Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
// SPDX-License-Identifier: GPL-2.0-only
/*
 * L220/L310 cache controller support
 *
 * Copyright (C) 2016 ARM Limited
 */
#include <linux/errno.h>
#include <linux/hrtimer.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/perf_event.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/types.h>

#include <asm/hardware/cache-l2x0.h>

#define PMU_NR_COUNTERS 2

static void __iomem *l2x0_base;
static struct pmu *l2x0_pmu;
static cpumask_t pmu_cpu;

static const char *l2x0_name;

static ktime_t l2x0_pmu_poll_period;
static struct hrtimer l2x0_pmu_hrtimer;

/*
 * The L220/PL310 PMU has two equivalent counters, Counter1 and Counter0.
 * Registers controlling these are laid out in pairs, in descending order, i.e.
 * the register for Counter1 comes first, followed by the register for
 * Counter0.
 * We ensure that idx 0 -> Counter0, and idx1 -> Counter1.
 */
static struct perf_event *events[PMU_NR_COUNTERS];

/* Find an unused counter */
static int l2x0_pmu_find_idx(void)
{
	int i;

	for (i = 0; i < PMU_NR_COUNTERS; i++) {
		if (!events[i])
			return i;
	}

	return -1;
}

/* How many counters are allocated? */
static int l2x0_pmu_num_active_counters(void)
{
	int i, cnt = 0;

	for (i = 0; i < PMU_NR_COUNTERS; i++) {
		if (events[i])
			cnt++;
	}

	return cnt;
}

static void l2x0_pmu_counter_config_write(int idx, u32 val)
{
	writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT0_CFG - 4 * idx);
}

static u32 l2x0_pmu_counter_read(int idx)
{
	return readl_relaxed(l2x0_base + L2X0_EVENT_CNT0_VAL - 4 * idx);
}

static void l2x0_pmu_counter_write(int idx, u32 val)
{
	writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT0_VAL - 4 * idx);
}

static void __l2x0_pmu_enable(void)
{
	u32 val = readl_relaxed(l2x0_base + L2X0_EVENT_CNT_CTRL);
	val |= L2X0_EVENT_CNT_CTRL_ENABLE;
	writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT_CTRL);
}

static void __l2x0_pmu_disable(void)
{
	u32 val = readl_relaxed(l2x0_base + L2X0_EVENT_CNT_CTRL);
	val &= ~L2X0_EVENT_CNT_CTRL_ENABLE;
	writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT_CTRL);
}

static void l2x0_pmu_enable(struct pmu *pmu)
{
	if (l2x0_pmu_num_active_counters() == 0)
		return;

	__l2x0_pmu_enable();
}

static void l2x0_pmu_disable(struct pmu *pmu)
{
	if (l2x0_pmu_num_active_counters() == 0)
		return;

	__l2x0_pmu_disable();
}

static void warn_if_saturated(u32 count)
{
	if (count != 0xffffffff)
		return;

	pr_warn_ratelimited("L2X0 counter saturated. Poll period too long\n");
}

static void l2x0_pmu_event_read(struct perf_event *event)
{
	struct hw_perf_event *hw = &event->hw;
	u64 prev_count, new_count, mask;

	do {
		 prev_count = local64_read(&hw->prev_count);
		 new_count = l2x0_pmu_counter_read(hw->idx);
	} while (local64_xchg(&hw->prev_count, new_count) != prev_count);

	mask = GENMASK_ULL(31, 0);
	local64_add((new_count - prev_count) & mask, &event->count);

	warn_if_saturated(new_count);
}

static void l2x0_pmu_event_configure(struct perf_event *event)
{
	struct hw_perf_event *hw = &event->hw;

