Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
// SPDX-License-Identifier: GPL-2.0+
/*
 * Sleepable Read-Copy Update mechanism for mutual exclusion.
 *
 * Copyright (C) IBM Corporation, 2006
 * Copyright (C) Fujitsu, 2012
 *
 * Author: Paul McKenney <paulmck@linux.ibm.com>
 *	   Lai Jiangshan <laijs@cn.fujitsu.com>
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 *		Documentation/RCU/ *.txt
 *
 */

#define pr_fmt(fmt) "rcu: " fmt

#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/rcupdate_wait.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/srcu.h>

#include "rcu.h"
#include "rcu_segcblist.h"

/* Holdoff in nanoseconds for auto-expediting. */
#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
module_param(exp_holdoff, ulong, 0444);

/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
static ulong counter_wrap_check = (ULONG_MAX >> 2);
module_param(counter_wrap_check, ulong, 0444);

/* Early-boot callback-management, so early that no lock is required! */
static LIST_HEAD(srcu_boot_list);
static bool __read_mostly srcu_init_done;

static void srcu_invoke_callbacks(struct work_struct *work);
static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
static void process_srcu(struct work_struct *work);
static void srcu_delay_timer(struct timer_list *t);

/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
#define spin_lock_rcu_node(p)					\
do {									\
	spin_lock(&ACCESS_PRIVATE(p, lock));			\
	smp_mb__after_unlock_lock();					\
} while (0)

#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))

#define spin_lock_irq_rcu_node(p)					\
do {									\
	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
	smp_mb__after_unlock_lock();					\
} while (0)

#define spin_unlock_irq_rcu_node(p)					\
	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))

#define spin_lock_irqsave_rcu_node(p, flags)			\
do {									\
	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
	smp_mb__after_unlock_lock();					\
} while (0)

#define spin_unlock_irqrestore_rcu_node(p, flags)			\
	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\

/*
 * Initialize SRCU combining tree.  Note that statically allocated
 * srcu_struct structures might already have srcu_read_lock() and
 * srcu_read_unlock() running against them.  So if the is_static parameter
 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
 */
static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
{
	int cpu;
	int i;
	int level = 0;
	int levelspread[RCU_NUM_LVLS];
	struct srcu_data *sdp;
	struct srcu_node *snp;
	struct srcu_node *snp_first;

	/* Work out the overall tree geometry. */
	ssp->level[0] = &ssp->node[0];
	for (i = 1; i < rcu_num_lvls; i++)
		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);

	/* Each pass through this loop initializes one srcu_node structure. */
	srcu_for_each_node_breadth_first(ssp, snp) {
		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
			     ARRAY_SIZE(snp->srcu_data_have_cbs));
		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
			snp->srcu_have_cbs[i] = 0;
			snp->srcu_data_have_cbs[i] = 0;
		}
		snp->srcu_gp_seq_needed_exp = 0;
		snp->grplo = -1;
		snp->grphi = -1;
		if (snp == &ssp->node[0]) {
			/* Root node, special case. */
			snp->srcu_parent = NULL;
			continue;
		}

		/* Non-root node. */
		if (snp == ssp->level[level + 1])
			level++;
		snp->srcu_parent = ssp->level[level - 1] +
				   (snp - ssp->level[level]) /
				   levelspread[level - 1];
	}

	/*
	 * Initialize the per-CPU srcu_data array, which feeds into the
	 * leaves of the srcu_node tree.
	 */
	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
		     ARRAY_SIZE(sdp->srcu_unlock_count));
	level = rcu_num_lvls - 1;
	snp_first = ssp->level[level];
	for_each_possible_cpu(cpu) {
		sdp = per_cpu_ptr(ssp->sda, cpu);
		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
		rcu_segcblist_init(&sdp->srcu_cblist);
		sdp->srcu_cblist_invoking = false;
		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
		sdp->mynode = &snp_first[cpu / levelspread[level]];
		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
			if (snp->grplo < 0)
				snp->grplo = cpu;
			snp->grphi = cpu;
		}
		sdp->cpu = cpu;
		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
		sdp->ssp = ssp;
		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
		if (is_static)
			continue;

		/* Dynamically allocated, better be no srcu_read_locks()! */
		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
			sdp->srcu_lock_count[i] = 0;
			sdp->srcu_unlock_count[i] = 0;
		}
	}
}

/*
 * Initialize non-compile-time initialized fields, including the
 * associated srcu_node and srcu_data structures.  The is_static
 * parameter is passed through to init_srcu_struct_nodes(), and
 * also tells us that ->sda has already been wired up to srcu_data.
 */
static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
{
	mutex_init(&ssp->srcu_cb_mutex);
	mutex_init(&ssp->srcu_gp_mutex);
	ssp->srcu_idx = 0;
	ssp->srcu_gp_seq = 0;
	ssp->srcu_barrier_seq = 0;
	mutex_init(&ssp->srcu_barrier_mutex);
	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
	INIT_DELAYED_WORK(&ssp->work, process_srcu);
	if (!is_static)
		ssp->sda = alloc_percpu(struct srcu_data);
	init_srcu_struct_nodes(ssp, is_static);
	ssp->srcu_gp_seq_needed_exp = 0;
	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
	return ssp->sda ? 0 : -ENOMEM;
}

