask value of 0x41 is
	the same as specifying::

	   0x4100000000000000000000000000000000000000000000000000000000000000

	Keep in mind that the mask reads from left to right (i.e., most
	significant to least significant bit in big endian order), so the mask
	above identifies device numbers 1 and 7 (01000001).

	If the string is longer than the mask, the operation is terminated with
	an error (EINVAL).

      * Individual bits in the mask can be switched on and off by specifying
	each bit number to be switched in a comma separated list. Each bit
	number string must be prepended with a ('+') or minus ('-') to indicate
	the corresponding bit is to be switched on ('+') or off ('-'). Some
	valid values are:

	   - "+0"    switches bit 0 on
	   - "-13"   switches bit 13 off
	   - "+0x41" switches bit 65 on
	   - "-0xff" switches bit 255 off

	The following example:

	      +0,-6,+0x47,-0xf0

	Switches bits 0 and 71 (0x47) on

	Switches bits 6 and 240 (0xf0) off

	Note that the bits not specified in the list remain as they were before
	the operation.

   2. The masks can also be changed at boot time via parameters on the kernel
      command line like this:

	 ap.apmask=0xffff ap.aqmask=0x40

	 This would create the following masks::

	    apmask:
	    0xffff000000000000000000000000000000000000000000000000000000000000

	    aqmask:
	    0x4000000000000000000000000000000000000000000000000000000000000000

	 Resulting in these two pools::

	    default drivers pool:    adapter 0-15, domain 1
	    alternate drivers pool:  adapter 16-255, domains 0, 2-255

Securing the APQNs for our example
----------------------------------
   To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004, 06.0047,
   06.00ab, and 06.00ff for use by the vfio_ap device driver, the corresponding
   APQNs can either be removed from the default masks::

      echo -5,-6 > /sys/bus/ap/apmask

      echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask

   Or the masks can be set as follows::

      echo 0xf9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \
      > apmask

      echo 0xf7fffffffffffffffeffffffffffffffffffffffffeffffffffffffffffffffe \
      > aqmask

   This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
   06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
   sysfs directory for the vfio_ap device driver will now contain symbolic links
   to the AP queue devices bound to it::

     /sys/bus/ap
     ... [drivers]
     ...... [vfio_ap]
     ......... [05.0004]
     ......... [05.0047]
     ......... [05.00ab]
     ......... [05.00ff]
     ......... [06.0004]
     ......... [06.0047]
     ......... [06.00ab]
     ......... [06.00ff]

   Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
   can be bound to the vfio_ap device driver. The reason for this is to
   simplify the implementation by not needlessly complicating the design by
   supporting older devices that will go out of service in the relatively near
   future and for which there are few older systems on which to test.

   The administrator, therefore, must take care to secure only AP queues that
   can be bound to the vfio_ap device driver. The device type for a given AP
   queue device can be read from the parent card's sysfs directory. For example,
   to see the hardware type of the queue 05.0004:

     cat /sys/bus/ap/devices/card05/hwtype

   The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
   vfio_ap device driver.

3. Create the mediated devices needed to configure the AP matrixes for the
   three guests and to provide an interface to the vfio_ap driver for
   use by the guests::

     /sys/devices/vfio_ap/matrix/
     --- [mdev_supported_types]
     ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
     --------- create
     --------- [devices]

   To create the mediated devices for the three guests::

	uuidgen > create
	uuidgen > create
	uuidgen > create

	or

	echo $uuid1 > create
	echo $uuid2 > create
	echo $uuid3 > create

   This will create three mediated devices in the [devices] subdirectory named
   after the UUID written to the create attribute file. We call them $uuid1,
   $uuid2 and $uuid3 and this is the sysfs directory structure after creation::

     /sys/devices/vfio_ap/matrix/
     --- [mdev_supported_types]
     ------ [vfio_ap-passthrough]
     --------- [devices]
     ------------ [$uuid1]
     --------------- assign_adapter
     --------------- assign_control_domain
     --------------- assign_domain
     --------------- matrix
     --------------- unassign_adapter
     --------------- unassign_control_domain
     --------------- unassign_domain

     ------------ [$uuid2]
     --------------- assign_adapter
     --------------- assign_control_domain
     --------------- assign_domain
     --------------- matrix
     --------------- unassign_adapter
     ----------------unassign_control_domain
     ----------------unassign_domain

     ------------ [$uuid3]
     --------------- assign_adapter
     --------------- assign_control_domain
     --------------- assign_domain
     --------------- matrix
     --------------- unassign_adapter
     ----------------unassign_control_domain
     ----------------unassign_domain

4. The administrator now needs to configure the matrixes for the mediated
   devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).

