Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * User-space Probes (UProbes) for x86
 *
 * Copyright (C) IBM Corporation, 2008-2011
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/uaccess.h>

#include <linux/kdebug.h>
#include <asm/processor.h>
#include <asm/insn.h>
#include <asm/mmu_context.h>

/* Post-execution fixups. */

/* Adjust IP back to vicinity of actual insn */
#define UPROBE_FIX_IP		0x01

/* Adjust the return address of a call insn */
#define UPROBE_FIX_CALL		0x02

/* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF		0x04

#define UPROBE_FIX_RIP_SI	0x08
#define UPROBE_FIX_RIP_DI	0x10
#define UPROBE_FIX_RIP_BX	0x20
#define UPROBE_FIX_RIP_MASK	\
	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)

#define	UPROBE_TRAP_NR		UINT_MAX

/* Adaptations for mhiramat x86 decoder v14. */
#define OPCODE1(insn)		((insn)->opcode.bytes[0])
#define OPCODE2(insn)		((insn)->opcode.bytes[1])
#define OPCODE3(insn)		((insn)->opcode.bytes[2])
#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))

/*
 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 * some versions of gcc to think only *(unsigned long*) is used.
 *
 * Opcodes we'll probably never support:
 * 6c-6f - ins,outs. SEGVs if used in userspace
 * e4-e7 - in,out imm. SEGVs if used in userspace
 * ec-ef - in,out acc. SEGVs if used in userspace
 * cc - int3. SIGTRAP if used in userspace
 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
 *	(why we support bound (62) then? it's similar, and similarly unused...)
 * f1 - int1. SIGTRAP if used in userspace
 * f4 - hlt. SEGVs if used in userspace
 * fa - cli. SEGVs if used in userspace
 * fb - sti. SEGVs if used in userspace
 *
 * Opcodes which need some work to be supported:
 * 07,17,1f - pop es/ss/ds
 *	Normally not used in userspace, but would execute if used.
 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
 *	We hesitate to run them under single step since kernel's handling
 *	of userspace single-stepping (TF flag) is fragile.
 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
 *	on the same grounds that they are never used.
 * cd - int N.
 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 *	Not supported since kernel's handling of userspace single-stepping
 *	(TF flag) is fragile.
 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 */
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
static volatile u32 good_insns_32[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#else
#define good_insns_32	NULL
#endif

/* Good-instruction tables for 64-bit apps.
 *
 * Genuinely invalid opcodes:
 * 06,07 - formerly push/pop es
 * 0e - formerly push cs
 * 16,17 - formerly push/pop ss
 * 1e,1f - formerly push/pop ds
 * 27,2f,37,3f - formerly daa/das/aaa/aas
 * 60,61 - formerly pusha/popa
 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 * 82 - formerly redundant encoding of Group1
 * 9a - formerly call seg:ofs
 * ce - formerly into
 * d4,d5 - formerly aam/aad
 * d6 - formerly undocumented salc
 * ea - formerly jmp seg:ofs
 *
 * Opcodes we'll probably never support:
 * 6c-6f - ins,outs. SEGVs if used in userspace
 * e4-e7 - in,out imm. SEGVs if used in userspace
 * ec-ef - in,out acc. SEGVs if used in userspace
 * cc - int3. SIGTRAP if used in userspace
 * f1 - int1. SIGTRAP if used in userspace
 * f4 - hlt. SEGVs if used in userspace
 * fa - cli. SEGVs if used in userspace
 * fb - sti. SEGVs if used in userspace
 *
 * Opcodes which need some work to be supported:
 * cd - int N.
 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 *	Not supported since kernel's handling of userspace single-stepping
 *	(TF flag) is fragile.
 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 */
#if defined(CONFIG_X86_64)
static volatile u32 good_insns_64[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#else
#define good_insns_64	NULL
#endif

/* Using this for both 64-bit and 32-bit apps.
 * Opcodes we don't support:
 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 *	Also encodes tons of other system insns if mod=11.
 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 * 0f 05 - syscall
 * 0f 06 - clts (CPL0 insn)
 * 0f 07 - sysret
 * 0f 08 - invd (CPL0 insn)
 * 0f 09 - wbinvd (CPL0 insn)
 * 0f 0b - ud2
 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 * 0f 34 - sysenter
 * 0f 35 - sysexit
 * 0f 37 - getsec
 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 *	Note: with prefixes, these two opcodes are
 *	extrq/insertq/AVX512 convert vector ops.
 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 *	Why? They are all user-executable.
 */
static volatile u32 good_2byte_insns[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#undef W

