# SPDX-License-Identifier: GPL-2.0
config [31mCONFIG_TRACE_IRQFLAGS_SUPPORT[0m
def_bool y
config [31mCONFIG_EARLY_PRINTK_USB[0m
bool
config [31mCONFIG_X86_VERBOSE_BOOTUP[0m
bool "Enable verbose x86 bootup info messages"
default y
---help---
Enables the informational output from the decompression stage
(e.g. bzImage) of the boot. If you disable this you will still
see errors. Disable this if you want silent bootup.
config [31mCONFIG_EARLY_PRINTK[0m
bool "Early printk" if [31mCONFIG_EXPERT[0m
default y
---help---
Write kernel log output directly into the VGA buffer or to a serial
port.
This is useful for kernel debugging when your machine crashes very
early before the console code is initialized. For normal operation
it is not recommended because it looks ugly and doesn't cooperate
with klogd/syslogd or the X server. You should normally say N here,
unless you want to debug such a crash.
config [31mCONFIG_EARLY_PRINTK_DBGP[0m
bool "Early printk via EHCI debug port"
depends on [31mCONFIG_EARLY_PRINTK[0m && [31mCONFIG_PCI[0m
select [31mCONFIG_EARLY_PRINTK_USB[0m
---help---
Write kernel log output directly into the EHCI debug port.
This is useful for kernel debugging when your machine crashes very
early before the console code is initialized. For normal operation
it is not recommended because it looks ugly and doesn't cooperate
with klogd/syslogd or the X server. You should normally say N here,
unless you want to debug such a crash. You need usb debug device.
config [31mCONFIG_EARLY_PRINTK_USB_XDBC[0m
bool "Early printk via the xHCI debug port"
depends on [31mCONFIG_EARLY_PRINTK[0m && [31mCONFIG_PCI[0m
select [31mCONFIG_EARLY_PRINTK_USB[0m
---help---
Write kernel log output directly into the xHCI debug port.
One use for this feature is kernel debugging, for example when your
machine crashes very early before the regular console code is
initialized. Other uses include simpler, lockless logging instead of
a full-blown printk console driver + klogd.
For normal production environments this is normally not recommended,
because it doesn't feed events into klogd/syslogd and doesn't try to
print anything on the screen.
You should normally say N here, unless you want to debug early
crashes or need a very simple printk logging facility.
config [31mCONFIG_MCSAFE_TEST[0m
def_bool n
config [31mCONFIG_X86_PTDUMP_CORE[0m
def_bool n
config [31mCONFIG_X86_PTDUMP[0m
tristate "Export kernel pagetable layout to userspace via debugfs"
depends on [31mCONFIG_DEBUG_KERNEL[0m
select [31mCONFIG_DEBUG_FS[0m
select [31mCONFIG_X86_PTDUMP_CORE[0m
---help---
Say Y here if you want to show the kernel pagetable layout in a
debugfs file. This information is only useful for kernel developers
who are working in architecture specific areas of the kernel.
It is probably not a good idea to enable this feature in a production
kernel.
If in doubt, say "N"
config [31mCONFIG_EFI_PGT_DUMP[0m
bool "Dump the EFI pagetable"
depends on [31mCONFIG_EFI[0m
select [31mCONFIG_X86_PTDUMP_CORE[0m
---help---
Enable this if you want to dump the [31mCONFIG_EFI[0m page table before
enabling virtual mode. This can be used to debug miscellaneous
issues with the mapping of the [31mCONFIG_EFI[0m runtime regions into that
table.
config [31mCONFIG_DEBUG_WX[0m
bool "Warn on W+X mappings at boot"
select [31mCONFIG_X86_PTDUMP_CORE[0m
---help---
Generate a warning if any W+X mappings are found at boot.
This is useful for discovering cases where the kernel is leaving
W+X mappings after applying NX, as such mappings are a security risk.
Look for a message in dmesg output like this:
x86/mm: Checked W+X mappings: passed, no W+X pages found.
or like this, if the check failed:
x86/mm: Checked W+X mappings: FAILED, <N> W+X pages found.
Note that even if the check fails, your kernel is possibly
still fine, as W+X mappings are not a security hole in
themselves, what they do is that they make the exploitation
of other unfixed kernel bugs easier.
There is no runtime or memory usage effect of this option
once the kernel has booted up - it's a one time check.