#ifdef CONFIG_DEBUG_LOCK_ALLOC

int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
		       struct lock_class_key *key)
{
	/* Don't re-initialize a lock while it is held. */
	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
	lockdep_init_map(&ssp->dep_map, name, key, 0);
	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
	return init_srcu_struct_fields(ssp, false);
}
EXPORT_SYMBOL_GPL(__init_srcu_struct);

#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

/**
 * init_srcu_struct - initialize a sleep-RCU structure
 * @ssp: structure to initialize.
 *
 * Must invoke this on a given srcu_struct before passing that srcu_struct
 * to any other function.  Each srcu_struct represents a separate domain
 * of SRCU protection.
 */
int init_srcu_struct(struct srcu_struct *ssp)
{
	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
	return init_srcu_struct_fields(ssp, false);
}
EXPORT_SYMBOL_GPL(init_srcu_struct);

#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */

/*
 * First-use initialization of statically allocated srcu_struct
 * structure.  Wiring up the combining tree is more than can be
 * done with compile-time initialization, so this check is added
 * to each update-side SRCU primitive.  Use ssp->lock, which -is-
 * compile-time initialized, to resolve races involving multiple
 * CPUs trying to garner first-use privileges.
 */
static void check_init_srcu_struct(struct srcu_struct *ssp)
{
	unsigned long flags;

	/* The smp_load_acquire() pairs with the smp_store_release(). */
	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
		return; /* Already initialized. */
	spin_lock_irqsave_rcu_node(ssp, flags);
	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
		spin_unlock_irqrestore_rcu_node(ssp, flags);
		return;
	}
	init_srcu_struct_fields(ssp, true);
	spin_unlock_irqrestore_rcu_node(ssp, flags);
}

/*
 * Returns approximate total of the readers' ->srcu_lock_count[] values
 * for the rank of per-CPU counters specified by idx.
 */
static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
{
	int cpu;
	unsigned long sum = 0;

	for_each_possible_cpu(cpu) {
		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);

		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
	}
	return sum;
}

/*
 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 * for the rank of per-CPU counters specified by idx.
 */
static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
{
	int cpu;
	unsigned long sum = 0;

	for_each_possible_cpu(cpu) {
		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);

		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
	}
	return sum;
}

/*
 * Return true if the number of pre-existing readers is determined to
 * be zero.
 */
static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
{
	unsigned long unlocks;

	unlocks = srcu_readers_unlock_idx(ssp, idx);

	/*
	 * Make sure that a lock is always counted if the corresponding
	 * unlock is counted. Needs to be a smp_mb() as the read side may
	 * contain a read from a variable that is written to before the
	 * synchronize_srcu() in the write side. In this case smp_mb()s
	 * A and B act like the store buffering pattern.
	 *
	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
	 * after the synchronize_srcu() from being executed before the
	 * grace period ends.
	 */
	smp_mb(); /* A */

	/*
	 * If the locks are the same as the unlocks, then there must have
	 * been no readers on this index at some time in between. This does
	 * not mean that there are no more readers, as one could have read
	 * the current index but not have incremented the lock counter yet.
	 *
	 * So suppose that the updater is preempted here for so long
	 * that more than ULONG_MAX non-nested readers come and go in
	 * the meantime.  It turns out that this cannot result in overflow
	 * because if a reader modifies its unlock count after we read it
	 * above, then that reader's next load of ->srcu_idx is guaranteed
	 * to get the new value, which will cause it to operate on the
	 * other bank of counters, where it cannot contribute to the
	 * overflow of these counters.  This means that there is a maximum
	 * of 2*NR_CPUS increments, which cannot overflow given current
	 * systems, especially not on 64-bit systems.
	 *
	 * OK, how about nesting?  This does impose a limit on nesting
	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
	 * especially on 64-bit systems.
	 */
	return srcu_readers_lock_idx(ssp, idx) == unlocks;
}

/**
 * srcu_readers_active - returns true if there are readers. and false
 *                       otherwise
 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
 *
 * Note that this is not an atomic primitive, and can therefore suffer
 * severe errors when invoked on an active srcu_struct.  That said, it
 * can be useful as an error check at cleanup time.
 */
static bool srcu_readers_active(struct srcu_struct *ssp)
{
	int cpu;
	unsigned long sum = 0;

	for_each_possible_cpu(cpu) {
		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);

		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
	}
	return sum;
}

#define SRCU_INTERVAL		1

/*
 * Return grace-period delay, zero if there are expedited grace
 * periods pending, SRCU_INTERVAL otherwise.
 */
static unsigned long srcu_get_delay(struct srcu_struct *ssp)
{
	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
		return 0;
	return SRCU_INTERVAL;
}