/*
 * opcodes we may need to refine support for:
 *
 *  0f - 2-byte instructions: For many of these instructions, the validity
 *  depends on the prefix and/or the reg field.  On such instructions, we
 *  just consider the opcode combination valid if it corresponds to any
 *  valid instruction.
 *
 *  8f - Group 1 - only reg = 0 is OK
 *  c6-c7 - Group 11 - only reg = 0 is OK
 *  d9-df - fpu insns with some illegal encodings
 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 *  certain floating-point instructions, such as addsd.
 *
 *  fe - Group 4 - only reg = 0 or 1 is OK
 *  ff - Group 5 - only reg = 0-6 is OK
 *
 * others -- Do we need to support these?
 *
 *  0f - (floating-point?) prefetch instructions
 *  07, 17, 1f - pop es, pop ss, pop ds
 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 *  67 - addr16 prefix
 *  ce - into
 *  f0 - lock prefix
 */

/*
 * TODO:
 * - Where necessary, examine the modrm byte and allow only valid instructions
 * in the different Groups and fpu instructions.
 */

static bool is_prefix_bad(struct insn *insn)
{
	int i;

	for (i = 0; i < insn->prefixes.nbytes; i++) {
		insn_attr_t attr;

		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
		switch (attr) {
		case INAT_MAKE_PREFIX(INAT_PFX_ES):
		case INAT_MAKE_PREFIX(INAT_PFX_CS):
		case INAT_MAKE_PREFIX(INAT_PFX_DS):
		case INAT_MAKE_PREFIX(INAT_PFX_SS):
		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
			return true;
		}
	}
	return false;
}

static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
{
	u32 volatile *good_insns;

	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
	/* has the side-effect of processing the entire instruction */
	insn_get_length(insn);
	if (!insn_complete(insn))
		return -ENOEXEC;

	if (is_prefix_bad(insn))
		return -ENOTSUPP;

	/* We should not singlestep on the exception masking instructions */
	if (insn_masking_exception(insn))
		return -ENOTSUPP;

	if (x86_64)
		good_insns = good_insns_64;
	else
		good_insns = good_insns_32;

	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
		return 0;

	if (insn->opcode.nbytes == 2) {
		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
			return 0;
	}

	return -ENOTSUPP;
}

#ifdef CONFIG_X86_64
/*
 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 * immediately.  Otherwise, rewrite the instruction so that it accesses
 * its memory operand indirectly through a scratch register.  Set
 * defparam->fixups accordingly. (The contents of the scratch register
 * will be saved before we single-step the modified instruction,
 * and restored afterward).
 *
 * We do this because a rip-relative instruction can access only a
 * relatively small area (+/- 2 GB from the instruction), and the XOL
 * area typically lies beyond that area.  At least for instructions
 * that store to memory, we can't execute the original instruction
 * and "fix things up" later, because the misdirected store could be
 * disastrous.
 *
 * Some useful facts about rip-relative instructions:
 *
 *  - There's always a modrm byte with bit layout "00 reg 101".
 *  - There's never a SIB byte.
 *  - The displacement is always 4 bytes.
 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 *    has no effect on rip-relative mode. It doesn't make modrm byte
 *    with r/m=101 refer to register 1101 = R13.
 */
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{
	u8 *cursor;
	u8 reg;
	u8 reg2;

	if (!insn_rip_relative(insn))
		return;

	/*
	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
	 * Clear REX.b bit (extension of MODRM.rm field):
	 * we want to encode low numbered reg, not r8+.
	 */
	if (insn->rex_prefix.nbytes) {
		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
		/* REX byte has 0100wrxb layout, clearing REX.b bit */
		*cursor &= 0xfe;
	}
	/*
	 * Similar treatment for VEX3/EVEX prefix.
	 * TODO: add XOP treatment when insn decoder supports them
	 */
	if (insn->vex_prefix.nbytes >= 3) {
		/*
		 * vex2:     c5    rvvvvLpp   (has no b bit)
		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
		 * Setting VEX3.b (setting because it has inverted meaning).
		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
		 * is the 4th bit of MODRM.rm, and needs the same treatment.
		 * For VEX3-encoded insns, VEX3.x value has no effect in
		 * non-SIB encoding, the change is superfluous but harmless.
		 */
		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
		*cursor |= 0x60;
	}