If in doubt, say "Y".
config [31mCONFIG_DOUBLEFAULT[0m
default y
bool "Enable doublefault exception handler" if [31mCONFIG_EXPERT[0m
---help---
This option allows trapping of rare doublefault exceptions that
would otherwise cause a system to silently reboot. Disabling this
option saves about 4k and might cause you much additional grey
hair.
config [31mCONFIG_DEBUG_TLBFLUSH[0m
bool "Set upper limit of TLB entries to flush one-by-one"
depends on [31mCONFIG_DEBUG_KERNEL[0m
---help---
[31mCONFIG_X86[0m-only for now.
This option allows the user to tune the amount of TLB entries the
kernel flushes one-by-one instead of doing a full TLB flush. In
certain situations, the former is cheaper. This is controlled by the
tlb_flushall_shift knob under /sys/kernel/debug/x86. If you set it
to -1, the code flushes the whole TLB unconditionally. Otherwise,
for positive values of it, the kernel will use single TLB entry
invalidating instructions according to the following formula:
flush_entries <= active_tlb_entries / 2^tlb_flushall_shift
If in doubt, say "N".
config [31mCONFIG_IOMMU_DEBUG[0m
bool "Enable IOMMU debugging"
depends on [31mCONFIG_GART_IOMMU[0m && [31mCONFIG_DEBUG_KERNEL[0m
depends on [31mCONFIG_X86_64[0m
---help---
Force the IOMMU to on even when you have less than 4GB of
memory and add debugging code. On overflow always panic. And
allow to enable IOMMU leak tracing. Can be disabled at boot
time with iommu=noforce. This will also enable scatter gather
list merging. Currently not recommended for production
code. When you use it make sure you have a big enough
IOMMU/[31mCONFIG_AGP[0m aperture. Most of the options enabled by this can
be set more finegrained using the iommu= command line
options. See Documentation/x86/x86_64/boot-options.rst for more
details.
config [31mCONFIG_IOMMU_LEAK[0m
bool "IOMMU leak tracing"
depends on [31mCONFIG_IOMMU_DEBUG[0m && [31mCONFIG_DMA_API_DEBUG[0m
---help---
Add a simple leak tracer to the IOMMU code. This is useful when you
are debugging a buggy device driver that leaks IOMMU mappings.
config [31mCONFIG_HAVE_MMIOTRACE_SUPPORT[0m
def_bool y
config [31mCONFIG_X86_DECODER_SELFTEST[0m
bool "x86 instruction decoder selftest"
depends on [31mCONFIG_DEBUG_KERNEL[0m && [31mCONFIG_INSTRUCTION_DECODER[0m
depends on ![31mCONFIG_COMPILE_TEST[0m
---help---
Perform x86 instruction decoder selftests at build time.
This option is useful for checking the sanity of x86 instruction
decoder code.
If unsure, say "N".
choice
prompt "IO delay type"
default [31mCONFIG_IO_DELAY_0X80[0m
config [31mCONFIG_IO_DELAY_0X80[0m
bool "port 0x80 based port-IO delay [recommended]"
---help---
This is the traditional Linux IO delay used for in/out_p.
It is the most tested hence safest selection here.
config [31mCONFIG_IO_DELAY_0XED[0m
bool "port 0xed based port-IO delay"
---help---
Use port 0xed as the IO delay. This frees up port 0x80 which is
often used as a hardware-debug port.
config [31mCONFIG_IO_DELAY_UDELAY[0m
bool "udelay based port-IO delay"
---help---
Use udelay(2) as the IO delay method. This provides the delay
while not having any side-effect on the IO port space.
config [31mCONFIG_IO_DELAY_NONE[0m
bool "no port-IO delay"
---help---
No port-IO delay. Will break on old boxes that require port-IO
delay for certain operations. Should work on most new machines.
endchoice
config [31mCONFIG_DEBUG_BOOT_PARAMS[0m
bool "Debug boot parameters"
depends on [31mCONFIG_DEBUG_KERNEL[0m
depends on [31mCONFIG_DEBUG_FS[0m
---help---
This option will cause struct boot_params to be exported via debugfs.
config [31mCONFIG_CPA_DEBUG[0m
bool "CPA self-test code"
depends on [31mCONFIG_DEBUG_KERNEL[0m
---help---
Do change_page_attr() self-tests every 30 seconds.
config [31mCONFIG_DEBUG_ENTRY[0m
bool "Debug low-level entry code"
depends on [31mCONFIG_DEBUG_KERNEL[0m
---help---
This option enables sanity checks in x86's low-level entry code.