/**
 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 * @ssp: structure to clean up.
 *
 * Must invoke this after you are finished using a given srcu_struct that
 * was initialized via init_srcu_struct(), else you leak memory.
 */
void cleanup_srcu_struct(struct srcu_struct *ssp)
{
	int cpu;

	if (WARN_ON(!srcu_get_delay(ssp)))
		return; /* Just leak it! */
	if (WARN_ON(srcu_readers_active(ssp)))
		return; /* Just leak it! */
	flush_delayed_work(&ssp->work);
	for_each_possible_cpu(cpu) {
		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);

		del_timer_sync(&sdp->delay_work);
		flush_work(&sdp->work);
		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
			return; /* Forgot srcu_barrier(), so just leak it! */
	}
	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
	    WARN_ON(srcu_readers_active(ssp))) {
		pr_info("%s: Active srcu_struct %p state: %d\n",
			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
		return; /* Caller forgot to stop doing call_srcu()? */
	}
	free_percpu(ssp->sda);
	ssp->sda = NULL;
}
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);

/*
 * Counts the new reader in the appropriate per-CPU element of the
 * srcu_struct.
 * Returns an index that must be passed to the matching srcu_read_unlock().
 */
int __srcu_read_lock(struct srcu_struct *ssp)
{
	int idx;

	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
	smp_mb(); /* B */  /* Avoid leaking the critical section. */
	return idx;
}
EXPORT_SYMBOL_GPL(__srcu_read_lock);

/*
 * Removes the count for the old reader from the appropriate per-CPU
 * element of the srcu_struct.  Note that this may well be a different
 * CPU than that which was incremented by the corresponding srcu_read_lock().
 */
void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
{
	smp_mb(); /* C */  /* Avoid leaking the critical section. */
	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
}
EXPORT_SYMBOL_GPL(__srcu_read_unlock);

/*
 * We use an adaptive strategy for synchronize_srcu() and especially for
 * synchronize_srcu_expedited().  We spin for a fixed time period
 * (defined below) to allow SRCU readers to exit their read-side critical
 * sections.  If there are still some readers after a few microseconds,
 * we repeatedly block for 1-millisecond time periods.
 */
#define SRCU_RETRY_CHECK_DELAY		5

/*
 * Start an SRCU grace period.
 */
static void srcu_gp_start(struct srcu_struct *ssp)
{
	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
	int state;

	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
	rcu_segcblist_advance(&sdp->srcu_cblist,
			      rcu_seq_current(&ssp->srcu_gp_seq));
	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
				       rcu_seq_snap(&ssp->srcu_gp_seq));
	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
	rcu_seq_start(&ssp->srcu_gp_seq);
	state = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
}


static void srcu_delay_timer(struct timer_list *t)
{
	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);

	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
}

static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
				       unsigned long delay)
{
	if (!delay) {
		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
		return;
	}

	timer_reduce(&sdp->delay_work, jiffies + delay);
}

/*
 * Schedule callback invocation for the specified srcu_data structure,
 * if possible, on the corresponding CPU.
 */
static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
{
	srcu_queue_delayed_work_on(sdp, delay);
}

/*
 * Schedule callback invocation for all srcu_data structures associated
 * with the specified srcu_node structure that have callbacks for the
 * just-completed grace period, the one corresponding to idx.  If possible,
 * schedule this invocation on the corresponding CPUs.
 */
static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
				  unsigned long mask, unsigned long delay)
{
	int cpu;

	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
		if (!(mask & (1 << (cpu - snp->grplo))))
			continue;
		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
	}
}

/*
 * Note the end of an SRCU grace period.  Initiates callback invocation
 * and starts a new grace period if needed.
 *
 * The ->srcu_cb_mutex acquisition does not protect any data, but
 * instead prevents more than one grace period from starting while we
 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 * array to have a finite number of elements.
 */
static void srcu_gp_end(struct srcu_struct *ssp)
{
	unsigned long cbdelay;
	bool cbs;
	bool last_lvl;
	int cpu;
	unsigned long flags;
	unsigned long gpseq;
	int idx;
	unsigned long mask;
	struct srcu_data *sdp;
	struct srcu_node *snp;

	/* Prevent more than one additional grace period. */
	mutex_lock(&ssp->srcu_cb_mutex);

	/* End the current grace period. */
	spin_lock_irq_rcu_node(ssp);
	idx = rcu_seq_state(ssp->srcu_gp_seq);
	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
	cbdelay = srcu_get_delay(ssp);
	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
	rcu_seq_end(&ssp->srcu_gp_seq);
	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
		ssp->srcu_gp_seq_needed_exp = gpseq;
	spin_unlock_irq_rcu_node(ssp);
	mutex_unlock(&ssp->srcu_gp_mutex);
	/* A new grace period can start at this point.  But only one. */

	/* Initiate callback invocation as needed. */
	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
	srcu_for_each_node_breadth_first(ssp, snp) {
		spin_lock_irq_rcu_node(snp);
		cbs = false;
		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
		if (last_lvl)
			cbs = snp->srcu_have_cbs[idx] == gpseq;
		snp->srcu_have_cbs[idx] = gpseq;
		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
			snp->srcu_gp_seq_needed_exp = gpseq;
		mask = snp->srcu_data_have_cbs[idx];
		snp->srcu_data_have_cbs[idx] = 0;
		spin_unlock_irq_rcu_node(snp);
		if (cbs)
			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);

