Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2019 Intel Corporation
 */

#include <linux/sched/clock.h>

#include "i915_drv.h"
#include "i915_irq.h"
#include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_uncore.h"

static void guc_irq_handler(struct intel_guc *guc, u16 iir)
{
	if (iir & GUC_INTR_GUC2HOST)
		intel_guc_to_host_event_handler(guc);
}

static void
cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
{
	bool tasklet = false;

	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
		tasklet = true;

	if (iir & GT_RENDER_USER_INTERRUPT) {
		intel_engine_breadcrumbs_irq(engine);
		tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
	}

	if (tasklet)
		tasklet_hi_schedule(&engine->execlists.tasklet);
}

static u32
gen11_gt_engine_identity(struct intel_gt *gt,
			 const unsigned int bank, const unsigned int bit)
{
	void __iomem * const regs = gt->uncore->regs;
	u32 timeout_ts;
	u32 ident;

	lockdep_assert_held(&gt->irq_lock);

	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));

	/*
	 * NB: Specs do not specify how long to spin wait,
	 * so we do ~100us as an educated guess.
	 */
	timeout_ts = (local_clock() >> 10) + 100;
	do {
		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
	} while (!(ident & GEN11_INTR_DATA_VALID) &&
		 !time_after32(local_clock() >> 10, timeout_ts));

	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
			  bank, bit, ident);
		return 0;
	}

	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
		      GEN11_INTR_DATA_VALID);

	return ident;
}

static void
gen11_other_irq_handler(struct intel_gt *gt, const u8 instance,
			const u16 iir)
{
	if (instance == OTHER_GUC_INSTANCE)
		return guc_irq_handler(&gt->uc.guc, iir);

	if (instance == OTHER_GTPM_INSTANCE)
		return gen11_rps_irq_handler(gt, iir);

	WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
		  instance, iir);
}

static void
gen11_engine_irq_handler(struct intel_gt *gt, const u8 class,
			 const u8 instance, const u16 iir)
{
	struct intel_engine_cs *engine;

	if (instance <= MAX_ENGINE_INSTANCE)
		engine = gt->engine_class[class][instance];
	else
		engine = NULL;

	if (likely(engine))
		return cs_irq_handler(engine, iir);

	WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
		  class, instance);
}

static void
gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity)
{
	const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
	const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
	const u16 intr = GEN11_INTR_ENGINE_INTR(identity);

	if (unlikely(!intr))
		return;

	if (class <= COPY_ENGINE_CLASS)
		return gen11_engine_irq_handler(gt, class, instance, intr);

	if (class == OTHER_CLASS)
		return gen11_other_irq_handler(gt, instance, intr);

	WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
		  class, instance, intr);
}

static void
gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank)
{
	void __iomem * const regs = gt->uncore->regs;
	unsigned long intr_dw;
	unsigned int bit;

	lockdep_assert_held(&gt->irq_lock);

	intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));

	for_each_set_bit(bit, &intr_dw, 32) {
		const u32 ident = gen11_gt_engine_identity(gt, bank, bit);

		gen11_gt_identity_handler(gt, ident);
	}

	/* Clear must be after shared has been served for engine */
	raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
}

void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl)
{
	unsigned int bank;

	spin_lock(&gt->irq_lock);

	for (bank = 0; bank < 2; bank++) {
		if (master_ctl & GEN11_GT_DW_IRQ(bank))
			gen11_gt_bank_handler(gt, bank);
	}

	spin_unlock(&gt->irq_lock);
}

bool gen11_gt_reset_one_iir(struct intel_gt *gt,
			    const unsigned int bank, const unsigned int bit)
{
	void __iomem * const regs = gt->uncore->regs;
	u32 dw;

	lockdep_assert_held(&gt->irq_lock);

	dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
	if (dw & BIT(bit)) {
		/*
		 * According to the BSpec, DW_IIR bits cannot be cleared without
		 * first servicing the Selector & Shared IIR registers.
		 */
		gen11_gt_engine_identity(gt, bank, bit);