   This is how the matrix is configured for Guest1::

      echo 5 > assign_adapter
      echo 6 > assign_adapter
      echo 4 > assign_domain
      echo 0xab > assign_domain

   Control domains can similarly be assigned using the assign_control_domain
   sysfs file.

   If a mistake is made configuring an adapter, domain or control domain,
   you can use the unassign_xxx files to unassign the adapter, domain or
   control domain.

   To display the matrix configuration for Guest1::

	 cat matrix

   This is how the matrix is configured for Guest2::

      echo 5 > assign_adapter
      echo 0x47 > assign_domain
      echo 0xff > assign_domain

   This is how the matrix is configured for Guest3::

      echo 6 > assign_adapter
      echo 0x47 > assign_domain
      echo 0xff > assign_domain

   In order to successfully assign an adapter:

   * The adapter number specified must represent a value from 0 up to the
     maximum adapter number configured for the system. If an adapter number
     higher than the maximum is specified, the operation will terminate with
     an error (ENODEV).

   * All APQNs that can be derived from the adapter ID and the IDs of
     the previously assigned domains must be bound to the vfio_ap device
     driver. If no domains have yet been assigned, then there must be at least
     one APQN with the specified APID bound to the vfio_ap driver. If no such
     APQNs are bound to the driver, the operation will terminate with an
     error (EADDRNOTAVAIL).

     No APQN that can be derived from the adapter ID and the IDs of the
     previously assigned domains can be assigned to another mediated matrix
     device. If an APQN is assigned to another mediated matrix device, the
     operation will terminate with an error (EADDRINUSE).

   In order to successfully assign a domain:

   * The domain number specified must represent a value from 0 up to the
     maximum domain number configured for the system. If a domain number
     higher than the maximum is specified, the operation will terminate with
     an error (ENODEV).

   * All APQNs that can be derived from the domain ID and the IDs of
     the previously assigned adapters must be bound to the vfio_ap device
     driver. If no domains have yet been assigned, then there must be at least
     one APQN with the specified APQI bound to the vfio_ap driver. If no such
     APQNs are bound to the driver, the operation will terminate with an
     error (EADDRNOTAVAIL).

     No APQN that can be derived from the domain ID and the IDs of the
     previously assigned adapters can be assigned to another mediated matrix
     device. If an APQN is assigned to another mediated matrix device, the
     operation will terminate with an error (EADDRINUSE).

   In order to successfully assign a control domain, the domain number
   specified must represent a value from 0 up to the maximum domain number
   configured for the system. If a control domain number higher than the maximum
   is specified, the operation will terminate with an error (ENODEV).

5. Start Guest1::

     /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
	-device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...

7. Start Guest2::

     /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
	-device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...

7. Start Guest3::

     /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
	-device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...

When the guest is shut down, the mediated matrix devices may be removed.

Using our example again, to remove the mediated matrix device $uuid1::

   /sys/devices/vfio_ap/matrix/
      --- [mdev_supported_types]
      ------ [vfio_ap-passthrough]
      --------- [devices]
      ------------ [$uuid1]
      --------------- remove

::

   echo 1 > remove

This will remove all of the mdev matrix device's sysfs structures including
the mdev device itself. To recreate and reconfigure the mdev matrix device,
all of the steps starting with step 3 will have to be performed again. Note
that the remove will fail if a guest using the mdev is still running.

It is not necessary to remove an mdev matrix device, but one may want to
remove it if no guest will use it during the remaining lifetime of the linux
host. If the mdev matrix device is removed, one may want to also reconfigure
the pool of adapters and queues reserved for use by the default drivers.

Limitations
===========
* The KVM/kernel interfaces do not provide a way to prevent restoring an APQN
  to the default drivers pool of a queue that is still assigned to a mediated
  device in use by a guest. It is incumbent upon the administrator to
  ensure there is no mediated device in use by a guest to which the APQN is
  assigned lest the host be given access to the private data of the AP queue
  device such as a private key configured specifically for the guest.

* Dynamically modifying the AP matrix for a running guest (which would amount to
  hot(un)plug of AP devices for the guest) is currently not supported

* Live guest migration is not supported for guests using AP devices.