	/*
	 * Convert from rip-relative addressing to register-relative addressing
	 * via a scratch register.
	 *
	 * This is tricky since there are insns with modrm byte
	 * which also use registers not encoded in modrm byte:
	 * [i]div/[i]mul: implicitly use dx:ax
	 * shift ops: implicitly use cx
	 * cmpxchg: implicitly uses ax
	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
	 *   Encoding: 0f c7/1 modrm
	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
	 *   Example where none of bx,cx,dx can be used as scratch reg:
	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
	 * [v]pcmpistri: implicitly uses cx, xmm0
	 * [v]pcmpistrm: implicitly uses xmm0
	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
	 *   Evil SSE4.2 string comparison ops from hell.
	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
	 *   and that it can have only register operands, not mem
	 *   (its modrm byte must have mode=11).
	 *   If these restrictions will ever be lifted,
	 *   we'll need code to prevent selection of di as scratch reg!
	 *
	 * Summary: I don't know any insns with modrm byte which
	 * use SI register implicitly. DI register is used only
	 * by one insn (maskmovq) and BX register is used
	 * only by one too (cmpxchg8b).
	 * BP is stack-segment based (may be a problem?).
	 * AX, DX, CX are off-limits (many implicit users).
	 * SP is unusable (it's stack pointer - think about "pop mem";
	 * also, rsp+disp32 needs sib encoding -> insn length change).
	 */

	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
	reg2 = 0xff;		/* Fetch vex.vvvv */
	if (insn->vex_prefix.nbytes)
		reg2 = insn->vex_prefix.bytes[2];
	/*
	 * TODO: add XOP vvvv reading.
	 *
	 * vex.vvvv field is in bits 6-3, bits are inverted.
	 * But in 32-bit mode, high-order bit may be ignored.
	 * Therefore, let's consider only 3 low-order bits.
	 */
	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
	/*
	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
	 *
	 * Choose scratch reg. Order is important: must not select bx
	 * if we can use si (cmpxchg8b case!)
	 */
	if (reg != 6 && reg2 != 6) {
		reg2 = 6;
		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
	} else if (reg != 7 && reg2 != 7) {
		reg2 = 7;
		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
		/* TODO (paranoia): force maskmovq to not use di */
	} else {
		reg2 = 3;
		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
	}
	/*
	 * Point cursor at the modrm byte.  The next 4 bytes are the
	 * displacement.  Beyond the displacement, for some instructions,
	 * is the immediate operand.
	 */
	cursor = auprobe->insn + insn_offset_modrm(insn);
	/*
	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
	 * 89 86 disp32  mov %eax,disp32(%rsi)
	 */
	*cursor = 0x80 | (reg << 3) | reg2;
}

static inline unsigned long *
scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
		return &regs->si;
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
		return &regs->di;
	return &regs->bx;
}

/*
 * If we're emulating a rip-relative instruction, save the contents
 * of the scratch register and store the target address in that register.
 */
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
		struct uprobe_task *utask = current->utask;
		unsigned long *sr = scratch_reg(auprobe, regs);

		utask->autask.saved_scratch_register = *sr;
		*sr = utask->vaddr + auprobe->defparam.ilen;
	}
}

static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
		struct uprobe_task *utask = current->utask;
		unsigned long *sr = scratch_reg(auprobe, regs);

		*sr = utask->autask.saved_scratch_register;
	}
}
#else /* 32-bit: */
/*
 * No RIP-relative addressing on 32-bit
 */
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{
}
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
}
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
}
#endif /* CONFIG_X86_64 */

struct uprobe_xol_ops {
	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
};

static inline int sizeof_long(struct pt_regs *regs)
{
	/*
	 * Check registers for mode as in_xxx_syscall() does not apply here.
	 */
	return user_64bit_mode(regs) ? 8 : 4;
}

static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	riprel_pre_xol(auprobe, regs);
	return 0;
}

static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
{
	unsigned long new_sp = regs->sp - sizeof_long(regs);