	/*
	 * The L2X0 counters saturate at 0xffffffff rather than wrapping, so we
	 * will *always* lose some number of events when a counter saturates,
	 * and have no way of detecting how many were lost.
	 *
	 * To minimize the impact of this, we try to maximize the period by
	 * always starting counters at zero. To ensure that group ratios are
	 * representative, we poll periodically to avoid counters saturating.
	 * See l2x0_pmu_poll().
	 */
	local64_set(&hw->prev_count, 0);
	l2x0_pmu_counter_write(hw->idx, 0);
}

static enum hrtimer_restart l2x0_pmu_poll(struct hrtimer *hrtimer)
{
	unsigned long flags;
	int i;

	local_irq_save(flags);
	__l2x0_pmu_disable();

	for (i = 0; i < PMU_NR_COUNTERS; i++) {
		struct perf_event *event = events[i];

		if (!event)
			continue;

		l2x0_pmu_event_read(event);
		l2x0_pmu_event_configure(event);
	}

	__l2x0_pmu_enable();
	local_irq_restore(flags);

	hrtimer_forward_now(hrtimer, l2x0_pmu_poll_period);
	return HRTIMER_RESTART;
}


static void __l2x0_pmu_event_enable(int idx, u32 event)
{
	u32 val;

	val = event << L2X0_EVENT_CNT_CFG_SRC_SHIFT;
	val |= L2X0_EVENT_CNT_CFG_INT_DISABLED;
	l2x0_pmu_counter_config_write(idx, val);
}

static void l2x0_pmu_event_start(struct perf_event *event, int flags)
{
	struct hw_perf_event *hw = &event->hw;

	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(hw->state & PERF_HES_UPTODATE));
		l2x0_pmu_event_configure(event);
	}

	hw->state = 0;

	__l2x0_pmu_event_enable(hw->idx, hw->config_base);
}

static void __l2x0_pmu_event_disable(int idx)
{
	u32 val;

	val = L2X0_EVENT_CNT_CFG_SRC_DISABLED << L2X0_EVENT_CNT_CFG_SRC_SHIFT;
	val |= L2X0_EVENT_CNT_CFG_INT_DISABLED;
	l2x0_pmu_counter_config_write(idx, val);
}

static void l2x0_pmu_event_stop(struct perf_event *event, int flags)
{
	struct hw_perf_event *hw = &event->hw;

	if (WARN_ON_ONCE(event->hw.state & PERF_HES_STOPPED))
		return;

	__l2x0_pmu_event_disable(hw->idx);

	hw->state |= PERF_HES_STOPPED;

	if (flags & PERF_EF_UPDATE) {
		l2x0_pmu_event_read(event);
		hw->state |= PERF_HES_UPTODATE;
	}
}

static int l2x0_pmu_event_add(struct perf_event *event, int flags)
{
	struct hw_perf_event *hw = &event->hw;
	int idx = l2x0_pmu_find_idx();

	if (idx == -1)
		return -EAGAIN;

	/*
	 * Pin the timer, so that the overflows are handled by the chosen
	 * event->cpu (this is the same one as presented in "cpumask"
	 * attribute).
	 */
	if (l2x0_pmu_num_active_counters() == 0)
		hrtimer_start(&l2x0_pmu_hrtimer, l2x0_pmu_poll_period,
			      HRTIMER_MODE_REL_PINNED);

	events[idx] = event;
	hw->idx = idx;

	l2x0_pmu_event_configure(event);

	hw->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;

	if (flags & PERF_EF_START)
		l2x0_pmu_event_start(event, 0);

	return 0;
}

static void l2x0_pmu_event_del(struct perf_event *event, int flags)
{
	struct hw_perf_event *hw = &event->hw;

	l2x0_pmu_event_stop(event, PERF_EF_UPDATE);

	events[hw->idx] = NULL;
	hw->idx = -1;

	if (l2x0_pmu_num_active_counters() == 0)
		hrtimer_cancel(&l2x0_pmu_hrtimer);
}

static bool l2x0_pmu_group_is_valid(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	struct perf_event *leader = event->group_leader;
	struct perf_event *sibling;
	int num_hw = 0;

	if (leader->pmu == pmu)
		num_hw++;
	else if (!is_software_event(leader))
		return false;

	for_each_sibling_event(sibling, leader) {
		if (sibling->pmu == pmu)
			num_hw++;
		else if (!is_software_event(sibling))
			return false;
	}

	return num_hw <= PMU_NR_COUNTERS;
}

static int l2x0_pmu_event_init(struct perf_event *event)
{
	struct hw_perf_event *hw = &event->hw;

	if (event->attr.type != l2x0_pmu->type)
		return -ENOENT;

	if (is_sampling_event(event) ||
	    event->attach_state & PERF_ATTACH_TASK)
		return -EINVAL;

	if (event->cpu < 0)
		return -EINVAL;

	if (event->attr.config & ~L2X0_EVENT_CNT_CFG_SRC_MASK)
		return -EINVAL;

	hw->config_base = event->attr.config;

	if (!l2x0_pmu_group_is_valid(event))
		return -EINVAL;

	event->cpu = cpumask_first(&pmu_cpu);

	return 0;
}

struct l2x0_event_attribute {
	struct device_attribute attr;
	unsigned int config;
	bool pl310_only;
};