		/* Occasionally prevent srcu_data counter wrap. */
		if (!(gpseq & counter_wrap_check) && last_lvl)
			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
				sdp = per_cpu_ptr(ssp->sda, cpu);
				spin_lock_irqsave_rcu_node(sdp, flags);
				if (ULONG_CMP_GE(gpseq,
						 sdp->srcu_gp_seq_needed + 100))
					sdp->srcu_gp_seq_needed = gpseq;
				if (ULONG_CMP_GE(gpseq,
						 sdp->srcu_gp_seq_needed_exp + 100))
					sdp->srcu_gp_seq_needed_exp = gpseq;
				spin_unlock_irqrestore_rcu_node(sdp, flags);
			}
	}

	/* Callback initiation done, allow grace periods after next. */
	mutex_unlock(&ssp->srcu_cb_mutex);

	/* Start a new grace period if needed. */
	spin_lock_irq_rcu_node(ssp);
	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
	if (!rcu_seq_state(gpseq) &&
	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
		srcu_gp_start(ssp);
		spin_unlock_irq_rcu_node(ssp);
		srcu_reschedule(ssp, 0);
	} else {
		spin_unlock_irq_rcu_node(ssp);
	}
}

/*
 * Funnel-locking scheme to scalably mediate many concurrent expedited
 * grace-period requests.  This function is invoked for the first known
 * expedited request for a grace period that has already been requested,
 * but without expediting.  To start a completely new grace period,
 * whether expedited or not, use srcu_funnel_gp_start() instead.
 */
static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
				  unsigned long s)
{
	unsigned long flags;

	for (; snp != NULL; snp = snp->srcu_parent) {
		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
			return;
		spin_lock_irqsave_rcu_node(snp, flags);
		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
			spin_unlock_irqrestore_rcu_node(snp, flags);
			return;
		}
		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
		spin_unlock_irqrestore_rcu_node(snp, flags);
	}
	spin_lock_irqsave_rcu_node(ssp, flags);
	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
		ssp->srcu_gp_seq_needed_exp = s;
	spin_unlock_irqrestore_rcu_node(ssp, flags);
}

/*
 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 * requests.  The winner has to do the work of actually starting grace
 * period s.  Losers must either ensure that their desired grace-period
 * number is recorded on at least their leaf srcu_node structure, or they
 * must take steps to invoke their own callbacks.
 *
 * Note that this function also does the work of srcu_funnel_exp_start(),
 * in some cases by directly invoking it.
 */
static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
				 unsigned long s, bool do_norm)
{
	unsigned long flags;
	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
	struct srcu_node *snp = sdp->mynode;
	unsigned long snp_seq;

	/* Each pass through the loop does one level of the srcu_node tree. */
	for (; snp != NULL; snp = snp->srcu_parent) {
		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
			return; /* GP already done and CBs recorded. */
		spin_lock_irqsave_rcu_node(snp, flags);
		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
			snp_seq = snp->srcu_have_cbs[idx];
			if (snp == sdp->mynode && snp_seq == s)
				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
			spin_unlock_irqrestore_rcu_node(snp, flags);
			if (snp == sdp->mynode && snp_seq != s) {
				srcu_schedule_cbs_sdp(sdp, do_norm
							   ? SRCU_INTERVAL
							   : 0);
				return;
			}
			if (!do_norm)
				srcu_funnel_exp_start(ssp, snp, s);
			return;
		}
		snp->srcu_have_cbs[idx] = s;
		if (snp == sdp->mynode)
			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
			snp->srcu_gp_seq_needed_exp = s;
		spin_unlock_irqrestore_rcu_node(snp, flags);
	}

	/* Top of tree, must ensure the grace period will be started. */
	spin_lock_irqsave_rcu_node(ssp, flags);
	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
		/*
		 * Record need for grace period s.  Pair with load
		 * acquire setting up for initialization.
		 */
		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
	}
	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
		ssp->srcu_gp_seq_needed_exp = s;

	/* If grace period not already done and none in progress, start it. */
	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
		srcu_gp_start(ssp);
		if (likely(srcu_init_done))
			queue_delayed_work(rcu_gp_wq, &ssp->work,
					   srcu_get_delay(ssp));
		else if (list_empty(&ssp->work.work.entry))
			list_add(&ssp->work.work.entry, &srcu_boot_list);
	}
	spin_unlock_irqrestore_rcu_node(ssp, flags);
}

/*
 * Wait until all readers counted by array index idx complete, but
 * loop an additional time if there is an expedited grace period pending.
 * The caller must ensure that ->srcu_idx is not changed while checking.
 */
static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
{
	for (;;) {
		if (srcu_readers_active_idx_check(ssp, idx))
			return true;
		if (--trycount + !srcu_get_delay(ssp) <= 0)
			return false;
		udelay(SRCU_RETRY_CHECK_DELAY);
	}
}