	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
		return -EFAULT;

	regs->sp = new_sp;
	return 0;
}

/*
 * We have to fix things up as follows:
 *
 * Typically, the new ip is relative to the copied instruction.  We need
 * to make it relative to the original instruction (FIX_IP).  Exceptions
 * are return instructions and absolute or indirect jump or call instructions.
 *
 * If the single-stepped instruction was a call, the return address that
 * is atop the stack is the address following the copied instruction.  We
 * need to make it the address following the original instruction (FIX_CALL).
 *
 * If the original instruction was a rip-relative instruction such as
 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 * We need to restore the contents of the scratch register
 * (FIX_RIP_reg).
 */
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	riprel_post_xol(auprobe, regs);
	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
		long correction = utask->vaddr - utask->xol_vaddr;
		regs->ip += correction;
	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
			return -ERESTART;
	}
	/* popf; tell the caller to not touch TF */
	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
		utask->autask.saved_tf = true;

	return 0;
}

static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	riprel_post_xol(auprobe, regs);
}

static const struct uprobe_xol_ops default_xol_ops = {
	.pre_xol  = default_pre_xol_op,
	.post_xol = default_post_xol_op,
	.abort	  = default_abort_op,
};

static bool branch_is_call(struct arch_uprobe *auprobe)
{
	return auprobe->branch.opc1 == 0xe8;
}

#define CASE_COND					\
	COND(70, 71, XF(OF))				\
	COND(72, 73, XF(CF))				\
	COND(74, 75, XF(ZF))				\
	COND(78, 79, XF(SF))				\
	COND(7a, 7b, XF(PF))				\
	COND(76, 77, XF(CF) || XF(ZF))			\
	COND(7c, 7d, XF(SF) != XF(OF))			\
	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))

#define COND(op_y, op_n, expr)				\
	case 0x ## op_y: DO((expr) != 0)		\
	case 0x ## op_n: DO((expr) == 0)

#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))

static bool is_cond_jmp_opcode(u8 opcode)
{
	switch (opcode) {
	#define DO(expr)	\
		return true;
	CASE_COND
	#undef	DO

	default:
		return false;
	}
}

static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long flags = regs->flags;

	switch (auprobe->branch.opc1) {
	#define DO(expr)	\
		return expr;
	CASE_COND
	#undef	DO

	default:	/* not a conditional jmp */
		return true;
	}
}

#undef	XF
#undef	COND
#undef	CASE_COND

static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
	unsigned long offs = (long)auprobe->branch.offs;

	if (branch_is_call(auprobe)) {
		/*
		 * If it fails we execute this (mangled, see the comment in
		 * branch_clear_offset) insn out-of-line. In the likely case
		 * this should trigger the trap, and the probed application
		 * should die or restart the same insn after it handles the
		 * signal, arch_uprobe_post_xol() won't be even called.
		 *
		 * But there is corner case, see the comment in ->post_xol().
		 */
		if (emulate_push_stack(regs, new_ip))
			return false;
	} else if (!check_jmp_cond(auprobe, regs)) {
		offs = 0;
	}

	regs->ip = new_ip + offs;
	return true;
}

static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;

	if (emulate_push_stack(regs, *src_ptr))
		return false;
	regs->ip += auprobe->push.ilen;
	return true;
}

static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	BUG_ON(!branch_is_call(auprobe));
	/*
	 * We can only get here if branch_emulate_op() failed to push the ret
	 * address _and_ another thread expanded our stack before the (mangled)
	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
	 * We could also restore ->ip and try to call branch_emulate_op() again.
	 */
	regs->sp += sizeof_long(regs);
	return -ERESTART;
}

static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
{
	/*
	 * Turn this insn into "call 1f; 1:", this is what we will execute
	 * out-of-line if ->emulate() fails. We only need this to generate
	 * a trap, so that the probed task receives the correct signal with
	 * the properly filled siginfo.
	 *
	 * But see the comment in ->post_xol(), in the unlikely case it can
	 * succeed. So we need to ensure that the new ->ip can not fall into
	 * the non-canonical area and trigger #GP.
	 *
	 * We could turn it into (say) "pushf", but then we would need to
	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
	 * of ->insn[] for set_orig_insn().
	 */
	memset(auprobe->insn + insn_offset_immediate(insn),
		0, insn->immediate.nbytes);
}

static const struct uprobe_xol_ops branch_xol_ops = {
	.emulate  = branch_emulate_op,
	.post_xol = branch_post_xol_op,
};

static const struct uprobe_xol_ops push_xol_ops = {
	.emulate  = push_emulate_op,
};