#define L2X0_EVENT_ATTR(_name, _config, _pl310_only)				\
	(&((struct l2x0_event_attribute[]) {{					\
		.attr = __ATTR(_name, S_IRUGO, l2x0_pmu_event_show, NULL),	\
		.config = _config,						\
		.pl310_only = _pl310_only,					\
	}})[0].attr.attr)

#define L220_PLUS_EVENT_ATTR(_name, _config)					\
	L2X0_EVENT_ATTR(_name, _config, false)

#define PL310_EVENT_ATTR(_name, _config)					\
	L2X0_EVENT_ATTR(_name, _config, true)

static ssize_t l2x0_pmu_event_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct l2x0_event_attribute *lattr;

	lattr = container_of(attr, typeof(*lattr), attr);
	return snprintf(buf, PAGE_SIZE, "config=0x%x\n", lattr->config);
}

static umode_t l2x0_pmu_event_attr_is_visible(struct kobject *kobj,
					      struct attribute *attr,
					      int unused)
{
	struct device *dev = kobj_to_dev(kobj);
	struct pmu *pmu = dev_get_drvdata(dev);
	struct l2x0_event_attribute *lattr;

	lattr = container_of(attr, typeof(*lattr), attr.attr);

	if (!lattr->pl310_only || strcmp("l2c_310", pmu->name) == 0)
		return attr->mode;

	return 0;
}

static struct attribute *l2x0_pmu_event_attrs[] = {
	L220_PLUS_EVENT_ATTR(co,	0x1),
	L220_PLUS_EVENT_ATTR(drhit,	0x2),
	L220_PLUS_EVENT_ATTR(drreq,	0x3),
	L220_PLUS_EVENT_ATTR(dwhit,	0x4),
	L220_PLUS_EVENT_ATTR(dwreq,	0x5),
	L220_PLUS_EVENT_ATTR(dwtreq,	0x6),
	L220_PLUS_EVENT_ATTR(irhit,	0x7),
	L220_PLUS_EVENT_ATTR(irreq,	0x8),
	L220_PLUS_EVENT_ATTR(wa,	0x9),
	PL310_EVENT_ATTR(ipfalloc,	0xa),
	PL310_EVENT_ATTR(epfhit,	0xb),
	PL310_EVENT_ATTR(epfalloc,	0xc),
	PL310_EVENT_ATTR(srrcvd,	0xd),
	PL310_EVENT_ATTR(srconf,	0xe),
	PL310_EVENT_ATTR(epfrcvd,	0xf),
	NULL
};

static struct attribute_group l2x0_pmu_event_attrs_group = {
	.name = "events",
	.attrs = l2x0_pmu_event_attrs,
	.is_visible = l2x0_pmu_event_attr_is_visible,
};

static ssize_t l2x0_pmu_cpumask_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	return cpumap_print_to_pagebuf(true, buf, &pmu_cpu);
}

static struct device_attribute l2x0_pmu_cpumask_attr =
		__ATTR(cpumask, S_IRUGO, l2x0_pmu_cpumask_show, NULL);

static struct attribute *l2x0_pmu_cpumask_attrs[] = {
	&l2x0_pmu_cpumask_attr.attr,
	NULL,
};

static struct attribute_group l2x0_pmu_cpumask_attr_group = {
	.attrs = l2x0_pmu_cpumask_attrs,
};

static const struct attribute_group *l2x0_pmu_attr_groups[] = {
	&l2x0_pmu_event_attrs_group,
	&l2x0_pmu_cpumask_attr_group,
	NULL,
};

static void l2x0_pmu_reset(void)
{
	int i;