/*
 * Increment the ->srcu_idx counter so that future SRCU readers will
 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 * us to wait for pre-existing readers in a starvation-free manner.
 */
static void srcu_flip(struct srcu_struct *ssp)
{
	/*
	 * Ensure that if this updater saw a given reader's increment
	 * from __srcu_read_lock(), that reader was using an old value
	 * of ->srcu_idx.  Also ensure that if a given reader sees the
	 * new value of ->srcu_idx, this updater's earlier scans cannot
	 * have seen that reader's increments (which is OK, because this
	 * grace period need not wait on that reader).
	 */
	smp_mb(); /* E */  /* Pairs with B and C. */

	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);

	/*
	 * Ensure that if the updater misses an __srcu_read_unlock()
	 * increment, that task's next __srcu_read_lock() will see the
	 * above counter update.  Note that both this memory barrier
	 * and the one in srcu_readers_active_idx_check() provide the
	 * guarantee for __srcu_read_lock().
	 */
	smp_mb(); /* D */  /* Pairs with C. */
}

/*
 * If SRCU is likely idle, return true, otherwise return false.
 *
 * Note that it is OK for several current from-idle requests for a new
 * grace period from idle to specify expediting because they will all end
 * up requesting the same grace period anyhow.  So no loss.
 *
 * Note also that if any CPU (including the current one) is still invoking
 * callbacks, this function will nevertheless say "idle".  This is not
 * ideal, but the overhead of checking all CPUs' callback lists is even
 * less ideal, especially on large systems.  Furthermore, the wakeup
 * can happen before the callback is fully removed, so we have no choice
 * but to accept this type of error.
 *
 * This function is also subject to counter-wrap errors, but let's face
 * it, if this function was preempted for enough time for the counters
 * to wrap, it really doesn't matter whether or not we expedite the grace
 * period.  The extra overhead of a needlessly expedited grace period is
 * negligible when amoritized over that time period, and the extra latency
 * of a needlessly non-expedited grace period is similarly negligible.
 */
static bool srcu_might_be_idle(struct srcu_struct *ssp)
{
	unsigned long curseq;
	unsigned long flags;
	struct srcu_data *sdp;
	unsigned long t;

	/* If the local srcu_data structure has callbacks, not idle.  */
	local_irq_save(flags);
	sdp = this_cpu_ptr(ssp->sda);
	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
		local_irq_restore(flags);
		return false; /* Callbacks already present, so not idle. */
	}
	local_irq_restore(flags);

	/*
	 * No local callbacks, so probabalistically probe global state.
	 * Exact information would require acquiring locks, which would
	 * kill scalability, hence the probabalistic nature of the probe.
	 */

	/* First, see if enough time has passed since the last GP. */
	t = ktime_get_mono_fast_ns();
	if (exp_holdoff == 0 ||
	    time_in_range_open(t, ssp->srcu_last_gp_end,
			       ssp->srcu_last_gp_end + exp_holdoff))
		return false; /* Too soon after last GP. */

	/* Next, check for probable idleness. */
	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
		return false; /* Grace period in progress, so not idle. */
	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
		return false; /* GP # changed, so not idle. */
	return true; /* With reasonable probability, idle! */
}

/*
 * SRCU callback function to leak a callback.
 */
static void srcu_leak_callback(struct rcu_head *rhp)
{
}

/*
 * Enqueue an SRCU callback on the srcu_data structure associated with
 * the current CPU and the specified srcu_struct structure, initiating
 * grace-period processing if it is not already running.
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing SRCU read-side critical section.  On systems with
 * more than one CPU, this means that when "func()" is invoked, each CPU
 * is guaranteed to have executed a full memory barrier since the end of
 * its last corresponding SRCU read-side critical section whose beginning
 * preceded the call to call_srcu().  It also means that each CPU executing
 * an SRCU read-side critical section that continues beyond the start of
 * "func()" must have executed a memory barrier after the call_srcu()
 * but before the beginning of that SRCU read-side critical section.
 * Note that these guarantees include CPUs that are offline, idle, or
 * executing in user mode, as well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
 * resulting SRCU callback function "func()", then both CPU A and CPU
 * B are guaranteed to execute a full memory barrier during the time
 * interval between the call to call_srcu() and the invocation of "func()".
 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
 *
 * Of course, these guarantees apply only for invocations of call_srcu(),
 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 * srcu_struct structure.
 */
static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
			rcu_callback_t func, bool do_norm)
{
	unsigned long flags;
	int idx;
	bool needexp = false;
	bool needgp = false;
	unsigned long s;
	struct srcu_data *sdp;

	check_init_srcu_struct(ssp);
	if (debug_rcu_head_queue(rhp)) {
		/* Probable double call_srcu(), so leak the callback. */
		WRITE_ONCE(rhp->func, srcu_leak_callback);
		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
		return;
	}
	rhp->func = func;
	idx = srcu_read_lock(ssp);
	local_irq_save(flags);
	sdp = this_cpu_ptr(ssp->sda);
	spin_lock_rcu_node(sdp);
	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
	rcu_segcblist_advance(&sdp->srcu_cblist,
			      rcu_seq_current(&ssp->srcu_gp_seq));
	s = rcu_seq_snap(&ssp->srcu_gp_seq);
	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
		sdp->srcu_gp_seq_needed = s;
		needgp = true;
	}
	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
		sdp->srcu_gp_seq_needed_exp = s;
		needexp = true;
	}
	spin_unlock_irqrestore_rcu_node(sdp, flags);
	if (needgp)
		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
	else if (needexp)
		srcu_funnel_exp_start(ssp, sdp->mynode, s);
	srcu_read_unlock(ssp, idx);
}