/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{
	u8 opc1 = OPCODE1(insn);
	int i;

	switch (opc1) {
	case 0xeb:	/* jmp 8 */
	case 0xe9:	/* jmp 32 */
	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
		break;

	case 0xe8:	/* call relative */
		branch_clear_offset(auprobe, insn);
		break;

	case 0x0f:
		if (insn->opcode.nbytes != 2)
			return -ENOSYS;
		/*
		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
		 * OPCODE1() of the "short" jmp which checks the same condition.
		 */
		opc1 = OPCODE2(insn) - 0x10;
		/* fall through */
	default:
		if (!is_cond_jmp_opcode(opc1))
			return -ENOSYS;
	}

	/*
	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
	 * No one uses these insns, reject any branch insns with such prefix.
	 */
	for (i = 0; i < insn->prefixes.nbytes; i++) {
		if (insn->prefixes.bytes[i] == 0x66)
			return -ENOTSUPP;
	}

	auprobe->branch.opc1 = opc1;
	auprobe->branch.ilen = insn->length;
	auprobe->branch.offs = insn->immediate.value;

	auprobe->ops = &branch_xol_ops;
	return 0;
}

/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{
	u8 opc1 = OPCODE1(insn), reg_offset = 0;

	if (opc1 < 0x50 || opc1 > 0x57)
		return -ENOSYS;

	if (insn->length > 2)
		return -ENOSYS;
	if (insn->length == 2) {
		/* only support rex_prefix 0x41 (x64 only) */
#ifdef CONFIG_X86_64
		if (insn->rex_prefix.nbytes != 1 ||
		    insn->rex_prefix.bytes[0] != 0x41)
			return -ENOSYS;

		switch (opc1) {
		case 0x50:
			reg_offset = offsetof(struct pt_regs, r8);
			break;
		case 0x51:
			reg_offset = offsetof(struct pt_regs, r9);
			break;
		case 0x52:
			reg_offset = offsetof(struct pt_regs, r10);
			break;
		case 0x53:
			reg_offset = offsetof(struct pt_regs, r11);
			break;
		case 0x54:
			reg_offset = offsetof(struct pt_regs, r12);
			break;
		case 0x55:
			reg_offset = offsetof(struct pt_regs, r13);
			break;
		case 0x56:
			reg_offset = offsetof(struct pt_regs, r14);
			break;
		case 0x57:
			reg_offset = offsetof(struct pt_regs, r15);
			break;
		}
#else
		return -ENOSYS;
#endif
	} else {
		switch (opc1) {
		case 0x50:
			reg_offset = offsetof(struct pt_regs, ax);
			break;
		case 0x51:
			reg_offset = offsetof(struct pt_regs, cx);
			break;
		case 0x52:
			reg_offset = offsetof(struct pt_regs, dx);
			break;
		case 0x53:
			reg_offset = offsetof(struct pt_regs, bx);
			break;
		case 0x54:
			reg_offset = offsetof(struct pt_regs, sp);
			break;
		case 0x55:
			reg_offset = offsetof(struct pt_regs, bp);
			break;
		case 0x56:
			reg_offset = offsetof(struct pt_regs, si);
			break;
		case 0x57:
			reg_offset = offsetof(struct pt_regs, di);
			break;
		}
	}

	auprobe->push.reg_offset = reg_offset;
	auprobe->push.ilen = insn->length;
	auprobe->ops = &push_xol_ops;
	return 0;
}

/**
 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 * @mm: the probed address space.
 * @arch_uprobe: the probepoint information.
 * @addr: virtual address at which to install the probepoint
 * Return 0 on success or a -ve number on error.
 */
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
{
	struct insn insn;
	u8 fix_ip_or_call = UPROBE_FIX_IP;
	int ret;

	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
	if (ret)
		return ret;

	ret = branch_setup_xol_ops(auprobe, &insn);
	if (ret != -ENOSYS)
		return ret;

	ret = push_setup_xol_ops(auprobe, &insn);
	if (ret != -ENOSYS)
		return ret;