Some of these sanity checks may slow down kernel entries and
exits or otherwise impact performance.
If unsure, say N.
config [31mCONFIG_DEBUG_NMI_SELFTEST[0m
bool "NMI Selftest"
depends on [31mCONFIG_DEBUG_KERNEL[0m && [31mCONFIG_X86_LOCAL_APIC[0m
---help---
Enabling this option turns on a quick NMI selftest to verify
that the NMI behaves correctly.
This might help diagnose strange hangs that rely on NMI to
function properly.
If unsure, say N.
config [31mCONFIG_DEBUG_IMR_SELFTEST[0m
bool "Isolated Memory Region self test"
depends on [31mCONFIG_INTEL_IMR[0m
---help---
This option enables automated sanity testing of the IMR code.
Some simple tests are run to verify IMR bounds checking, alignment
and overlapping. This option is really only useful if you are
debugging an IMR memory map or are modifying the IMR code and want to
test your changes.
If unsure say N here.
config [31mCONFIG_X86_DEBUG_FPU[0m
bool "Debug the x86 FPU code"
depends on [31mCONFIG_DEBUG_KERNEL[0m
default y
---help---
If this option is enabled then there will be extra sanity
checks and (boot time) debug printouts added to the kernel.
This debugging adds some small amount of runtime overhead
to the kernel.
If unsure, say N.
config [31mCONFIG_PUNIT_ATOM_DEBUG[0m
tristate "ATOM Punit debug driver"
depends on [31mCONFIG_PCI[0m
select [31mCONFIG_DEBUG_FS[0m
select [31mCONFIG_IOSF_MBI[0m
---help---
This is a debug driver, which gets the power states
of all Punit North Complex devices. The power states of
each device is exposed as part of the debugfs interface.
The current power state can be read from
/sys/kernel/debug/punit_atom/dev_power_state
choice
prompt "Choose kernel unwinder"
default [31mCONFIG_UNWINDER_ORC[0m if [31mCONFIG_X86_64[0m
default [31mCONFIG_UNWINDER_FRAME_POINTER[0m if [31mCONFIG_X86_32[0m
---help---
This determines which method will be used for unwinding kernel stack
traces for panics, oopses, bugs, warnings, perf, /proc/<pid>/stack,
livepatch, lockdep, and more.
config [31mCONFIG_UNWINDER_ORC[0m
bool "ORC unwinder"
depends on [31mCONFIG_X86_64[0m
select [31mCONFIG_STACK_VALIDATION[0m
---help---
This option enables the ORC (Oops Rewind Capability) unwinder for
unwinding kernel stack traces. It uses a custom data format which is
a simplified version of the DWARF Call Frame Information standard.
This unwinder is more accurate across interrupt entry frames than the
frame pointer unwinder. It also enables a 5-10% performance
improvement across the entire kernel compared to frame pointers.
Enabling this option will increase the kernel's runtime memory usage
by roughly 2-4MB, depending on your kernel config.
config [31mCONFIG_UNWINDER_FRAME_POINTER[0m
bool "Frame pointer unwinder"
select [31mCONFIG_FRAME_POINTER[0m
---help---
This option enables the frame pointer unwinder for unwinding kernel
stack traces.
The unwinder itself is fast and it uses less RAM than the ORC
unwinder, but the kernel text size will grow by ~3% and the kernel's
overall performance will degrade by roughly 5-10%.
This option is recommended if you want to use the livepatch
consistency model, as this is currently the only way to get a
reliable stack trace (CONFIG_HAVE_RELIABLE_STACKTRACE).
config [31mCONFIG_UNWINDER_GUESS[0m
bool "Guess unwinder"
depends on [31mCONFIG_EXPERT[0m
depends on ![31mCONFIG_STACKDEPOT[0m
---help---
This option enables the "guess" unwinder for unwinding kernel stack
traces. It scans the stack and reports every kernel text address it
finds. Some of the addresses it reports may be incorrect.
While this option often produces false positives, it can still be
useful in many cases. Unlike the other unwinders, it has no runtime
overhead.
endchoice
config [31mCONFIG_FRAME_POINTER[0m
depends on ![31mCONFIG_UNWINDER_ORC[0m && ![31mCONFIG_UNWINDER_GUESS[0m
bool