/**
 * call_srcu() - Queue a callback for invocation after an SRCU grace period
 * @ssp: srcu_struct in queue the callback
 * @rhp: structure to be used for queueing the SRCU callback.
 * @func: function to be invoked after the SRCU grace period
 *
 * The callback function will be invoked some time after a full SRCU
 * grace period elapses, in other words after all pre-existing SRCU
 * read-side critical sections have completed.  However, the callback
 * function might well execute concurrently with other SRCU read-side
 * critical sections that started after call_srcu() was invoked.  SRCU
 * read-side critical sections are delimited by srcu_read_lock() and
 * srcu_read_unlock(), and may be nested.
 *
 * The callback will be invoked from process context, but must nevertheless
 * be fast and must not block.
 */
void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
	       rcu_callback_t func)
{
	__call_srcu(ssp, rhp, func, true);
}
EXPORT_SYMBOL_GPL(call_srcu);

/*
 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 */
static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
{
	struct rcu_synchronize rcu;

	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
			 lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");

	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
		return;
	might_sleep();
	check_init_srcu_struct(ssp);
	init_completion(&rcu.completion);
	init_rcu_head_on_stack(&rcu.head);
	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
	wait_for_completion(&rcu.completion);
	destroy_rcu_head_on_stack(&rcu.head);

	/*
	 * Make sure that later code is ordered after the SRCU grace
	 * period.  This pairs with the spin_lock_irq_rcu_node()
	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
	 * because the current CPU might have been totally uninvolved with
	 * (and thus unordered against) that grace period.
	 */
	smp_mb();
}

/**
 * synchronize_srcu_expedited - Brute-force SRCU grace period
 * @ssp: srcu_struct with which to synchronize.
 *
 * Wait for an SRCU grace period to elapse, but be more aggressive about
 * spinning rather than blocking when waiting.
 *
 * Note that synchronize_srcu_expedited() has the same deadlock and
 * memory-ordering properties as does synchronize_srcu().
 */
void synchronize_srcu_expedited(struct srcu_struct *ssp)
{
	__synchronize_srcu(ssp, rcu_gp_is_normal());
}
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);

/**
 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 * @ssp: srcu_struct with which to synchronize.
 *
 * Wait for the count to drain to zero of both indexes. To avoid the
 * possible starvation of synchronize_srcu(), it waits for the count of
 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
 * and then flip the srcu_idx and wait for the count of the other index.
 *
 * Can block; must be called from process context.
 *
 * Note that it is illegal to call synchronize_srcu() from the corresponding
 * SRCU read-side critical section; doing so will result in deadlock.
 * However, it is perfectly legal to call synchronize_srcu() on one
 * srcu_struct from some other srcu_struct's read-side critical section,
 * as long as the resulting graph of srcu_structs is acyclic.
 *
 * There are memory-ordering constraints implied by synchronize_srcu().
 * On systems with more than one CPU, when synchronize_srcu() returns,
 * each CPU is guaranteed to have executed a full memory barrier since
 * the end of its last corresponding SRCU read-side critical section
 * whose beginning preceded the call to synchronize_srcu().  In addition,
 * each CPU having an SRCU read-side critical section that extends beyond
 * the return from synchronize_srcu() is guaranteed to have executed a
 * full memory barrier after the beginning of synchronize_srcu() and before
 * the beginning of that SRCU read-side critical section.  Note that these
 * guarantees include CPUs that are offline, idle, or executing in user mode,
 * as well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 * are the same CPU, but again only if the system has more than one CPU.
 *
 * Of course, these memory-ordering guarantees apply only when
 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
 * passed the same srcu_struct structure.
 *
 * If SRCU is likely idle, expedite the first request.  This semantic
 * was provided by Classic SRCU, and is relied upon by its users, so TREE
 * SRCU must also provide it.  Note that detecting idleness is heuristic
 * and subject to both false positives and negatives.
 */
void synchronize_srcu(struct srcu_struct *ssp)
{
	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
		synchronize_srcu_expedited(ssp);
	else
		__synchronize_srcu(ssp, true);
}
EXPORT_SYMBOL_GPL(synchronize_srcu);

/*
 * Callback function for srcu_barrier() use.
 */
static void srcu_barrier_cb(struct rcu_head *rhp)
{
	struct srcu_data *sdp;
	struct srcu_struct *ssp;

	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
	ssp = sdp->ssp;
	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
		complete(&ssp->srcu_barrier_completion);
}