		/*
		 * We locked GT INT DW by reading it. If we want to (try
		 * to) recover from this successfully, we need to clear
		 * our bit, otherwise we are locking the register for
		 * everybody.
		 */
		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));

		return true;
	}

	return false;
}

void gen11_gt_irq_reset(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;

	/* Disable RCS, BCS, VCS and VECS class engines. */
	intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0);
	intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE,	  0);

	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
	intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK,	~0);
	intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK,	~0);
	intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK,	~0);
	intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK,	~0);
	intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK,	~0);

	intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
	intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
	intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
	intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK,  ~0);
}

void gen11_gt_irq_postinstall(struct intel_gt *gt)
{
	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
	struct intel_uncore *uncore = gt->uncore;
	const u32 dmask = irqs << 16 | irqs;
	const u32 smask = irqs << 16;

	BUILD_BUG_ON(irqs & 0xffff0000);

	/* Enable RCS, BCS, VCS and VECS class interrupts. */
	intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask);
	intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask);

	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
	intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask);
	intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask);
	intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask);
	intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask);
	intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask);

	/*
	 * RPS interrupts will get enabled/disabled on demand when RPS itself
	 * is enabled/disabled.
	 */
	gt->pm_ier = 0x0;
	gt->pm_imr = ~gt->pm_ier;
	intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
	intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);

	/* Same thing for GuC interrupts */
	intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
	intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK,  ~0);
}

void gen5_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
{
	if (gt_iir & GT_RENDER_USER_INTERRUPT)
		intel_engine_breadcrumbs_irq(gt->engine_class[RENDER_CLASS][0]);
	if (gt_iir & ILK_BSD_USER_INTERRUPT)
		intel_engine_breadcrumbs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0]);
}

static void gen7_parity_error_irq_handler(struct intel_gt *gt, u32 iir)
{
	if (!HAS_L3_DPF(gt->i915))
		return;

	spin_lock(&gt->irq_lock);
	gen5_gt_disable_irq(gt, GT_PARITY_ERROR(gt->i915));
	spin_unlock(&gt->irq_lock);

	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
		gt->i915->l3_parity.which_slice |= 1 << 1;

	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
		gt->i915->l3_parity.which_slice |= 1 << 0;

	schedule_work(&gt->i915->l3_parity.error_work);
}

void gen6_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
{
	if (gt_iir & GT_RENDER_USER_INTERRUPT)
		intel_engine_breadcrumbs_irq(gt->engine_class[RENDER_CLASS][0]);
	if (gt_iir & GT_BSD_USER_INTERRUPT)
		intel_engine_breadcrumbs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0]);
	if (gt_iir & GT_BLT_USER_INTERRUPT)
		intel_engine_breadcrumbs_irq(gt->engine_class[COPY_ENGINE_CLASS][0]);

	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
		      GT_BSD_CS_ERROR_INTERRUPT |
		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);

	if (gt_iir & GT_PARITY_ERROR(gt->i915))
		gen7_parity_error_irq_handler(gt, gt_iir);
}

void gen8_gt_irq_ack(struct intel_gt *gt, u32 master_ctl, u32 gt_iir[4])
{
	void __iomem * const regs = gt->uncore->regs;

	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
		if (likely(gt_iir[0]))
			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
	}

	if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
		if (likely(gt_iir[1]))
			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
	}

	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
		if (likely(gt_iir[2]))
			raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
	}

	if (master_ctl & GEN8_GT_VECS_IRQ) {
		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
		if (likely(gt_iir[3]))
			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
	}
}

void gen8_gt_irq_handler(struct intel_gt *gt, u32 master_ctl, u32 gt_iir[4])
{
	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
		cs_irq_handler(gt->engine_class[RENDER_CLASS][0],
			       gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
		cs_irq_handler(gt->engine_class[COPY_ENGINE_CLASS][0],
			       gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
	}

	if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
		cs_irq_handler(gt->engine_class[VIDEO_DECODE_CLASS][0],
			       gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT);
		cs_irq_handler(gt->engine_class[VIDEO_DECODE_CLASS][1],
			       gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
	}

	if (master_ctl & GEN8_GT_VECS_IRQ) {
		cs_irq_handler(gt->engine_class[VIDEO_ENHANCEMENT_CLASS][0],
			       gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
	}