	/*
	 * Figure out which fixups default_post_xol_op() will need to perform,
	 * and annotate defparam->fixups accordingly.
	 */
	switch (OPCODE1(&insn)) {
	case 0x9d:		/* popf */
		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
		break;
	case 0xc3:		/* ret or lret -- ip is correct */
	case 0xcb:
	case 0xc2:
	case 0xca:
	case 0xea:		/* jmp absolute -- ip is correct */
		fix_ip_or_call = 0;
		break;
	case 0x9a:		/* call absolute - Fix return addr, not ip */
		fix_ip_or_call = UPROBE_FIX_CALL;
		break;
	case 0xff:
		switch (MODRM_REG(&insn)) {
		case 2: case 3:			/* call or lcall, indirect */
			fix_ip_or_call = UPROBE_FIX_CALL;
			break;
		case 4: case 5:			/* jmp or ljmp, indirect */
			fix_ip_or_call = 0;
			break;
		}
		/* fall through */
	default:
		riprel_analyze(auprobe, &insn);
	}

	auprobe->defparam.ilen = insn.length;
	auprobe->defparam.fixups |= fix_ip_or_call;

	auprobe->ops = &default_xol_ops;
	return 0;
}

/*
 * arch_uprobe_pre_xol - prepare to execute out of line.
 * @auprobe: the probepoint information.
 * @regs: reflects the saved user state of current task.
 */
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (auprobe->ops->pre_xol) {
		int err = auprobe->ops->pre_xol(auprobe, regs);
		if (err)
			return err;
	}

	regs->ip = utask->xol_vaddr;
	utask->autask.saved_trap_nr = current->thread.trap_nr;
	current->thread.trap_nr = UPROBE_TRAP_NR;

	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
	regs->flags |= X86_EFLAGS_TF;
	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
		set_task_blockstep(current, false);

	return 0;
}

/*
 * If xol insn itself traps and generates a signal(Say,
 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 * instruction jumps back to its own address. It is assumed that anything
 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 *
 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 */
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
	if (t->thread.trap_nr != UPROBE_TRAP_NR)
		return true;

	return false;
}

/*
 * Called after single-stepping. To avoid the SMP problems that can
 * occur when we temporarily put back the original opcode to
 * single-step, we single-stepped a copy of the instruction.
 *
 * This function prepares to resume execution after the single-step.
 */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;
	bool send_sigtrap = utask->autask.saved_tf;
	int err = 0;

	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
	current->thread.trap_nr = utask->autask.saved_trap_nr;

	if (auprobe->ops->post_xol) {
		err = auprobe->ops->post_xol(auprobe, regs);
		if (err) {
			/*
			 * Restore ->ip for restart or post mortem analysis.
			 * ->post_xol() must not return -ERESTART unless this
			 * is really possible.
			 */
			regs->ip = utask->vaddr;
			if (err == -ERESTART)
				err = 0;
			send_sigtrap = false;
		}
	}
	/*
	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
	 * so we can get an extra SIGTRAP if we do not clear TF. We need
	 * to examine the opcode to make it right.
	 */
	if (send_sigtrap)
		send_sig(SIGTRAP, current, 0);

	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;

	return err;
}

/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
	struct die_args *args = data;
	struct pt_regs *regs = args->regs;
	int ret = NOTIFY_DONE;

	/* We are only interested in userspace traps */
	if (regs && !user_mode(regs))
		return NOTIFY_DONE;

	switch (val) {
	case DIE_INT3:
		if (uprobe_pre_sstep_notifier(regs))
			ret = NOTIFY_STOP;

		break;

	case DIE_DEBUG:
		if (uprobe_post_sstep_notifier(regs))
			ret = NOTIFY_STOP;

	default:
		break;
	}

	return ret;
}

/*
 * This function gets called when XOL instruction either gets trapped or
 * the thread has a fatal signal. Reset the instruction pointer to its
 * probed address for the potential restart or for post mortem analysis.
 */
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (auprobe->ops->abort)
		auprobe->ops->abort(auprobe, regs);

	current->thread.trap_nr = utask->autask.saved_trap_nr;
	regs->ip = utask->vaddr;
	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;
}

static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->ops->emulate)
		return auprobe->ops->emulate(auprobe, regs);
	return false;
}

bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	bool ret = __skip_sstep(auprobe, regs);
	if (ret && (regs->flags & X86_EFLAGS_TF))
		send_sig(SIGTRAP, current, 0);
	return ret;
}

unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
	int rasize = sizeof_long(regs), nleft;
	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */

	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
		return -1;

	/* check whether address has been already hijacked */
	if (orig_ret_vaddr == trampoline_vaddr)
		return orig_ret_vaddr;

	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
	if (likely(!nleft))
		return orig_ret_vaddr;

	if (nleft != rasize) {
		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
		       current->pid, regs->sp, regs->ip);

		force_sig(SIGSEGV);
	}

	return -1;
}

bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
				struct pt_regs *regs)
{
	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
		return regs->sp < ret->stack;
	else
		return regs->sp <= ret->stack;
}