	__l2x0_pmu_disable();

	for (i = 0; i < PMU_NR_COUNTERS; i++)
		__l2x0_pmu_event_disable(i);
}

static int l2x0_pmu_offline_cpu(unsigned int cpu)
{
	unsigned int target;

	if (!cpumask_test_and_clear_cpu(cpu, &pmu_cpu))
		return 0;

	target = cpumask_any_but(cpu_online_mask, cpu);
	if (target >= nr_cpu_ids)
		return 0;

	perf_pmu_migrate_context(l2x0_pmu, cpu, target);
	cpumask_set_cpu(target, &pmu_cpu);

	return 0;
}

void l2x0_pmu_suspend(void)
{
	int i;

	if (!l2x0_pmu)
		return;

	l2x0_pmu_disable(l2x0_pmu);

	for (i = 0; i < PMU_NR_COUNTERS; i++) {
		if (events[i])
			l2x0_pmu_event_stop(events[i], PERF_EF_UPDATE);
	}

}

void l2x0_pmu_resume(void)
{
	int i;

	if (!l2x0_pmu)
		return;

	l2x0_pmu_reset();

	for (i = 0; i < PMU_NR_COUNTERS; i++) {
		if (events[i])
			l2x0_pmu_event_start(events[i], PERF_EF_RELOAD);
	}

	l2x0_pmu_enable(l2x0_pmu);
}

void __init l2x0_pmu_register(void __iomem *base, u32 part)
{
	/*
	 * Determine whether we support the PMU, and choose the name for sysfs.
	 * This is also used by l2x0_pmu_event_attr_is_visible to determine
	 * which events to display, as the PL310 PMU supports a superset of
	 * L220 events.
	 *
	 * The L210 PMU has a different programmer's interface, and is not
	 * supported by this driver.
	 *
	 * We must defer registering the PMU until the perf subsystem is up and
	 * running, so just stash the name and base, and leave that to another
	 * initcall.
	 */
	switch (part & L2X0_CACHE_ID_PART_MASK) {
	case L2X0_CACHE_ID_PART_L220:
		l2x0_name = "l2c_220";
		break;
	case L2X0_CACHE_ID_PART_L310:
		l2x0_name = "l2c_310";
		break;
	default:
		return;
	}

	l2x0_base = base;
}

static __init int l2x0_pmu_init(void)
{
	int ret;

	if (!l2x0_base)
		return 0;

	l2x0_pmu = kzalloc(sizeof(*l2x0_pmu), GFP_KERNEL);
	if (!l2x0_pmu) {
		pr_warn("Unable to allocate L2x0 PMU\n");
		return -ENOMEM;
	}

	*l2x0_pmu = (struct pmu) {
		.task_ctx_nr = perf_invalid_context,
		.pmu_enable = l2x0_pmu_enable,
		.pmu_disable = l2x0_pmu_disable,
		.read = l2x0_pmu_event_read,
		.start = l2x0_pmu_event_start,
		.stop = l2x0_pmu_event_stop,
		.add = l2x0_pmu_event_add,
		.del = l2x0_pmu_event_del,
		.event_init = l2x0_pmu_event_init,
		.attr_groups = l2x0_pmu_attr_groups,
		.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
	};

	l2x0_pmu_reset();

	/*
	 * We always use a hrtimer rather than an interrupt.
	 * See comments in l2x0_pmu_event_configure and l2x0_pmu_poll.
	 *
	 * Polling once a second allows the counters to fill up to 1/128th on a
	 * quad-core test chip with cores clocked at 400MHz. Hopefully this
	 * leaves sufficient headroom to avoid overflow on production silicon
	 * at higher frequencies.
	 */
	l2x0_pmu_poll_period = ms_to_ktime(1000);
	hrtimer_init(&l2x0_pmu_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	l2x0_pmu_hrtimer.function = l2x0_pmu_poll;

	cpumask_set_cpu(0, &pmu_cpu);
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_L2X0_ONLINE,
					"perf/arm/l2x0:online", NULL,
					l2x0_pmu_offline_cpu);
	if (ret)
		goto out_pmu;

	ret = perf_pmu_register(l2x0_pmu, l2x0_name, -1);
	if (ret)
		goto out_cpuhp;

	return 0;

out_cpuhp:
	cpuhp_remove_state_nocalls(CPUHP_AP_PERF_ARM_L2X0_ONLINE);
out_pmu:
	kfree(l2x0_pmu);
	l2x0_pmu = NULL;
	return ret;
}
device_initcall(l2x0_pmu_init);