/**
 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
 * @ssp: srcu_struct on which to wait for in-flight callbacks.
 */
void srcu_barrier(struct srcu_struct *ssp)
{
	int cpu;
	struct srcu_data *sdp;
	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);

	check_init_srcu_struct(ssp);
	mutex_lock(&ssp->srcu_barrier_mutex);
	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
		smp_mb(); /* Force ordering following return. */
		mutex_unlock(&ssp->srcu_barrier_mutex);
		return; /* Someone else did our work for us. */
	}
	rcu_seq_start(&ssp->srcu_barrier_seq);
	init_completion(&ssp->srcu_barrier_completion);

	/* Initial count prevents reaching zero until all CBs are posted. */
	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);

	/*
	 * Each pass through this loop enqueues a callback, but only
	 * on CPUs already having callbacks enqueued.  Note that if
	 * a CPU already has callbacks enqueue, it must have already
	 * registered the need for a future grace period, so all we
	 * need do is enqueue a callback that will use the same
	 * grace period as the last callback already in the queue.
	 */
	for_each_possible_cpu(cpu) {
		sdp = per_cpu_ptr(ssp->sda, cpu);
		spin_lock_irq_rcu_node(sdp);
		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
		sdp->srcu_barrier_head.func = srcu_barrier_cb;
		debug_rcu_head_queue(&sdp->srcu_barrier_head);
		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
					   &sdp->srcu_barrier_head, 0)) {
			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
		}
		spin_unlock_irq_rcu_node(sdp);
	}

	/* Remove the initial count, at which point reaching zero can happen. */
	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
		complete(&ssp->srcu_barrier_completion);
	wait_for_completion(&ssp->srcu_barrier_completion);

	rcu_seq_end(&ssp->srcu_barrier_seq);
	mutex_unlock(&ssp->srcu_barrier_mutex);
}
EXPORT_SYMBOL_GPL(srcu_barrier);

/**
 * srcu_batches_completed - return batches completed.
 * @ssp: srcu_struct on which to report batch completion.
 *
 * Report the number of batches, correlated with, but not necessarily
 * precisely the same as, the number of grace periods that have elapsed.
 */
unsigned long srcu_batches_completed(struct srcu_struct *ssp)
{
	return ssp->srcu_idx;
}
EXPORT_SYMBOL_GPL(srcu_batches_completed);

/*
 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
 * completed in that state.
 */
static void srcu_advance_state(struct srcu_struct *ssp)
{
	int idx;

	mutex_lock(&ssp->srcu_gp_mutex);

	/*
	 * Because readers might be delayed for an extended period after
	 * fetching ->srcu_idx for their index, at any point in time there
	 * might well be readers using both idx=0 and idx=1.  We therefore
	 * need to wait for readers to clear from both index values before
	 * invoking a callback.
	 *
	 * The load-acquire ensures that we see the accesses performed
	 * by the prior grace period.
	 */
	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
	if (idx == SRCU_STATE_IDLE) {
		spin_lock_irq_rcu_node(ssp);
		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
			spin_unlock_irq_rcu_node(ssp);
			mutex_unlock(&ssp->srcu_gp_mutex);
			return;
		}
		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
		if (idx == SRCU_STATE_IDLE)
			srcu_gp_start(ssp);
		spin_unlock_irq_rcu_node(ssp);
		if (idx != SRCU_STATE_IDLE) {
			mutex_unlock(&ssp->srcu_gp_mutex);
			return; /* Someone else started the grace period. */
		}
	}

	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
		idx = 1 ^ (ssp->srcu_idx & 1);
		if (!try_check_zero(ssp, idx, 1)) {
			mutex_unlock(&ssp->srcu_gp_mutex);
			return; /* readers present, retry later. */
		}
		srcu_flip(ssp);
		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
	}

	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {

		/*
		 * SRCU read-side critical sections are normally short,
		 * so check at least twice in quick succession after a flip.
		 */
		idx = 1 ^ (ssp->srcu_idx & 1);
		if (!try_check_zero(ssp, idx, 2)) {
			mutex_unlock(&ssp->srcu_gp_mutex);
			return; /* readers present, retry later. */
		}
		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
	}
}

/*
 * Invoke a limited number of SRCU callbacks that have passed through
 * their grace period.  If there are more to do, SRCU will reschedule
 * the workqueue.  Note that needed memory barriers have been executed
 * in this task's context by srcu_readers_active_idx_check().
 */
static void srcu_invoke_callbacks(struct work_struct *work)
{
	bool more;
	struct rcu_cblist ready_cbs;
	struct rcu_head *rhp;
	struct srcu_data *sdp;
	struct srcu_struct *ssp;

	sdp = container_of(work, struct srcu_data, work);

	ssp = sdp->ssp;
	rcu_cblist_init(&ready_cbs);
	spin_lock_irq_rcu_node(sdp);
	rcu_segcblist_advance(&sdp->srcu_cblist,
			      rcu_seq_current(&ssp->srcu_gp_seq));
	if (sdp->srcu_cblist_invoking ||
	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
		spin_unlock_irq_rcu_node(sdp);
		return;  /* Someone else on the job or nothing to do. */
	}