	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
		gen6_rps_irq_handler(gt->i915, gt_iir[2]);
		guc_irq_handler(&gt->uc.guc, gt_iir[2] >> 16);
	}
}

void gen8_gt_irq_reset(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;

	GEN8_IRQ_RESET_NDX(uncore, GT, 0);
	GEN8_IRQ_RESET_NDX(uncore, GT, 1);
	GEN8_IRQ_RESET_NDX(uncore, GT, 2);
	GEN8_IRQ_RESET_NDX(uncore, GT, 3);
}

void gen8_gt_irq_postinstall(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;

	/* These are interrupts we'll toggle with the ring mask register */
	u32 gt_interrupts[] = {
		(GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
		 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
		 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
		 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT),

		(GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
		 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
		 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
		 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT),

		0,

		(GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
		 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT)
	};

	gt->pm_ier = 0x0;
	gt->pm_imr = ~gt->pm_ier;
	GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
	GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
	/*
	 * RPS interrupts will get enabled/disabled on demand when RPS itself
	 * is enabled/disabled. Same wil be the case for GuC interrupts.
	 */
	GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier);
	GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
}

static void gen5_gt_update_irq(struct intel_gt *gt,
			       u32 interrupt_mask,
			       u32 enabled_irq_mask)
{
	lockdep_assert_held(&gt->irq_lock);

	GEM_BUG_ON(enabled_irq_mask & ~interrupt_mask);

	gt->gt_imr &= ~interrupt_mask;
	gt->gt_imr |= (~enabled_irq_mask & interrupt_mask);
	intel_uncore_write(gt->uncore, GTIMR, gt->gt_imr);
}

void gen5_gt_enable_irq(struct intel_gt *gt, u32 mask)
{
	gen5_gt_update_irq(gt, mask, mask);
	intel_uncore_posting_read_fw(gt->uncore, GTIMR);
}

void gen5_gt_disable_irq(struct intel_gt *gt, u32 mask)
{
	gen5_gt_update_irq(gt, mask, 0);
}

void gen5_gt_irq_reset(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;

	GEN3_IRQ_RESET(uncore, GT);
	if (INTEL_GEN(gt->i915) >= 6)
		GEN3_IRQ_RESET(uncore, GEN6_PM);
}

void gen5_gt_irq_postinstall(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
	u32 pm_irqs = 0;
	u32 gt_irqs = 0;

	gt->gt_imr = ~0;
	if (HAS_L3_DPF(gt->i915)) {
		/* L3 parity interrupt is always unmasked. */
		gt->gt_imr = ~GT_PARITY_ERROR(gt->i915);
		gt_irqs |= GT_PARITY_ERROR(gt->i915);
	}

	gt_irqs |= GT_RENDER_USER_INTERRUPT;
	if (IS_GEN(gt->i915, 5))
		gt_irqs |= ILK_BSD_USER_INTERRUPT;
	else
		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;

	GEN3_IRQ_INIT(uncore, GT, gt->gt_imr, gt_irqs);

	if (INTEL_GEN(gt->i915) >= 6) {
		/*
		 * RPS interrupts will get enabled/disabled on demand when RPS
		 * itself is enabled/disabled.
		 */
		if (HAS_ENGINE(gt->i915, VECS0)) {
			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
			gt->pm_ier |= PM_VEBOX_USER_INTERRUPT;
		}

		gt->pm_imr = 0xffffffff;
		GEN3_IRQ_INIT(uncore, GEN6_PM, gt->pm_imr, pm_irqs);
	}
}