	/* We are on the job!  Extract and invoke ready callbacks. */
	sdp->srcu_cblist_invoking = true;
	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
	spin_unlock_irq_rcu_node(sdp);
	rhp = rcu_cblist_dequeue(&ready_cbs);
	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
		debug_rcu_head_unqueue(rhp);
		local_bh_disable();
		rhp->func(rhp);
		local_bh_enable();
	}

	/*
	 * Update counts, accelerate new callbacks, and if needed,
	 * schedule another round of callback invocation.
	 */
	spin_lock_irq_rcu_node(sdp);
	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
				       rcu_seq_snap(&ssp->srcu_gp_seq));
	sdp->srcu_cblist_invoking = false;
	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
	spin_unlock_irq_rcu_node(sdp);
	if (more)
		srcu_schedule_cbs_sdp(sdp, 0);
}

/*
 * Finished one round of SRCU grace period.  Start another if there are
 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
 */
static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
{
	bool pushgp = true;

	spin_lock_irq_rcu_node(ssp);
	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
			/* All requests fulfilled, time to go idle. */
			pushgp = false;
		}
	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
		/* Outstanding request and no GP.  Start one. */
		srcu_gp_start(ssp);
	}
	spin_unlock_irq_rcu_node(ssp);

	if (pushgp)
		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
}

/*
 * This is the work-queue function that handles SRCU grace periods.
 */
static void process_srcu(struct work_struct *work)
{
	struct srcu_struct *ssp;

	ssp = container_of(work, struct srcu_struct, work.work);

	srcu_advance_state(ssp);
	srcu_reschedule(ssp, srcu_get_delay(ssp));
}

void srcutorture_get_gp_data(enum rcutorture_type test_type,
			     struct srcu_struct *ssp, int *flags,
			     unsigned long *gp_seq)
{
	if (test_type != SRCU_FLAVOR)
		return;
	*flags = 0;
	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
}
EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);

void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
{
	int cpu;
	int idx;
	unsigned long s0 = 0, s1 = 0;

	idx = ssp->srcu_idx & 0x1;
	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
	for_each_possible_cpu(cpu) {
		unsigned long l0, l1;
		unsigned long u0, u1;
		long c0, c1;
		struct srcu_data *sdp;

		sdp = per_cpu_ptr(ssp->sda, cpu);
		u0 = sdp->srcu_unlock_count[!idx];
		u1 = sdp->srcu_unlock_count[idx];

		/*
		 * Make sure that a lock is always counted if the corresponding
		 * unlock is counted.
		 */
		smp_rmb();

		l0 = sdp->srcu_lock_count[!idx];
		l1 = sdp->srcu_lock_count[idx];

		c0 = l0 - u0;
		c1 = l1 - u1;
		pr_cont(" %d(%ld,%ld %c)",
			cpu, c0, c1,
			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
		s0 += c0;
		s1 += c1;
	}
	pr_cont(" T(%ld,%ld)\n", s0, s1);
}
EXPORT_SYMBOL_GPL(srcu_torture_stats_print);

static int __init srcu_bootup_announce(void)
{
	pr_info("Hierarchical SRCU implementation.\n");
	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
	return 0;
}
early_initcall(srcu_bootup_announce);

void __init srcu_init(void)
{
	struct srcu_struct *ssp;

	srcu_init_done = true;
	while (!list_empty(&srcu_boot_list)) {
		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
				      work.work.entry);
		check_init_srcu_struct(ssp);
		list_del_init(&ssp->work.work.entry);
		queue_work(rcu_gp_wq, &ssp->work.work);
	}
}

#ifdef CONFIG_MODULES

/* Initialize any global-scope srcu_struct structures used by this module. */
static int srcu_module_coming(struct module *mod)
{
	int i;
	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
	int ret;

	for (i = 0; i < mod->num_srcu_structs; i++) {
		ret = init_srcu_struct(*(sspp++));
		if (WARN_ON_ONCE(ret))
			return ret;
	}
	return 0;
}

/* Clean up any global-scope srcu_struct structures used by this module. */
static void srcu_module_going(struct module *mod)
{
	int i;
	struct srcu_struct **sspp = mod->srcu_struct_ptrs;

	for (i = 0; i < mod->num_srcu_structs; i++)
		cleanup_srcu_struct(*(sspp++));
}

/* Handle one module, either coming or going. */
static int srcu_module_notify(struct notifier_block *self,
			      unsigned long val, void *data)
{
	struct module *mod = data;
	int ret = 0;

	switch (val) {
	case MODULE_STATE_COMING:
		ret = srcu_module_coming(mod);
		break;
	case MODULE_STATE_GOING:
		srcu_module_going(mod);
		break;
	default:
		break;
	}
	return ret;
}

static struct notifier_block srcu_module_nb = {
	.notifier_call = srcu_module_notify,
	.priority = 0,
};

static __init int init_srcu_module_notifier(void)
{
	int ret;

	ret = register_module_notifier(&srcu_module_nb);
	if (ret)
		pr_warn("Failed to register srcu module notifier\n");
	return ret;
}
late_initcall(init_srcu_module_notifier);

#endif /* #ifdef CONFIG_MODULES */